首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The zebrafish has become a significant model system for studying renal organogenesis and disease, as well as for the quest for new therapeutics, because of the structural and functional simplicity of the embryonic kidney. Inroads to the nature and disease states of kidney-related ciliopathies and acute kidney injury (AKI) have been advanced by zebrafish studies. This model organism has been instrumental in the analysis of mutant gene function for human disease with respect to ciliopathies. Additionally, in the AKI field, recent work in the zebrafish has identified a bona fide adult zebrafish renal progenitor (stem) cell that is required for neo-nephrogenesis, both during the normal lifespan and in response to renal injury. Taken together, these studies solidify the zebrafish as a successful model system for studying the broad spectrum of ciliopathies and AKI that affect millions of humans worldwide, and point to a very promising future of zebrafish drug discovery. The emphasis of this review will be on the role of the zebrafish as a model for human kidney-related ciliopathies and AKI, and how our understanding of these complex pathologies is being furthered by this tiny teleost.  相似文献   

2.
The zebrafish has become a powerful vertebrate model for genetic studies of embryonic development and organogenesis and increasingly for studies in cancer biology. Zebrafish facilitate the performance of reverse and forward genetic approaches, including mutagenesis and small molecule screens. Moreover, several studies report the feasibility of xenotransplanting human cells into zebrafish embryos and adult fish. This model provides a unique opportunity to monitor tumor-induced angiogenesis, invasiveness, and response to a range of treatments in vivo and in real time. Despite the high conservation of gene function between fish and humans, concern remains that potential differences in zebrafish tissue niches and/or missing microenvironmental cues could limit the relevance and translational utility of data obtained from zebrafish human cancer cell xenograft models. Here, we summarize current data on xenotransplantation of human cells into zebrafish, highlighting the advantages and limitations of this model in comparison to classical murine models of xenotransplantation.  相似文献   

3.
4.
The zebrafish has proven to be an excellent model for analyzing issues of vertebrate development. In this review we ask whether the zebrafish is a viable model for analyzing the neurodevelopmental causes of autism. In developing an answer to this question three topics are considered. First, the general attributes of zebrafish as a model are discussed, including low cost maintenance, rapid life cycle and the multitude of techniques available. These techniques include large-scale genetic screens, targeted loss and gain of function methods, and embryological assays. Second, we consider the conservation of zebrafish and mammalian brain development, structure and function. Third, we discuss the impressive use of zebrafish as a model for human disease, and suggest several strategies by which zebrafish could be used to dissect the genetic basis for autism. We conclude that the zebrafish system could be used to make important contributions to understanding autistic disorders.  相似文献   

5.
6.
Optical and genetic tools are beginning to revolutionize thestudies of neuronal circuits. Neurons can now be labeled withconventional or genetically encoded indicators that allow theiractivity to be monitored during behavior in intact animals.Laser ablations and genetic inactivation offer ways to perturbactivity of specific cells to test their contributions to behavior.These approaches promise to speed progress in the understandingof vertebrate networks in genetic model systems such as miceand zebrafish. Here we review some of the progress in applyingthese tools, with an emphasis on our work to develop and applythese approaches in the zebrafish model.  相似文献   

7.
In our effort to understand genetic disorders of the photoreceptor cells of the retina, we have focused on intraflagellar transport in photoreceptor sensory cilia. From previous mouse proteomic data we identified a cilia protein Ttc26, orthologue of dyf-13 in Caenorhabditis elegans, as a target. We localized Ttc26 to the transition zone of photoreceptor and to the transition zone of cilia in cultured murine inner medullary collecting duct 3 (mIMCD3) renal cells. Knockdown of Ttc26 in mIMCD3 cells produced shortened and defective primary cilia, as revealed by immunofluorescence and scanning electron microscopy. To study Ttc26 function in sensory cilia in vivo, we utilized a zebrafish vertebrate model system. Morpholino knockdown of ttc26 in zebrafish embryos caused ciliary defects in the pronephric kidney at 27 h postfertilization and distension/dilation of pronephros at 5 d postfertilization (dpf). In the eyes, the outer segments of photoreceptor cells appeared shortened or absent, whereas cellular lamination appeared normal in retinas at 5 dpf. This suggests that loss of ttc26 function prevents normal ciliogenesis and differentiation in the photoreceptor cells, and that ttc26 is required for normal development and differentiation in retina and pronephros. Our studies support the importance of Ttc26 function in ciliogenesis and suggest that screening for TTC26 mutations in human ciliopathies is justified.  相似文献   

8.
The understanding of vertebrate development has advanced considerably in recent years, primarily due to the study of a few model organisms. The zebrafish, the newest of these models, has risen to prominence because both genetic and experimental embryological methods can be easily applied to this animal. The combination of approaches has proven powerful, yielding insights into the formation and function of individual tissues, organ systems and neural networks, and into human disease mechanisms. Here, we provide a personal perspective on the history of zebrafish research, from the assembly of the first genetic and embryological tools through to sequencing of the genome.  相似文献   

9.
The rice field eel as a model system for vertebrate sexual development   总被引:3,自引:0,他引:3  
Complex developmental mechanisms of vertebrates are unraveled using comparative genomic approaches. Several teleosts, such as zebrafish, medaka and pufferfish, are used as genetic model systems because they are amenable to studies of gene function. The rice field eel, a freshwater fish, is emerging as a specific model system for studies of vertebrate sexual development because of its small genome size and naturally occurring sex reversal. Data presented here support the use of the rice field eel as another important fish model for comparative genome studies, especially in vertebrate sexual development. This model system is complementary rather than redundant.  相似文献   

10.
A call to fins! Zebrafish as a gerontological model   总被引:1,自引:0,他引:1  
Gerhard GS  Cheng KC 《Aging cell》2002,1(2):104-111
Among the wide variety of model organisms commonly used for studies on aging, such as worms, flies and rodents, a wide research gap exists between the invertebrate and vertebrate model systems. In developmental biology, a similar gap has been filled by the zebrafish (Danio rerio). We propose that the zebrafish is uniquely suited to serve as a bridge model for gerontology. With high fecundity and economical husbandry requirements, large populations of zebrafish may be generated quickly and cheaply, facilitating large-scale approaches including demographic studies and mutagenesis screens. A variety of mutants identified in such screens have led to modelling of human disease, including cardiac disorders and cancer. While zebrafish longevity is at least 50% longer than in commonly used mouse strains, as an ectothermic fish species, its life span may be readily modulated by caloric intake, ambient temperature and reproductive activity. These features, coupled with a growing abundance of biological resources, including an ongoing genome sequencing project, make the zebrafish a compelling model organism for studies on aging.  相似文献   

11.
Zebrafish: a model system for the study of human disease   总被引:20,自引:0,他引:20  
The zebrafish (Danio rerio) is a powerful model organism for the study of vertebrate biology, being well suited to both developmental and genetic analysis. Large-scale genetic screens have identified hundreds of mutant phenotypes, many of which resemble human clinical disorders. The creation of critical genetic reagents, coupled with the rapid progress of the zebrafish genome initiative directed by the National Institutes of Health, are bringing this model system to its full potential for the study of vertebrate biology, physiology and human disease.  相似文献   

12.
The zebrafish is an especially attractive model for the study of the development and function of the vertebrate inner ear. It combines rapid and accessible embryogenesis with a host of genetic and genomic tools for systematic gene discovery and analysis. A large collection of mutations affecting development and function of the ear and a related sensory system, the lateral line, have been isolated; several of these have now been cloned, and at least five provide models for human deafness disorders. Disruption of multiple genes, using both forward and reverse genetic approaches, has established key players--both signaling molecules and autonomous factors--responsible for induction and specification of the otic placode. Vestibular and auditory defects have been detected in adult animals, making the zebrafish a useful system in which to tackle the genetic causes of late onset deafness and vestibular disease.  相似文献   

13.
This protocol describes regular care and maintenance of a zebrafish laboratory. Zebrafish are now gaining popularity in genetics, pharmacological and behavioural research. As a vertebrate, zebrafish share considerable genetic sequence similarity with humans and are being used as an animal model for various human disease conditions. The advantages of zebrafish in comparison to other common vertebrate models include high fecundity, low maintenance cost, transparent embryos, and rapid development. Due to the spur of interest in zebrafish research, the need to establish and maintain a productive zebrafish housing facility is also increasing. Although literature is available for the maintenance of a zebrafish laboratory, a concise video protocol is lacking. This video illustrates the protocol for regular housing, feeding, breeding and raising of zebrafish larvae. This process will help researchers to understand the natural behaviour and optimal conditions of zebrafish husbandry and hence troubleshoot experimental issues that originate from the fish husbandry conditions. This protocol will be of immense help to researchers planning to establish a zebrafish laboratory, and also to graduate students who are intending to use zebrafish as an animal model.  相似文献   

14.
Functional genomics tools for the analysis of zebrafish pigment   总被引:3,自引:0,他引:3  
Genetic model organisms are increasingly valuable in the post-genomics era to provide a basis for comparative analysis of the human genome. For higher order processes of vertebrate pigment cell biology and development, the mouse has historically been the model of choice. A complementary organism, the zebrafish (Danio rerio), shares many of the signaling and biological processes of vertebrates, e.g. neural crest development. The zebrafish has a number of characteristics that make it an especially valuable model for the study of pigment cell biology and disease. Large-scale genetic screens have identified a collection of pigmentation mutants that have already made valuable contributions to pigment research. An increasing repertoire of genomic resources such as an expressed sequence tag-based Gene Index (The Institute for Genomic Research) and improving methods of mutagenesis, transgenesis, and gene targeting make zebrafish a particularly attractive model. Morpholino phosphorodiamidate oligonucleotide (MO) 'knockdown' of pigment gene expression provides a non-conventional antisense tool for the analysis of genes involved in pigment cell biology and disease. In addition, an ongoing, reverse-genetic, MO-based screen for the rapid identification of gene function promises to be a valuable complement to other high-throughput microarray and proteomic approaches for understanding pigment cell biology. Novel reagents for zebrafish transgenesis, such as the Sleeping Beauty transposon system, continue to improve the capacity for genetic analysis in this system and ensure that the zebrafish will be a valuable genetic model for understanding a variety of biological processes and human diseases for years to come.  相似文献   

15.
Zebrafish models have significantly contributed to our understanding of vertebrate development and, more recently, human disease. The growing number of genetic tools available in zebrafish research has resulted in the identification of many genes involved in developmental and disease processes. In particular, studies in the zebrafish have clarified roles of the p53 tumor suppressor in the formation of specific tumor types, as well as roles of p53 family members during embryonic development. The zebrafish has also been instrumental in identifying novel mechanisms of p53 regulation and highlighting the importance of these mechanisms in vivo. This article will summarize how zebrafish models have been used to reveal numerous, important aspects of p53 function.The zebrafish, Danio rerio, is a small model organism that has long been used to study vertebrate development. Zebrafish embryos are optically clear and develop externally to the mother, facilitating the study of early developmental processes. In addition, zebrafish have increasingly been used in modeling human diseases, including a number of cancers. The availability of forward and reverse genetic tools in the zebrafish has resulted in the identification and characterization of many genes involved in development and disease. One gene that has been extensively studied is the p53 tumor suppressor gene, which is structurally and functionally conserved in the zebrafish. This article will discuss how studies in the zebrafish have increased our understanding of how p53 contributes to the formation of specific tumor types, resulted in the identification of novel mechanisms of p53 regulation, and showed how p53 and p53 family members are involved in embryonic development.  相似文献   

16.
The lens of the vertebrate eye was the classic model used to demonstrate the concepts of inductive interactions controlling development. However, it is in the Drosophila model that the greatest progress in understanding molecular mechanisms of eye development have most recently been made. This progress can be attributed to the power of molecular genetics, an approach that was once confined to simpler systems like worms and flies, but is now becoming possible in vertebrates. Thus, the use of transgenic and knock-out gene technology, coupled with the availability of new positional cloning methods, has recently initiated a surge of progress in the mouse genetic model and has also led to the identification of genes involved in human inherited disorders. In addition, gene transfer techniques have opened up opportunities for progress using chick, Xenopus, and other classic developmental systems. Finally, a new vertebrate genetic model, zebrafish, appears very promising for molecular studies. As a result of the opportunities presented by these new approaches, eye development has come into the limelight, hence the timeliness of this focus issue of Developmental Genetics. In this introductory review, we discuss three areas of current work arising through the use of these newer genetic approaches, and pertinent to research articles presented herein. We also touch on related studies reported at the first Keystone Meeting on Ocular Cell and Molecular Biology, recently held in Tamarron Springs, Colorado, January 7–12, 1997. Dev. Genet. 20:175–185, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Cilia project from the surface of most vertebrate cells and are important for several physiological and developmental processes. Ciliary defects are linked to a variety of human diseases, named ciliopathies, underscoring the importance of understanding signaling pathways involved in cilia formation and maintenance. In this paper, we identified Rer1p as the first endoplasmic reticulum/cis-Golgi–localized membrane protein involved in ciliogenesis. Rer1p, a protein quality control receptor, was highly expressed in zebrafish ciliated organs and regulated ciliary structure and function. Both in zebrafish and mammalian cells, loss of Rer1p resulted in the shortening of cilium and impairment of its motile or sensory function, which was reflected by hearing, vision, and left–right asymmetry defects as well as decreased Hedgehog signaling. We further demonstrate that Rer1p depletion reduced ciliary length and function by increasing γ-secretase complex assembly and activity and, consequently, enhancing Notch signaling as well as reducing Foxj1a expression.  相似文献   

18.
Mutagenesis screens in zebrafish have uncovered several hundred mutant alleles affecting the development of the retina and established the zebrafish as one of the leading models of vertebrate eye development. In addition to forward genetic mutagenesis approaches, gene function in the zebrafish embryo is being studied using several reverse genetic techniques. Some of these rely on the overexpression of a gene product, others take advantage of antisense oligonucleotides to block function of selected loci. Here we describe these methods in the context of the developing eye.  相似文献   

19.
Genetic screens in zebrafish have identified a large number of mutations that affect neural connectivity in the developing visual system. These mutants define genes essential for accurate retinal axon guidance in the eye and brain and the characterization of these mutants is helping to define the cellular and molecular mechanisms that guide axons in the vertebrate embryo. The combination of zebrafish genetic and embryological approaches promises to greatly increase our understanding of how multiple guidance mechanisms establish the complex neural interconnectivity of the vertebrate brain.  相似文献   

20.
辛胜昌  赵艳秋  李松  林硕  仲寒冰 《遗传》2012,34(9):1144-1152
斑马鱼具有子代数量多、体外受精、胚胎透明、可以做大规模遗传突变筛选等生物学特性, 因此成为一种良好的脊椎动物模式生物。随着研究的深入, 斑马鱼不仅应用于遗传学和发育生物学研究, 而且拓展和延伸到疾病模型和药物筛选领域。作为一种整体动物模型, 斑马鱼能够全面地检测评估化合物的活性和副作用, 实现高内涵筛选。近年来, 科学家们不断地发展出新的斑马鱼疾病模型和新的筛选技术, 并找到了一批活性化合物。这些化合物大多数在哺乳动物模型中也有相似的效果, 其中前列腺素E2(dmPGE2)和来氟米特(Leflunomide)已经进入临床实验, 分别用来促进脐带血细胞移植后的增殖和治疗黑素瘤。这些成果显示了斑马鱼模型很适合用于药物筛选。文章概括介绍了斑马鱼模型的特点和近年来在疾病模型和药物筛选方面的进展, 希望能够帮助人们了解斑马鱼在新药研发中的应用, 并开展基于斑马鱼模型的药物筛选。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号