首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CRISPR/Cas9系统的发展彻底改变了人们编辑DNA序列和调控目标基因表达水平的能力,从而为生物体的精确基因组编辑提供了有力的工具。简化后的CRISPR/Cas9系统由两部分组成:Cas9蛋白和sgRNA。其作用原理为sgRNA通过自身的Cas9把手与Cas9蛋白形成Cas9-sgRNA复合体,Cas9-sgRNA复合体中sgRNA的碱基互补配对区序列与目标基因的靶序列通过碱基互补配对原则进行配对结合,Cas9利用自身的核酸内切酶活性对目标DNA序列进行切割。与传统的基因组编辑技术相比,CRISPR/Cas9系统具有几大明显的优势:易用性、简便性、低成本、可编程性以及可同时编辑多个基因。CRISPR/Cas9基因组编辑技术以及衍生出来的CRISPRi和CRISPRa基因表达调控技术已经广泛应用于多种真核和原核生物中。综述了CRISPR/Cas9系统的起源、作用机理、在生物体中的应用和其衍生出的技术,并概述了其脱靶效应和未来前景。  相似文献   

2.
CRISPR/Cas9基因组编辑技术是一项对基因组进行精准修饰的技术,可实现对靶标基因的碱基插入、缺失或DNA片段替换。随着人们对CRISPR/Cas9系统的了解逐渐加深,其在科研、农业和医疗等领域的应用也越来越广泛。该文简要介绍了CRISPR/Cas9基因组编辑技术的发展以及工作原理,总结了近几年对该技术进行优化与改进的研究进展,包括基因组编辑效率的提升、基因组编辑范围的扩展、单碱基精准编辑以及多基因同时编辑、基因组编辑安全性的提升以及基因片段替换与基因靶向转录调控,以期为深入开展这一领域的研究提供参考。  相似文献   

3.
CRISPR/Cas9基因组编辑技术是一项对基因组进行精准修饰的技术, 可实现对靶标基因的碱基插入、缺失或DNA片段替换。随着人们对CRISPR/Cas9系统的了解逐渐加深, 其在科研、农业和医疗等领域的应用也越来越广泛。该文简要介绍了CRISPR/Cas9基因组编辑技术的发展以及工作原理, 总结了近几年对该技术进行优化与改进的研究进展, 包括基因组编辑效率的提升、基因组编辑范围的扩展、单碱基精准编辑以及多基因同时编辑、基因组编辑安全性的提升以及基因片段替换与基因靶向转录调控, 以期为深入开展这一领域的研究提供参考。  相似文献   

4.
CRISPR/Cas9技术自从出现以来便迅速应用于肿瘤研究。在肿瘤发生的机理研究中,CRISPR/Cas9可用于研究单核苷酸突变、染色体异位等因素在肿瘤发生中的作用机制,同时也可以用于肿瘤细胞中功能缺陷基因的筛选。在肿瘤治疗方法的研究中,CRISPR/Cas9主要用于诱发机制比较清晰且诱因为病毒的肿瘤类型,例如鼻咽癌、宫颈癌等,通过对相应病毒的基因进行编辑从而抑制其致癌作用。利用CRISPR/Cas9技术还可以加速新肿瘤治疗靶点基因的发现。尽管发展和应用十分迅速,但是CRISPR/Cas9在肿瘤研究和治疗中的作用仍然受多种因素的限制,包括Cas9和sgRNA的输送效率、脱靶效应以及安全性和成本等。对CRISPR/Cas9在肿瘤研究中的应用进展进行了综述,以期为肿瘤发生、转移机制和肿瘤治疗等方面的研究提供参考。  相似文献   

5.
小麦(Triticum aestivum L.)是世界上主要的农作物之一,在粮食安全供应中发挥重要作用。在过去的几十年,由于小麦基因组复杂和遗传转化困难,导致小麦的基础和应用研究落后于其他谷类作物。2014年小麦基因组编辑取得了显著进展,进而促进了小麦生物技术的发展。综述了CRISPR/Cas9技术在小麦育种中的研究进展,简单介绍了CRISPR/Cas9基因编辑技术的发现、原理和优缺点,指出小麦基因编辑过程中农杆菌介导的遗传转化较粒子轰击法可降低转基因沉默频率,未来将成为基因编辑过程中主流的遗传转化方式;优化sgRNA的启动子、选择同源保守序列做为靶点可以提高基因编辑效率;新开发的碱基编辑器和prime editor需引入更多突变类型。展望了进一步提高小麦基因编辑效率和安全性的可行性,以期为未来小麦育种工作提供参考。  相似文献   

6.
CRISPR/Cas9系统是近年来新兴的一种基因编辑技术,可将特定DNA基因序列敲除、插入或定点突变,具有快捷、高效、精准、特异性高等特点,广泛地应用于遗传育种、生物医药和基因工程等研究领域。山羊和绵羊是重要的经济家畜动物和实验动物,利用CRISPR/Cas9基因编辑系统对羊进行遗传修饰,将加速品种改良,提高动物生产性能,获得更加优质的农副产品。主要对CRISPR/Cas9基因编辑技术的概述、作用机理及在羊乳"人源化"改造、提高肉品质、改善毛纤维质量等方面的应用研究进展及发展前景作简要阐述,以期为相关科研人员提供参考。  相似文献   

7.
CRISPR/Cas9基因组定点编辑中脱靶现象的研究进展   总被引:2,自引:0,他引:2  
王影  李相敢  邱丽娟 《植物学报》2018,53(4):528-541
近年来, CRISPR定点编辑技术发展迅猛, 在动物、植物和微生物中均得到广泛应用。其中, 备受关注的脱靶现象也是研究的热点, 迄今已取得了重要进展。该文介绍了脱靶现象的产生原理及体内和体外检测脱靶现象的方法, 评价了通过改进sgRNA设计和优化CRISPR系统等来降低脱靶率的方法。在植物基因组定点编辑过程中, 应适时检测脱靶现象, 提高脱靶检测的精确度和准确度。  相似文献   

8.
近年来,通过基因编辑技术对工业微生物底盘细胞改造从而获得的优良细胞工厂,促进了农业、医学、环境、能源等领域的可持续发展,提高了人民的生活水平。微生物底盘细胞的改造离不开基因编辑,作为现阶段主要的基因编辑技术,规律间隔成簇短回文重复序列(clustered regularly interspaced short palindromic repeats,CRISPR)/Cas9系统自被发现以来,依靠其低成本、高效率等编辑优点,被广泛用于工业微生物底盘细胞的改造。本文主要简述了以CRISPR/Cas9为基础而衍伸出的各种基因编辑技术,提出了常用的工业微生物对应底盘细胞的改造策略,以期为研究者在进行微生物底盘细胞改造时选择出合适的基因编辑方法。最后指出了CRISPR基因编辑技术面临的PAM位点的依赖性、脱靶效应和应用广泛性等问题。  相似文献   

9.
Russian Journal of Bioorganic Chemistry - A photoactivatable CRISPR/Cas9 system consisting of the Cas9 protein, synthetic 102-nt sgRNA or a pair of guide crRNA/tracrRNA, and blocking photocleavable...  相似文献   

10.
郑武  谷峰 《遗传》2015,37(10):1003-1010
CRISPR/Cas9基因编辑技术在生命科学领域掀起了一场全新的技术革命,该技术可以对基因组特定位点进行靶向编辑,包括缺失、插入、修复等。CRISPR/Cas9比锌指核酸酶 (ZFNs)和转录激活因子样效应物核酸酶(TALENs)技术更易于操作,而且更高效。CRISPR/Cas9系统中的向导RNA(Single guide RNA, sgRNA)是一段与目标DNA片段匹配的RNA序列,指导Cas9蛋白对基因组进行识别。研究发现,设计的sgRNA会与非靶点DNA序列错配,引入非预期的基因突变,即脱靶效应(Off-target effects)。脱靶效应严重制约了CRISPR/Cas9基因编辑技术的广泛应用。为了避免脱靶效应,研究者对影响脱靶效应的因素进行了系统研究并提出了许多降低脱靶效应的方法。文章总结了CRISPR/Cas9系统的应用及脱靶效应研究进展,以期为相关领域的工作提供参考。  相似文献   

11.
CRISPR/Cas9系统是原核生物抵御病毒或质粒等外来遗传物质入侵的一种获得性免疫系统,主要由非特异性的Cas9核酸酶和起识别作用的cr RNA所组成。相较于传统的基因组编辑技术,基于CRISPR/Cas9系统的基因组定点编辑技术具有快速、简单、高效等优点,并且几乎可以用于任何物种的基因编辑。尽管CRISPR/Cas9系统的基因组特异性还有待进一步确认,但该系统在基因组编辑方面的简便性和有效性必将促进生物学的研究和人类疾病基因治疗方面的发展。  相似文献   

12.
CRISPR(clustered regularly interspaced short palindromic repeats)/Cas9(CRISPR-associated proteins)作为一种新型基因组编辑技术,为解释疾病的发生机制和治疗疾病提供了新方法。来自Ⅱ型原核CRISPR系统的CRISPR/Cas9能够通过单链向导RNA(single guide RNA, sgRNA)将Cas9核酸酶靶定到特定的基因组序列发挥作用。已经被成功用来进行基因编辑构建疾病模型,以进行相关领域的功能研究和疾病的治疗。CRISPR/Cas9技术正在迅速的应用于生物医学研究的各个领域,包括心血管领域,它促进了人们对电生理、心肌病、心律失常以及其他心血管疾病的更多了解,已经创建了靶向很多基因的细胞和动物模型,为新一类疗法打开了大门。本综述介绍了CRISPR/Cas9的作用原理、优点和局限性,以及在心血管疾病中的应用进展。  相似文献   

13.
CRISPR/Cas9 genome editing in wheat   总被引:1,自引:0,他引:1  
  相似文献   

14.
自2012年首次证明了CRISPR/Cas9可以在体外进行DNA切割试验以来,CRISPR技术逐渐在基因编辑研究中获得了迅速的发展,除了应用于基因编辑领域之外,它在基因表达调控、基因成像、基因分析等方面也展现出了巨大的应用潜力。尤其在基因分析领域,CRISPR技术由于其精确的基因识别、室温的反应条件、易设计性和操作性等特色,使得一系列新型的基因检测技术得以发展,并取得了超越常规技术的一些检测参数。本文以Cas9蛋白为对象,综述了近些年来在该领域取得的研究进展。主要论述Cas9蛋白的功能、改造、引导RNA(sgRNA)的设计及其在基因分析方法上的应用。  相似文献   

15.
16.
成簇的规律间隔性短回文序列(CRISPR)基因编辑系统,因其设计简单操作方便和无种属限制,已成为一种广泛应用的基因组定点编辑工具,在复杂的基因组编辑,例如基因的人源化改造以及条件等位基因的构建中有所应用。在自然界中,CRISPR系统拥有多种类别。其中,CRISPR/Cas9系统是研究最深入、应用最成熟的一种。本文针对CRISPR/Cas9系统,分别从基因敲入/敲除片段的大小、同源臂长短、构型即递送方式等技术环节进行综述,阐述不同设计及操作条件下由CRISPR/Cas9系统介导的基因敲入/敲除的效率差异。  相似文献   

17.
目的:应用CRISPR/Cas9技术构建去泛素化酶YOD1基因敲除小鼠。方法:针对YOD1基因设计单链向导RNA(sg RNA)识别序列,构建sg RNA质粒,与Cas9质粒体外转录、纯化后注射入受精卵,通过PCR和测序验证得到F0代阳性小鼠。配繁两代后,取同窝对照的野生型(WT)和敲除(KO)小鼠的主要组织器官研磨,使用免疫印迹(WB)技术检测各组织YOD1蛋白的表达,确证YOD1敲除小鼠模型是否成功建立。统计YOD1杂合子(HET)自交存活后代各基因型比例,分析是否有胚胎致死表型。解剖小鼠分析主要组织器官的表型,进一步利用H.E.染色分析KO小鼠是否存在自发的病理改变。通过血糖耐受实验(GTT)分析KO小鼠的血糖调控能力。结果:基因组测序和WB检测结果显示KO小鼠中YOD1被明显敲除,YOD1敲除小鼠模型成功建立。YOD1杂合子自交后代各基因型比例符合孟德尔定律,提示KO小鼠非胚胎致死。YOD1敲除小鼠肝脏显著小于WT小鼠。GTT结果表明敲除YOD1不影响小鼠的血糖稳态。结论:应用CRISPR/Cas9技术成功构建YOD1基因敲除小鼠。KO小鼠正常出生,无任何胚胎发育缺陷。与WT小鼠相比,KO小鼠肝脏显著减小,但无显著的自发病理变化,KO小鼠血糖控制亦无显著差异。  相似文献   

18.
正Genomes encode the genetic information that controls the development and physiological functions of all living organisms on our planet,and are therefore of central interest in all aspects of biomedical research.To understand the blueprint of life,scientists have long aimed to read and manipulate the genome using a rapidly expanding toolbox.To read the genome,novel state-of-the-art sequencing technologies have made it possible to sequence any single genome rapidly and cheaply.However,methods for introducing targeted modifications of the genome have lagged behind,and though  相似文献   

19.
近年来,可编程核酸酶介导的基因编辑技术迅猛发展。CRISPR/Cas9技术源于细菌和古生菌的适应性免疫系统,主要由Cas9内切酶和向导RNA(guide RNA,gRNA)组成。Cas9内切酶在gRNA的指导下造成DNA的双链断裂,从而使研究人员能够精准高效地操纵特定基因组位点。同时,该系统可以揭示基因在疾病进程中所扮演的未知角色,在临床治疗中有应用潜能。现总结了CRISPR/Cas9技术在疾病模型构建与基因修复领域应用的研究进展。  相似文献   

20.
The generation of genetic mutants in Caenorhabditis elegans has long relied on the selection of mutations in large-scale screens. Directed mutagenesis of specific loci in the genome would greatly speed up analysis of gene function. Here, we adapt the CRISPR/Cas9 system to generate mutations at specific sites in the C. elegans genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号