首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Drosophila Dhr78 orphan nuclear receptor has been proposed to play a role in molting of the tracheal cuticle and regulate gene expression during the third larval instar, possibly in response to a novel systemic hormonal signal. Here, we show that there are no essential maternal functions for Dhr78 during development, and that mutants missing both maternal and zygotic Dhr78 function die primarily during second and third instar larval development. We show that defects in the tracheal system can be observed as early as the first instar, manifested as regions of fluid in the dorsal tracheal trunks. In addition, Dhr78 mutant tracheae show a highly penetrant defect in gas filling at the first-to-second instar larval molt. Dhr78 expression in only the tracheal system is sufficient to rescue the lethality of Dhr78 mutants, and selective inactivation of Dhr78 function in the tracheae by targeted RNAi is sufficient to result in tracheal defects. Finally, we see no evidence for widespread activation of the Dhr78 ligand binding domain in third instar larvae using the GAL4-LBD system, arguing against a systemic hormone for the receptor at this stage in development. Taken together, our results indicate that Dhr78 exerts its essential functions during molting of the tracheal cuticle in Drosophila.  相似文献   

2.
3.
Li J  Li W  Calhoun HC  Xia F  Gao FB  Li WX 《Mechanisms of development》2003,120(12):1455-1468
The JAK/STAT pathway mediates cytokine signaling in mammals and is involved in the function and development of the hematopoietic and immune systems. To investigate the biological functions of the JAK/STAT pathway during Drosophila development, we examined the tissue-specific localization of the tyrosine-phosphorylated, or activated form of Drosophila STAT, STAT92E. Here we show that during Drosophila embryonic development STAT92E activation is prominently detected in multiple tissues and in different developmental stages. These tissues include the tracheal pits, elongating intestinal tracks, and growing axons. We demonstrate that stat92E mutants are defective in tracheal formation, hindgut elongation, and nervous system development. Conversely, STAT92E overactivation caused premature development of the tracheal and nervous systems, and over-elongation of the hindgut. These results suggest that STAT activation is involved in proper differentiation and morphogenesis of multiple tissues during Drosophila embryogenesis.  相似文献   

4.
The insect tracheal system is an air-filled branching network of internal tubing that functions to exchange respiratory gases between the tissues and the environment. The light and electron-micrographs presented in this study show tracheae in the process of moulting, captured from the metathoracic hopping femur of a juvenile third instar locust (Locusta migratoria). The images provide evidence for the detachment of the cuticular intima from the tracheal epithelial cells, the presence of moulting fluid between the new and old cuticle layers, and the withdrawal of the shed cuticular lining through larger upstream regions of the tracheal system during moulting. The micrographs also reveal that the cuticular intima of the fine terminal branches of the tracheal system is cast at ecdysis. Therefore, the hypothesis that tracheoles retain their cuticle lining at each moult may not apply to all insect species or developmental stages.  相似文献   

5.
Isoform-specific null mutations were used to define the functions of three orphan members of the nuclear receptor superfamily, E75A, E75B, and E75C, encoded by the E75 early ecdysteroid-inducible gene. E75B mutants are viable and fertile, while E75C mutants die as adults. In contrast, E75A mutants have a reduced ecdysteroid titer during larval development, resulting in developmental delays, developmental arrests, and molting defects. Remarkably, some E75A mutant second instar larvae display a heterochronic phenotype in which they induce genes specific to the third instar and pupariate without undergoing a molt. We propose that ecdysteroid-induced E75A expression defines a feed-forward pathway that amplifies or maintains the ecdysteroid titer during larval development, ensuring proper temporal progression through the life cycle.  相似文献   

6.
In an effort to isolate genes required for heart development and to further our understanding of cardiac specification at the molecular level, we screened PlacZ enhancer trap lines for expression in the Drosophila heart. One of the lines generated in this screen, designated B2-2-15, was particularly interesting because of its early pattern of expression in cardiac precursor cells, which is dependent on the homeobox gene tinman, a key determinant of heart development in Drosophila. We isolated and characterized a gene in the vicinity of B2-2-15 that exhibits an identical expression pattern than the reporter gene of the enhancer trap. The product of his gene, apontic (apt; see also Gellon et al., 1997), does not appear to have any homology with known genes. apt mutant embryos show distinct abnormalities in heart morphology as early as mid-embryonic stages when the heat tube assembles, in that segments of heart cells (those of myocardial and pericardial identity) are often missing. Most strikingly, however, apt mutant embryos or larvae only develop a much reduced heart rate, perhaps because of defects in the assembly of an intact heart tube and/or because of defects in the function or physiological control of the myocardial cells, which normally mediate heart contractions. These cardiac defects may be the cause of death of these mutants during late embryonic or early larval stages.  相似文献   

7.
The dorsal air sacs supply oxygen to the flight muscles of the Drosophila adult. This tracheal organ grows from an epithelial tube (the air sac primordium (ASP)) that arises during the third larval instar (L3) from a wing-disc-associated tracheal branch. Since the ASP is generated by a program of both morphogenesis and cell proliferation and since the larval tracheal branches are populated by cells that are terminally differentiated, the provenance of its progenitors has been uncertain. Here, we show that, although other larval tracheae are remodeled after L3, most tracheal branches in the tracheal metamere associated with the wing disc (Tr2) are precociously repopulated with imaginal tracheoblasts during L3. Concurrently, the larval cells in Tr2 undergo head involution defective (hid)-dependent programmed cell death. In BX-C mutant larvae, the tracheal branches of the Tr3 metamere are also repopulated during L3. Our results show that repopulation of the larval trachea is a prerequisite for FGF-dependent induction of cell proliferation and tubulogenesis in the ASP and that homeotic selector gene function is necessary for the temporal and spatial control of tracheal repopulation.  相似文献   

8.
9.
SEC-23 is a component of coat protein complex II (COPII)-coated vesicles involved in the endoplasmic reticulum-to-Golgi transport pathway of eukaryotes. During postembryonic life, Caenorhabditis elegans is surrounded by a collagenous exoskeleton termed the cuticle. From a screen for mutants defective in cuticle secretion, we identified and characterized a sec-23 mutant of C. elegans. By sequence homology, C. elegans has only the single sec-23 gene described herein. In addition to the cuticle secretion defect, mutants fail to complete embryonic morphogenesis. However, they progress through the earlier stages of embryogenesis, including gastrulation, and achieve substantial morphogenesis before death. We demonstrated a maternal component of SEC-23 function sufficient for progression through the earlier stages of embryogenesis and explaining the limited phenotype of the zygotic mutant. By RNA-mediated interference, we investigated the effects of perturbing COPII function during various postembryonic stages. During larval stages, major defects in cuticle synthesis and molting were observed. In the adult hermaphrodite, reduction of SEC-23 function by RNA-mediated interference caused a rapid onset of sterility, with defects in oogenesis including early maturation of the germline nuclei, probably a result of the observed loss of the GLP-1 receptor from the membrane surfaces adjacent to the developing germline nuclei.  相似文献   

10.
The miRNA pathway has been shown to regulate developmentally important genes. Dicer-1 is required to cleave endogenously encoded microRNA (miRNA) precursors into mature miRNAs that regulate endogenous gene expression. RNA interference (RNAi) is a gene silencing mechanism triggered by double-stranded RNA (dsRNA) that protects organisms from parasitic nucleic acids. In Drosophila, Dicer-2 cleaves dsRNA into 21 base-pair small interfering RNA (siRNA) that are loaded into RISC (RNA induced silencing complex) that in turn cleaves mRNAs homologous to the siRNAs. Dicer-2 co-purifies with R2D2, a low-molecular weight protein that loads siRNA onto Ago-2 in RISC. Loss of R2D2 results in defective RNAi. However, unlike mutants in other RNAi components like Dicer-2 or Ago-2, we report here that r2d21 mutants have striking developmental defects. r2d21 mutants have reduced female fertility, producing less than 1/10 the normal number of progeny. These escapers have normal morphology. We show R2D2 functions in the ovary, specifically in the somatic tissues giving rise to the stalk and other follicle cells critical for establishing the cellular architecture of the oocyte. Most interestingly, the female fertility defects are dramatically enhanced when one copy of the dcr-1 gene is missing and Dicer-1 protein co-immunoprecipitates with R2D2 antisera. These data show that r2d21 mutants have reduced viability and defective female fertility that stems from abnormal follicle cell function, and Dicer-1 impacts this process. We conclude that R2D2 functions beyond its role in RNA interference to include ovarian development in Drosophila.  相似文献   

11.
12.
The characterization of DNA puff BhC4-1 expression was extended and its response to 20-hydroxyecdysone investigated in Bradysia hygida and in transgenic Drosophila carrying the BhC4-1 gene. In both organisms the activation of BhC4-1 in salivary glands occurs at the end of the larval stage coinciding with the peak in ecdysone titers which induces metamorphosis. Injections of 20-hydroxyecdysone into mid-fourth instar larvae of B. hygida show that the induction of BhC4-1 expression, as well as amplification and puff C4 expansion, are late events induced by the hormone. This late response of BhC4-1 expression was also observed in transgenic salivary glands cultivated in the presence of 20-hydroxyecdysone. In vitro studies using transgenic Drosophila indicate that both repressor and activator factors regulate the timing of BhC4-1 expression in salivary glands.  相似文献   

13.
Osiris基因在几丁质沉积过程中表达,可能参与昆虫表皮的发育。本研究利用CRISPR/Cas9 基因编辑系统对Osiris24基因进行编辑,进而观察Osiris24突变体果蝇的性状并且检测Osiris24的表达特征。在Osiris24第1外显子设计2个sgRNA靶位点,插入到pCFD4敲除载体骨架中,同时构建酵母Gal4蛋白序列的供体(donor)载体,将2个载体同时注射到nos-Cas9胚胎中获得G0代转基因果蝇。结果显示,G0代基因编辑阳性率为92.8%,Osiris24纯合突变体在胚胎或1龄幼虫期致死,杂合突变体未观察到可见表型。将阳性G0代雄虫与UAS-GFP雌虫杂交,检测不同龄期和不同组织GFP信号表达情况。结果发现,Osiris24在不同龄期幼虫中均有表达,幼虫期主要在体壁、气管、前肠和后肠高表达,蛹期主要在体壁和翅上表达,推测其在果蝇发育中发挥重要作用,本研究为深入探究Osiris基因功能提供了研究模型。  相似文献   

14.
Chitin synthase (CHS) is an important enzymatic component required for chitin formation in the cuticles and cuticular linings of other tissues. In the present study, a new CHS gene was characterized from the beet army worm Spodoptera exigua (Hübner) (Se). Homologous alignment and phylogenetic analysis of S. exigua CHS (SeCHS) with other related proteins suggest that SeCHS belongs to the class A CHS family (SeCHSA). Northern blot analysis revealed that SeCHSA is transcribed preferentially in the cuticle and tracheae. Further investigation indicated that SeCHSA mRNA is highly expressed in the early and late stages of each larval instar, and consistently expressed in high level during the pupal stage. Using antibody specific for CHS, SeCHS was further localized in the underlying epidermal cells of the integument and tracheal cells, but not in the fat body or Malpighian tubules. These data suggest that SeCHS plays an important role in cuticle formation and development of S. exigua.  相似文献   

15.
Thyroid hormone and uncoupling proteins   总被引:2,自引:0,他引:2  
p53 is a representative tumor suppressor whose dysfunction is a major cause of human cancer syndrome. Here we isolated flies lacking Dmp53, which encodes the single Drosophila orthologue of mammalian p53 family. Dmp53 null mutants well developed into adults, only displaying mild defects in longevity and fertility. However, genomic stability and viability of Dmp53 mutants dramatically decreased upon ionizing irradiation. Moreover, mutating Dmp53 abolished irradiation-induced apoptosis and reaper induction. These results indicate that Dmp53 is a central component of DNA damage-dependent apoptotic signaling.  相似文献   

16.
史其萍  曹浩伟  许蕊  张丹丹  黄娟 《遗传》2017,39(1):32-40
跨膜蛋白Crumbs(Crb)是细胞顶部的决定因子,对上皮细胞顶-底极性的建立和维持起着关键的作用。其胞内域虽然仅有37个氨基酸,但对Crb的功能必不可少。在果蝇(Drosophila melanogaster)中,如果胞内域发生突变,将造成胚胎发育异常、上皮细胞顶底极性丧失等严重后果。Crb胞内域从果蝇到小鼠(Mus musculus)和人类(Homo sapiens)具有很高的同源性,但线虫(Caenorhabditis elegans)两个Crb蛋白的胞内域与果蝇和哺乳动物却较为不同。为验证线虫Crb蛋白胞内域是否功能保守,本文利用基因组工程法(Genomic engineering),将果蝇基因组中Crb基因编码胞内域的部分替换为一致性和相似性较远的线虫Crb2基因的相应区段。与其他Crb胞内域突变果蝇不同,替换突变体胚胎发育正常,Crb及其他极性蛋白的表达和定位正常,胚胎上皮细胞顶底极性能够正确的建立和维持。这些结果证实虽然线虫和果蝇Crb蛋白胞内域之间存在大量序列变异,但重要的氨基酸位点和功能模块则完全保守。  相似文献   

17.
Caenorhabditis elegans PEB-1 is a novel DNA-binding protein expressed in most pharyngeal cell types and outside the pharynx in the hypodermis, hindgut, and vulva. Previous RNAi analyses indicated that PEB-1 is required for normal morphology of these tissues and growth; however, the peb-1 null phenotype was unknown. Here we describe the deletion mutant peb-1(cu9) that not only exhibits the morphological defects observed in peb-1(RNAi) animals, but also results in penetrant larval lethality characterized by defects in pharyngeal function and molting. Consistent with a function in molting, we found that PEB-1 was detectable in all hypodermal and hindgut cells underlying the cuticle. Comparison to molting-defective lrp-1(ku156) mutants revealed that the peb-1(cu9) mutants were particularly defective in shedding the pharyngeal cuticle, and this defect likely contributed to feeding defects and lethality. Most markers of pharyngeal cell differentiation examined were expressed normally in peb-1(cu9) mutants; however, g1 gland cell expression of a kel-1Colon, two colonsgfp reporter was reduced. As g1 gland cells have prominent functions during molting, we suggest defective gland cell differentiation contributes to peb-1(cu9) molting defects. In comparison, other peb-1 mutant phenotypes, including hindgut abnormalities, appeared independent of the molting defect. Similar phenotypes resulted from late loss of pha-4 function, suggesting that PEB-1 and PHA-4 have common functions in some tissues where they are co-expressed.  相似文献   

18.
The nematode cuticle is a protective collagenous extracellular matrix that is modified, cross-linked, and processed by a number of key enzymes. This Ecdysozoan-specific structure is synthesized repeatedly and allows growth and development in a linked degradative and biosynthetic process known as molting. A targeted RNA interference screen using a cuticle collagen marker has been employed to identify components of the cuticle biosynthetic pathway. We have characterized an essential peroxidase, MoLT-7 (MLT-7), that is responsible for proper cuticle molting and re-synthesis. MLT-7 is an active, inhibitable peroxidase that is expressed in the cuticle-synthesizing hypodermis coincident with each larval molt. mlt-7 mutants show a range of body morphology defects, most notably molt, dumpy, and early larval stage arrest phenotypes that can all be complemented with a wild type copy of mlt-7. The cuticles of these mutants lacks di-tyrosine cross-links, becomes permeable to dye and accessible to tyrosine iodination, and have aberrant collagen protein expression patterns. Overexpression of MLT-7 causes mutant phenotypes further supporting its proposed enzymatic role. In combination with BLI-3, an H2O2-generating NADPH dual oxidase, MLT-7 is essential for post-embryonic development. Disruption of mlt-7, and particularly bli-3, via RNA interference also causes dramatic changes to the in vivo cross-linking patterns of the cuticle collagens DPY-13 and COL-12. This points toward a functionally cooperative relationship for these two hypodermally expressed proteins that is essential for collagen cross-linking and proper extracellular matrix formation.  相似文献   

19.
Population control of the dengue vector mosquito, Aedes aegypti, is difficult due to many reasons, one being the development of resistance to neurotoxic insecticides employed. The biosynthesis of chitin, a major constituent of insect cuticle, is a novel target for population control. Novaluron is a benzoylphenylurea (BPU) that acts as a chitin synthesis inhibitor, already used against mosquitoes. However, information regarding BPU effects on immature mosquito stages and physiological parameters related with mosquito larval development are scarce. A set of physiological parameters were recorded in control developing larvae and novaluron was administered continuously to Ae. aegypti larvae, since early third instar. Larval instar period duration was recorded from third instar until pupation. Chitin content was measured during third and fourth instars. Fourth instars were processed histochemically at the mesothorax region, stained with hematoxylin and eosin (HE) for assessment of internal tissues, and labeled with WGA-FITC to reveal chitinized structures. In control larvae: i) there is a chitin content increase during both third and fourth instars where late third instars contain more chitin than early fourth instars; ii) thoracic organs and a continuous cuticle, closely associated with the underlying epidermis were observed; iii) chitin was continuously present throughout integument cuticle. Novaluron treatment inhibited adult emergence, induced immature mortality, altered adult sex ratio and caused delay in larval development. Moreover, novaluron: i) significantly affected chitin content during larval development; ii) induced a discontinuous and altered cuticle in some regions while epidermis was often thinner or missing; iii) rendered chitin cuticle presence discontinuous and less evident. In both control and novaluron larvae, chitin was present in the peritrophic matrix. This study showed quantitatively and qualitatively evidences of novaluron effects on Ae. aegypti larval development. To our knowledge, this is the first report describing histological alterations produced by a BPU in immature vector mosquitoes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号