首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent work, we described the excision of a large genomic region from Enterococcus faecium D344R in which the sequence from "joint" regions suggested that excision resulted from the interaction of conjugative transposon Tn916 and the related mobile element Tn5386. In the present study, we examined the ability of integrases and integrase-excisase combinations from Tn916 and Tn5386 to promote the excision of constructs consisting of the termini of Tn916, Tn5386, and the VanB mobile element Tn5382. Integrases alone from either Tn916 or Tn5386 promoted the circularization of constructs from the three different transposons, even when the different termini used in the constructs were discordant in their transposon of origin. The termini of Tn916 and Tn5382 found in all joints were consistent with previously identified Tn916 and Tn5382 termini. Substantial variation was seen in the integrase terminus of Tn5386 used to form joints, regardless of the integrase that was responsible for circularization. Variability was observed in joints formed from Tn5386 constructs, in contrast to joints observed with the termini of Tn916 or Tn5382. The coexpression of excisase yielded some variability in the joint regions observed. These data confirm that integrases from some Tn916-like elements can promote circularization with termini derived from heterologous transposons and, as such, could promote excision of large genomic regions flanked by such elements. These findings also raise interesting questions about the sequence specificities of the C terminals of Tn916-like integrases, which bind to the ends and facilitate strand exchange.  相似文献   

2.
The recombinant plasmids pJIR45 and pJIR97 contain the chloramphenicol resistance determinants derived from the Clostridium perfringens R plasmids pIP401 and pJIR27, respectively. Escherichia coli cultures which harbored these recombinant plasmids rapidly became chloramphenicol sensitive when grown in the absence of chloramphenicol. The loss of resistance was associated with the loss of 6.2-kilobase (kb) segments from both plasmids. Detailed restriction analysis of E. coli- and C. perfringens-derived deletion plasmids indicated that deletion of these segments was essentially precise. Transposition of the 6.2-kb segments was demonstrated by cloning the determinants into a temperature-sensitive plasmid, curing the recombinant plasmids, and selecting chloramphenicol-resistant, plasmid-free clones. Southern hybridization analysis of chromosomal DNA isolated from these recA E. coli clones indicated that the 6.2-kb segments had transposed to different sites on the chromosome. Heteroduplex analysis and restriction mapping indicated that the transposons, Tn4451 (pIP401) and Tn4452 (pJIR27), were closely related and did not contain large inverted or directly repeated sequences. These transposons represent the first transposable elements from the clostridia to be identified and characterized.  相似文献   

3.
Abstract Tn5251 belongs to the Tn916-Tn1545 family of conjugative transposons (CT) and was found integrated into CT Tn5252 , to form the composite element Tn5253 of Streptococcus pneumoniae . We show that Tn5251 is identical in structure and size to Tn916 . DNA sequence analysis of a 4,419-bp segment containing the tet(M) gene showed that only 73 nucleotides out of 4,419 were different in the the two CT. Essentially all differences (66 / 73) were clustered in a 688-bp segment of tet(M) , which was 90% identical to Tn916 and 100% identical to the tet(M) genes of Tn1545 from S. pneumoniae and pOZ101 from Neisseria gonorrhoeae . DNA sequence analysis of the Tn5251/Tn5252 junction fragments allowed us (i) to determine Tn5251 termini, (ii) to define the 6-bp coupling sequences flanking the CT, and (iii) to infer the structure of the integration site ( attB ) of Tn5251 into Tn5252 . Conjugal transfer of Tn5251 independent from Tn5253 could not be detected, even if we could show excision and formation of Tn5251 circular intermediates at a level of 5.4 copies per 106 chromosomes.  相似文献   

4.
We describe Tn5386, a novel ca.-29-kb Tn916-like mobile element discovered to occur in ampicillin-resistant, Tn916-containing Enterococcus faecium D344R. PCR amplification experiments after overnight growth with or without tetracycline revealed "joint" regions of circularized Tn5386 composed of 6-bp sequences linking different transposon termini. In one case (no tetracycline), the termini were consistent with those derived by target site analysis of the integrated element. In the other case, the termini were virtually identical in distance from the integrase binding regions, as seen with Tn916. These data are consistent with a model in which one PCR product results from the action of Tn5386 integrase, whereas the other results from the action of the Tn916 integrase on Tn5386. Spontaneous conversion of D344R to an ampicillin-susceptible phenotype (D344SRF) was associated with a 178-kb deletion extending from the left end of Tn5386 to the left end of Tn916. Examination of the Tn5386 junction after the large deletion event suggests that the deletion resulted from an interaction between the nonintegrase ends of Tn5386 and Tn916. The terminus of Tn5386 identified in this reaction suggested that it may have resulted from the activity of the Tn916 integrase (Int(Tn916)). The "joint" of the circular element resulting from this excision was amplifiable from D344R, the sequence of which revealed a heteroduplex consistent with Int(Tn916)-mediated excision. In contrast, Tn5386 joints amplified from ampicillin-susceptible D344SRF revealed ends consistent with Tn5386 integrase activity, reflecting the absence of Tn916 from this strain. Tn5386 represents a new member of the Tn916 transposon family. Our data suggest that excision of Tn5386 can be catalyzed by the Tn916 integrase and that large genomic deletions may result from the interaction between these heterologous elements.  相似文献   

5.
The recombinant plasmid pJIR318 contains a fragment of the Dichelobacter nodosus genome which is associated with virulence. Sequence analysis of the pJIR318 insert has shown that it contains four vap (virulence-associated protein) genes which are homologous to open reading frames found on the Escherichia coli F plasmid and the Neisseria gonorrhoeae cryptic plasmid (M. E. Katz, R. A. Strugnell, and J. I. Rood, Infect. and Immun. 60:4586-4592, 1992). The plasmid pJIR318 hybridizes to three regions of the D. nodosus genome, each of which has now been isolated. Regions 1 and 3 were found to be adjacent in the genome of D. nodosus A198, and the order of the vap genes in vap regions 1 and 2 were shown to be identical. Partial sequence analysis and Southern blot analysis of the vap regions showed that the three regions probably arose by a duplication event(s) followed by insertions and/or deletions. A recombinant plasmid, pJIR749, was isolated from a library of a benign D. nodosus strain, 305. This plasmid contained sequences from both ends of vap region 2. Analysis of pJIR749 showed that the sequences on either side of vap region 2 were separated by 324 bp in the genome of benign strain 305 and that the orientations of the sequences were different. It is clear that a simple insertion or deletion event did not generate the benign and virulent strains studied. A model which describes the evolution of the duplicated vap regions in D. nodosus A198 is presented.  相似文献   

6.
Summary Insertion of Tn3 generates a five base pair repeat of a nucleotide sequence indigenous to the recipient genome. Tn3 promoted deletions extend precisely from the Tn3 terminus and remove one of the 5 base pair repeats while not affecting the ability of Tn3 to subsequently undergo translocation. A direct repeat of a 10 bp sequence located in the Tn3 termini occurs internally within Tn3 and may affect the orientation of insertion.  相似文献   

7.
Tn4451 is a 6.3-kb chloramphenicol resistance transposon from Clostridium perfringens and is found on the conjugative plasmid pIP401. The element undergoes spontaneous excision from multicopy plasmids in Escherichia coli and C. perfringens and conjugative excision from pIP401 in C. perfringens. Tn4451 is excised as a circular molecule which is probably the transposition intermediate. Excision of Tn4451 is dependent upon the site-specific recombinase TnpX, which contains potential motifs associated with both the resolvase/invertase and integrase families of recombinases. Site-directed mutagenesis of conserved amino acid residues within these domains was used to show that the resolvase/invertase domain was essential for TnpX-mediated excision of Tn4451 from multicopy plasmids in E. coli. An analysis of Tn4451 target sites revealed that the transposition process showed target site specificity. The Tn4451 target sequence resembled the junction of the circular form, and insertion occurred at a GA dinucleotide. Tn4451 insertions were flanked by directly repeated GA dinucleotides, and there was also a GA at the junction of the circular form, where the left and right termini of Tn4451 were fused. We propose a model for Tn4451 excision and insertion in which the resolvase/invertase domain of TnpX introduces 2-bp staggered cuts at these GA dinucleotides. Analysis of Tn4451 derivatives with altered GA dinucleotides provided experimental evidence to support the model.  相似文献   

8.
Tn7, a large bacterial transposon encodes 5 proteins required for its transposition. We report a rapid and easy purification of one of these proteins, TnsB, from an overexpression strain. This protein was shown to bind to the ends of Tn7, in a bandshift assay, in two distinct stages as a function of protein concentration. DNasel footprinting at each end of Tn7 showed that the TnsB recognition sequence, a set of 22 bp repeats, plus Tn7 termini are protected. Binding of TnsB appeared cooperative but was only observed above a threshold concentration of protein. ATP and Mg2+ had no effect on the pattern of protection, nor did addition of other Tn7-encoded proteins. Hydroxyl radical footprinting, performed at the right end, showed that TnsB binds preferentially to one side of the DNA helix.  相似文献   

9.
P A Thorpe  R C Clowes 《Gene》1984,28(1):103-112
Tn2660 is an ampicillin-resistance-conferring transposon with a high degree of homology for the transposon Tn3. The nucleotide sequences flanking the termini of Tn2660 have been determined on plasmids inferred to have resulted from both inter- and intramolecular transposition of Tn2660. In all cases, transposition of Tn2660, as of Tn3, creates 5-bp flanking direct repeats, except following intramolecular transposition resulting from trans ligation. In this case, in R6K replicons, the nucleotide sequence between the two Tn2660 elements is stably inverted from the normal orientation, and 5-bp direct repeats do not flank each transposon, but instead flank opposite ends of the two transposon copies.  相似文献   

10.
Conjugative tetracycline resistance plasmids from 15 Clostridium perfringens isolates from piggeries were analyzed by restriction endonuclease digestion and agarose gel electrophoresis. Seven isolates from one farm were found to carry a 47-kilobase pair (kb) plasmid, pJIR5, which had EcoRI, XbaI, and ClaI profiles that were identical to those of a previously characterized plasmid, pCW3. An isolate from a second farm was found to carry a plasmid, pJIR6, which also was indistinguishable from pCW3. Five additional isolates from a third farm carried a 67-kb plasmid, pJIR2, which had at least 29 kb of DNA in common with pCW3. Finally, two isolates from a fourth farm were found to carry a 50-kb plasmid pJIR4, which appeared to consist of an entire pCW3 molecule with a 3-kb insertion. Comparative restriction maps of pCW3, pJIR2, and pJIR4 that identified the regions of homology among these plasmids were constructed. We suggest that many conjugative tetracycline resistance plasmids in C. perfringens may contain a pCW3-like core.  相似文献   

11.
Sequence analysis of termini of conjugative transposon Tn916.   总被引:43,自引:23,他引:20       下载免费PDF全文
Transposon Tn916 is a 16.4-kilobase, broad-host-range, conjugative transposon originally identified on the chromosome of Enterococcus (Streptococcus) faecalis DS16. Its termini have been sequenced along with the junction regions for two different insertions. The ends were found to contain imperfect inverted repeat sequences with identity at 20 of 26 nucleotides. Further in from the ends, imperfect directly repeated sequences were present, with 24 of 27 nucleotides matching. The transposon junction regions contained homologous segments but of a nature not consistent with a direct duplication of the target sequence. Within the right terminus was a potential outwardly reading promoter. Tn916 is believed to transpose via an excision-insertion mechanism; based on the analyses of the termini, as well as two target sequences (before insertion and after excision), a possible model is suggested.  相似文献   

12.
The plasmid plP1066, harboured by a methicillin-resistant Staphylococcus aureus strain isolated in France, carries genes specifying β-lactamase. This plasmid undergoes numerous rearrangements. One of these was an insertion, between the genes binR and sin encoding resolvases, of a 16 kb element which displayed the characteristic features of a transposon. This putative transposon, named Tn 5404 , carried genes encoding proteins involved in its transposition, as well as a resolution system, which were indistinguishable from those of the S. aureus transposon Tn 552 . These were: p480 encoding a probable transposase, p271 encoding a putative ATP-binding protein, binL encoding a resolvase, and a resolution site, resL . In addition, Tn 5404 carried aminoglycoside-resistance genes ( aphA, str ) and the insertion sequence IS 1181 . Tn 5404 contained at its termini 116 bp imperfect inverted repeats, similar to those of Tn 552 , and was flanked by 6 bp direct repeats. Insertion of Tn 5404 close to resR and to the structural and regulatory β-lactamase genes ( blaZ, blal, blaR1 ) of plP1066, generated a 3.5 kb invertible segment flanked by inversely repeated resolution sites ( resR, resL ). This invertible segment, which carried p480 , p271 and binL , generated Tn 552 or Tn 5404 , depending on its orientation. Thus, these two transposons share their transposition and resolution systems.  相似文献   

13.
D Morisato  N Kleckner 《Cell》1984,39(1):181-190
We present evidence that Tn10 transposase promotes double strand breaks and single strand joints at Tn10 termini in vivo. Plasmids containing a shortened Tn10 element and a transposase overproducer fusion give rise, upon transposase induction, to new DNA species. The most prominent class is a circularized transposon molecule whose structure suggests that it arises from double strand breakage at the two transposon ends followed by covalent joining between the 3' and 5' ends of one of the two strands. We have used formation of the circularized transposon as a physical assay for the interaction between transposase and different mutant and wild-type termini. These experiments show that transposase protein interacts preferentially with the genetically most active termini in a way that suppresses productive interaction with weaker termini present on the same substrate molecule.  相似文献   

14.
Many bacterial genera, including Bacteroides spp., harbor mobilizable transposons, a class of transfer factors that carry genes for conjugal DNA transfer and, in some cases, antibiotic resistance. Mobilizable transposons are capable of inserting into and mobilizing other, nontransferable plasmids and are implicated in the dissemination of antibiotic resistance. This paper presents the isolation and characterization of Tn5520, a new mobilizable transposon from Bacteroides fragilis LV23. At 4,692 bp, it is the smallest mobilizable transposon reported from any bacterial genus. Tn5520 was captured from B. fragilis LV23 by using the transfer-deficient shuttle vector pGAT400DeltaBglII. The termini of Tn5520 contain a 22-bp imperfect inverted repeat, and transposition does not result in a target site repeat. Tn5520 also demonstrates insertion site sequence preferences characterized by A-T-rich nucleotide sequences. Tn5520 has been sequenced in its entirety, and two large open reading frames whose predicted protein products exhibit strong sequence similarity to recombinase-integrase enzymes and mobilization proteins, respectively, have been identified. The transfer, mobilization, and transposition properties of Tn5520 have been studied, revealing that Tn5520 mobilizes plasmids in both B. fragilis and Escherichia coli at high frequency and also transposes in E. coli.  相似文献   

15.
Transposition of Tn1000: in vivo properties.   总被引:8,自引:6,他引:2       下载免费PDF全文
Transposition mediated by the Tn1000 transposase was investigated by using transposon variants carrying synthetic or wild-type termini but no intact Tn1000 genes. Transposon Tn1001, whose only homologies to Tn1000 are in its 38-base-pair terminal inverted repeats, transposed at the same rate as Tn1005, an artificial construct carrying wild-type Tn1000 termini and approximately 1 kilobase of flanking Tn1000 DNA at each end, when transposase was supplied in trans. The majority of the transpositions into pOX38 gave rise to cointegrates, but approximately 10% of the products expressed phenotypes of direct transpositions. The expression and temperature dependence of the tnpA gene product were examined by studying transposition of Tn1001 to bacteriophage lambda. The temperature optimum for transposition was 37 degrees C, and the transposase was stable for up to 2 h at this temperature.  相似文献   

16.
Transposon Tn554 encodes three products required for transposition.   总被引:4,自引:0,他引:4       下载免费PDF全文
Tn554 is a high-frequency, site-specific, transposable element having integrative properties resembling those of lysogenic bacteriophages. Nucleotide sequence analysis indicates that Tn554 has three transposition genes, designated tnpA, tnpB and tnpC. Mutations in each of these were complemented efficiently in trans by clones containing internal fragments of Tn554; thus the products of these genes function in trans. Elements carrying deletions of the Tn554 termini could not be complemented. The product of tnpC is not absolutely required for transposition, since deletion mutations encompassing 80% of tnpC, as well as frameshift mutations located near the amino terminus of tnpC, transposed at frequencies as high as 2% of that observed with wild-type Tn554. However, such mutations affected the orientation of insertion. With wild-type Tn554 insertion occurs in a single orientation regardless of the orientation of the donor. In tnpC mutants insertion orientation was dictated by the orientation of Tn554 in the donor molecule. A mutant lacking the carboxy-terminal 59 residues of tnpB also exhibited altered insertion orientation. Thus it appears that the tnpC gene product is required for correct orientation of the element upon insertion and that this protein may interact with the carboxy-terminal portion of the tnpB gene product.  相似文献   

17.
A new Clostridium perfringens-Escherichia coli shuttle plasmid has been constructed and its complete DNA sequence compiled. The vector, pJIR418, contains the replication regions from the C. perfringens replicon pIP404 and the E. coli vector pUC18. The multiple cloning site and lacZ' gene from pUC18 are also present, which means that X-gal screening can be used to select recombinants in E. coli. Both chloramphenicol and erythromycin resistance can be selected in C. perfringens and E. coli since pJIR418 carries the C. perfringens catP and ermBP genes. Insertional inactivation of either the catP or ermBP genes can also be used to directly screen recombinants in both organisms. The versatility of pJIR418 and its applicability for the cloning of toxin genes from C. perfringens have been demonstrated by the manipulation of a cloned gene encoding the production of phospholipase C.  相似文献   

18.
Transposon Tn21 codes for a site-specific integration system, which is probably a novel recombination mechanism, responsible for the acquisition of resistance genes in this widespread family of transposons. Using insertion and deletion mutagenesis we have identified the genetic loci of the various recombination hot-spots (RHS) and of the gene product (the integrase) that catalyses the reaction. The site of recombination has been localized in two of the RHSs to the DNA sequence GTTAG, which is present at the 3' termini of a loosely conserved palindromic sequence of approximately 59 bp. This 59 bp sequence, which flanks the inserted genes in a number of naturally occurring transposons, is the only element required in cis for the recombination reaction.  相似文献   

19.
Integrons confer on bacterial plasmids a capability of taking up antibiotic resistance genes by integrase-mediated recombination. We show here that integrons are situated on genetic elements flanked by 25-bp inverted repeats. The element carrying the integron of R751 has three segments conserved with similar elements in Tn21 and Tn5086. Several characteristics suggest that this element is a transposon, which we call Tn5090. Tn5090 was shown to contain an operon with three open reading frames, of which two, tniA and tniB, were predicted by amino acid similarity to code for transposition proteins. The product of tniA (559 amino acids) is a probable transposase with 25% amino acid sequence identity to TnsB from Tn7. Both of these polypeptides contain the D,D(35)E motif characteristic of a protein family made up of the retroviral and retrotransposon IN proteins and some bacterial transposases, such as those of Tn552 and of a range of insertion sequences. Like the transposase genes in Tn552, Mu, and Tn7, the tniA gene was followed by a gene, tniB, for a probable ATP-binding protein. The ends of Tn5090, like those of most other elements producing D,D(35)E proteins, begin by 5'-TG and also contains a complex structure with four 19-bp repeats at the left end and three at the right end. Similarly organized repeats have been observed earlier at the termini of both Tn7 and phage Mu, where they bind their respective transposases and have a role in holoenzyme assembly. Another open reading frame observed in Tn5090, tniC, codes for a recombinase of the invertase/resolvase family, suggesting a replicative transposition mechanism. The data presented here suggest that Tn5090, Tn7, Tn552, and Mu form a subfamily of bacterial transposons which in parallel to many insertion sequences are related to the retroelements.  相似文献   

20.
The 47-kb, broad-host-range, streptococcal conjugative transposon Tn5252 is capable of site-specific integration into the pneumococcal chromosome. We present the nucleotide sequence of the terminal regions of the transposon and its target site in the pneumococcal genome. No inverted repeats were found at the termini of the transposon. A 72-bp region of the target was present on either side following the insertion of Tn5252 and appeared to serve as a signal for its integration and excision. The data suggest that the left copy of the 72-bp segment was a part of the conjugative element, the crossover point of integration was nonrandom within this region, and the mechanism of insertion could resemble that of the site-specific temperate phages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号