首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
There is evidence in Xenopus and zebrafish embryos that the neural crest/neural folds are specified at the border of the neural plate by a precise threshold concentration of a Bmp gradient. In order to understand the molecular mechanism by which a gradient of Bmp is able to specify the neural crest, we analyzed how the expression of Bmp targets, the Msx genes, is regulated and the role that Msx genes has in neural crest specification. As Msx genes are directly downstream of Bmp, we analyzed Msx gene expression after experimental modification in the level of Bmp activity by grafting a bead soaked with noggin into Xenopus embryos, by expressing in the ectoderm a dominant-negative Bmp4 or Bmp receptor in Xenopus and zebrafish embryos, and also through Bmp pathway component mutants in the zebrafish. All the results show that a reduction in the level of Bmp activity leads to an increase in the expression of Msx genes in the neural plate border. Interestingly, by reaching different levels of Bmp activity in animal cap ectoderm, we show that a specific concentration of Bmp induces msx1 expression to a level similar to that required to induce neural crest. Our results indicate that an intermediate level of Bmp activity specifies the expression of Msx genes in the neural fold region. In addition, we have analyzed the role that msx1 plays on neural crest specification. As msx1 has a role in dorsoventral pattering, we have carried out conditional gain- and loss-of-function experiments using different msx1 constructs fused to a glucocorticoid receptor element to avoid an early effect of this factor. We show that msx1 expression is able to induce all other early neural crest markers tested (snail, slug, foxd3) at the time of neural crest specification. Furthermore, the expression of a dominant negative of Msx genes leads to the inhibition of all the neural crest markers analyzed. It has been previously shown that snail is one of the earliest genes acting in the neural crest genetic cascade. In order to study the hierarchical relationship between msx1 and snail/slug we performed several rescue experiments using dominant negatives for these genes. The rescuing activity by snail and slug on neural crest development of the msx1 dominant negative, together with the inability of msx1 to rescue the dominant negatives of slug and snail strongly argue that msx1 is upstream of snail and slug in the genetic cascade that specifies the neural crest in the ectoderm. We propose a model where a gradient of Bmp activity specifies the expression of Msx genes in the neural folds, and that this expression is essential for the early specification of the neural crest.  相似文献   

5.
In Xenopus, ectodermal patterning depends on a mediolateral gradient of BMP signaling, higher in the epidermis and lower in the neuroectoderm. Neural crest cells are specified at the border between the neural plate and the epidermis, at intermediate levels of BMP signaling. We recently described a novel secreted protein, Tsukushi (TSK), which works as a BMP antagonist during chick gastrulation. Here, we report on the Xenopus TSK gene (X-TSK), and show that it is involved in neural crest specification. X-TSK expression accumulates after gastrulation at the anterior-lateral edges of the neural plate, including the presumptive neural crest region. In gain-of-function experiments, X-TSK can strongly enhance neural crest specification by the dorsolateral mesoderm or X-Wnt8 in ectodermal explants, while the electroporation of X-TSK mRNA in the lateral ectoderm of embryos after gastrulation can induce the expression of neural crest markers in vivo. By contrast, depletion of X-TSK in explants or embryos impairs neural crest specification. Similarly to its chick homolog, X-TSK works as a BMP antagonist by direct binding to BMP4. However, X-TSK can also indirectly regulate BMP4 mRNA expression at the neural plate border via modulation of the Delta-Notch signaling pathway. We show that X-TSK directly binds to the extracellular region of X-delta-1, and modulates Delta-dependent Notch activity. We propose that X-TSK plays a key role in neural crest formation by directly regulating BMP and Delta activities at the boundary between the neural and the non-neural ectoderm.  相似文献   

6.
Different types of placodes originate at the anterior border of the neural plate but it is still an unresolved question whether individual placodes arise as distinct ectodermal specializations in situ or whether all or a subset of the placodes originate from a common preplacodal field. We have analyzed the expression and function of the homeoprotein Iro1 in Xenopus and zebrafish embryos, and we have compared its expression with several preplacodal and placodal markers. Our results indicate that the iro1 genes are expressed in the preplacodal region, being one of the earliest markers for this area. We show that an interaction between the neural plate and the epidermis is able to induce the expression of several preplacodal markers, including Xiro1, by a similar mechanism to that previously shown for neural crest induction. In addition, we analyzed the role of BMP in the specification of the preplacodal field by studying the expression of the preplacodal markers Six1, Xiro1, and several specific placodal markers. We experimentally modified the level of BMP activity by three different methods. First, we implanted beads soaked with noggin in early neurula stage Xenopus embryos; second, we injected the mRNA that encodes a dominant negative of the BMP receptor into Xenopus and zebrafish embryos; and third, we grafted cells expressing chordin into zebrafish embryos. The results obtained using all three methods show that a reduction in the level of BMP activity leads to an expansion of the preplacodal and placodal region similar to what has been described for neural crest regions. By using conditional constructs of Xiro1, we performed gain and loss of function experiments. We show that Xiro1 play an important role in the specification of both the preplacodal field as well as individual placodes. We have also used inducible dominant negative and activator constructs of Notch signaling components to analyze the role of these factors on placodal development. Our results indicate that the a precise level of BMP activity is required to induce the neural plate border, including placodes and neural crest cells, that in this border the iro1 gene is activated, and that this activation is required for the specification of the placodes.  相似文献   

7.
8.
At the border of the neural plate, the induction of the neural crest can be achieved by interactions with the epidermis, or with the underlying mesoderm. Wnt signals are required for the inducing activity of the epidermis in chick and amphibian embryos. Here, we analyze the molecular mechanisms of neural crest induction by the mesoderm in Xenopus embryos. Using a recombination assay, we show that prospective paraxial mesoderm induces a panel of neural crest markers (Slug, FoxD3, Zic5 and Sox9), whereas the future axial mesoderm only induces a subset of these genes. This induction is blocked by a dominant negative (dn) form of FGFR1. However, neither dnFGFR4a nor inhibition of Wnt signaling prevents neural crest induction in this system. Among the FGFs, FGF8 is strongly expressed by the paraxial mesoderm. FGF8 is sufficient to induce the neural crest markers FoxD3, Sox9 and Zic5 transiently in the animal cap assay. In vivo, FGF8 injections also expand the Slug expression domain. This suggests that FGF8 can initiate neural crest formation and cooperates with other DLMZ-derived factors to maintain and complete neural crest induction. In contrast to Wnts, eFGF or bFGF, FGF8 elicits neural crest induction in the absence of mesoderm induction and without a requirement for BMP antagonists. In vivo, it is difficult to dissociate the roles of FGF and WNT factors in mesoderm induction and neural patterning. We show that, in most cases, effects on neural crest formation were parallel to altered mesoderm or neural development. However, neural and neural crest patterning can be dissociated experimentally using different dominant-negative manipulations: while Nfz8 blocks both posterior neural plate formation and neural crest formation, dnFGFR4a blocks neural patterning without blocking neural crest formation. These results suggest that different signal transduction mechanisms may be used in neural crest induction, and anteroposterior neural patterning.  相似文献   

9.
10.
11.
12.
13.
14.
Myc-deficient mice fail to develop normal vascular networks and Myc-deficient embryonic stem cells fail to provoke a tumor angiogenic response when injected into immune compromised mice. However, the molecular underpinnings of these defects are poorly understood. To assess whether Myc indeed contributes to embryonic vasculogenesis we evaluated Myc function in Xenopus laevis embryogenesis. Here, we report that Xc-Myc is required for the normal assembly of endothelial cells into patent vessels during both angiogenesis and lymphangiogenesis. Accordingly, the specific knockdown of Xc-Myc provokes massive embryonic edema and hemorrhage. Conversely, Xc-Myc overexpression triggers the formation of ectopic vascular beds in embryos. Myc is required for normal expression of Slug/Snail2 and Twist, and either XSlug/Snail2 or XTwist could compensate for defects manifest by Xc-Myc knockdown. Importantly, knockdown of Xc-Myc, XSlug/Snail2 or XTwist within the lateral plate mesoderm, but not the neural crest, provoked embryonic edema and hemorrhage. Collectively, these findings support a model in which Myc, Twist and Slug/Snail2 function in a regulatory circuit within lateral plate mesoderm that directs normal vessel formation in both the vascular and lymphatic systems.  相似文献   

15.
16.
17.
Wu MY  Ramel MC  Howell M  Hill CS 《PLoS biology》2011,9(2):e1000593
Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and thus neural crest specification.  相似文献   

18.
19.
The neural crest, a population of multipotent progenitor cells, is a defining feature of vertebrate embryos. Neural crest precursor cells arise at the neural plate border in response to inductive signals, but much remains to be learned about the molecular mechanisms underlying their induction. Here we show that the protooncogene c-Myc is an essential early regulator of neural crest cell formation in Xenopus. c-myc is localized at the neural plate border prior to the expression of early neural crest markers, such as slug. A morpholino-mediated "knockdown" of c-Myc protein results in the absence of neural crest precursor cells and a resultant loss of neural crest derivatives. These effects are not dependent upon changes in cell proliferation or cell death. Instead, our findings reveal an important and unexpected role for c-Myc in the specification of cell fates in the early ectoderm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号