首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Critical to biological processes such as membrane fusion and secretion, ion-lipid interactions at the membrane-water interface still raise many unanswered questions. Using reconstituted phosphatidylcholine membranes, we confirm here that multilamellar vesicles swell in salt solutions, a direct indication that salt modifies the interactions between neighboring membranes. By varying sample histories, and by comparing with data from ion carrier-containing bilayers, we eliminate the possibility that swelling is an equilibration artifact. Although both attractive and repulsive forces could be modified by salt, we show experimentally that swelling is driven primarily by weakening of the van der Waals attraction. To isolate the effect of salt on van der Waals interactions, we focus on high salt concentrations at which any possible electrostatic interactions are screened. By analysis of X-ray diffraction data, we show that salt does not alter membrane structure or bending rigidity, eliminating the possibility that repulsive fluctuation forces change with salt. By measuring changes in interbilayer separation with applied osmotic stress, we have determined, using the standard paradigm for bilayer interactions, that 1 M concentrations of KBr or KCl decrease the van der Waals strength by 50%. By weakening van der Waals attractions, salt increases energy barriers to membrane contact, possibly affecting cellular communication and biological signaling.  相似文献   

2.
The non-polar component of the potential of mean force of dimerization of alanine dipeptide has been calculated in explicit solvent by free energy perturbation. We observe that the calculated PMF is inconsistent with a non-polar hydration free energy model based solely on the solute surface area. The non-linear behavior of the solute-solvent van der Waals energy is primarily responsible for the non-linear dependence of the potential of mean force with respect to the surface area. The calculated potential of mean force is reproduced by an implicit solvent model based on a solvent continuum model for the solute-solvent van der Waals interaction energy and the surface area for the work of forming the solute cavity.  相似文献   

3.
We propose a theoretical novel homodimer model of the β- adrenergic receptor (βAR) in complex with a heterogeneous mixture of free fatty acids (FFAs) and cholesterol based on first-principles calculations. We used the density-functional-based tight binding with dispersion (DFTB-D) method, which accurately evaluates van der Waals interactions between FFAs and amino acid residues in the receptor. The calculations suggest that a stable homodimer of bAR can form a complex with FFAs and cholesterol by extensive van der Waals interactions in the cell membrane, and that the heterogeneous composition of the FFAs is important for the stability of the homodimer complex. The stable van der Waals interactions propagate from one of the bAR to the other through the cholesterol and FFAs in the homodimer complex. The energy propagation in the complex has the potential to enhance molecular signaling in adipocytes, because the stability of the complex can influence anti-adiposity effects after oral treatment of the FFA components.  相似文献   

4.
The molecular forces that stabilize membrane protein structure are poorly understood. To investigate these forces we introduced alanine substitutions at 24 positions in the B helix of bacteriorhodopsin and examined their effects on structure and stability. Although most of the results can be rationalized in terms of the folded structure, there are a number of surprises. (1) We find a remarkably high frequency of stabilizing mutations (17%), indicating that membrane proteins are not highly optimized for stability. (2) Helix B is kinked, with the kink centered around Pro50. The P50A mutation has no effect on stability, however, and a crystal structure reveals that the helix remains bent, indicating that tertiary contacts dominate in the distortion of this helix. (3) We find that the protein is stabilized by about 1kcal/mol for every 38A(2) of surface area buried, which is quite similar to soluble proteins in spite of their dramatically different environments. (4) We find little energetic difference, on average, in the burial of apolar surface or polar surface area, implying that van der Waals packing is the dominant force that drives membrane protein folding.  相似文献   

5.
Regulation of membrane protein functions due to hydrophobic coupling with a lipid bilayer has been investigated. An energy formula describing interactions between lipid bilayer and integral ion channels with different structures, which is based on the screened Coulomb interaction approximation, has been developed. Here the interaction energy is represented as being due to charge-based interactions between channel and lipid bilayer. The hydrophobic bilayer thickness channel length mismatch is found to induce channel destabilization exponentially while negative lipid curvature linearly. Experimental parameters related to channel dynamics are consistent with theoretical predictions. To measure comparable energy parameters directly in the system and to elucidate the mechanism at an atomistic level we performed molecular dynamics (MD) simulations of the ion channel forming peptide–lipid complexes. MD simulations indicate that peptides and lipids experience electrostatic and van der Waals interactions for short period of time when found within each other’s proximity. The energies from these two interactions are found to be similar to the energies derived theoretically using the screened Coulomb and the van der Waals interactions between peptides (in ion channel) and lipids (in lipid bilayer) due to mainly their charge properties. The results of in silico MD studies taken together with experimental observable parameters and theoretical energetic predictions suggest that the peptides induce ion channels inside lipid membranes due to peptide–lipid physical interactions. This study provides a new insight helping better understand of the underlying mechanisms of membrane protein functions in cell membrane leading to important biological implications.  相似文献   

6.
The synthesis and binding affinities of 32 X3Gly4 dual-substitution analogues of the natural opioid heptapeptides deltorphin I and II are reported. A multiple regression QSAR analysis was performed using those results along with literature data for the X3Asp4 and Phe3X4 side chain analogues. Fitting to a three-term potential well model with hydrophobic and van der Waals attraction terms and a steric repulsion term indicates that the δ and μ receptor sites for binding the residue three side chain are similar, and that the binding interaction is primarily van der Waals and secondarily hydrophobic. Further analysis indicates that both sites are more constrained with respect to side chain length than width or thickness, and the μ site appears to be somewhat larger. A binding model consistent with these findings pictures the native third residues Phe ring laying on a step notched out of the receptor surface, pointing toward the back (riser) of the step, and sandwiched between the receptor and ligand. However, the binding sites for the residue four side chains are quite different on δ and μ receptors. Binding to the δ site appears to involve both electrostatic attraction (probably to a partial positive charge) and van der Waals attraction, but not necessarily hydrogen bonding, and more constraint with respect to side chain length than width or thickness. In contrast, there is no evidence for any kind of binding attraction between the side chain of residue four and the μ site, which acts more as steric repulsion site, as though the space that is a pocket on the δ receptor is filled in on the μ receptor. A regression model based only on steric repulsion by van der Waals bulk and/or the effective bulk of a hydration layer accounts for over 80% of the residue four related variation in μ affinity.

Abstract

Thirty-two new X3Gly4 analogues of deltrophin I/II opioid peptides are described. A QSAR study of the X3Gly4, X3Asp4, and Phe3X4 analogue series using a potential well model reveals the roles of hydrophobic, van der Waals, electrostatic, hydrogen bonding and steric interactions in δ and μ receptor binding of X3 and X4 side chains.  相似文献   


7.
Strict physical theory and numerical calculations show that a specific coupling of many-atom van der Waals interactions with covalent bonding can significantly (half as much) increase the strength of attractive dispersion interactions when the direction of interaction coincides with the direction of the covalent bond, and decrease this strength when the direction of interaction is perpendicular to the direction of the covalent bond. The energy effect is comparable to that caused by the replacement of atoms (e.g. N by C or O) in conventional pairwise van der Waals interactions. Analysis of protein structures shows that they bear an imprint of this effect. This means that many-atom van der Waals interactions cannot be ignored in refinement of protein structures, in simulations of their folding, and in prediction of their binding affinities.  相似文献   

8.
Here, we report the first direct observation of Van der Waals' attraction between biomembrane capsules using measurements of the free energy reduction per unit area of membrane-membrane contact formation. In these studies, the membrane capsules were reconstituted neutral (egg phosphatidylcholine) lipid bilayers of giant (greater than 10(-3) cm diam) vesicles. Micromanipulation methods were used to select and maneuver two vesicles into proximity for contact; after adhesion was allowed to occur, the extent of contact formation was regulated through the vesicle membrane tensions that were controlled by micropipette suction. The free energy reduction per unit area of contact formation was proportional to the membrane tension multiplied by a simple function of the pipette and vesicle dimensions. The free energy potential for Van der Waals attraction between the neutral bilayers in 120 mM NaCl solutions was 1.5 X 10(-2) ergs/cm2. Also, when human serum albumin was added to the medium in the range of 0-1 mg/ml, the free energy potential for bilayer-bilayer adhesion was not affected. Using published values for equilibrium spacing between lipid bilayers in multilamellar lipid-water dispersions and the theoretical equation for van der Waals attraction between continuous dielectric layers, we calculated the value for the Hamaker coefficient of the Van der Waals attraction to be 5.8 X 10(-14) ergs.  相似文献   

9.
MolPot is a fast program for producing reactivity diagrams of molecular compounds, particularly for drugs. These diagrams are characteristic of the molecule envelope and the Molecular Electrostatic Potential (MEP) of the molecule surface (van der Waals surface or the portion of this surface that is solvent accessible). The input data includes only the atom names and their Cartesian coordinates.  相似文献   

10.
We calculate the partial molar volumes and their changes associated with the coil(extended)-to-helix transition of two types of peptide, glycine-oligomer and glutamic acid-oligomer, in aqueous solutions by using the Kirkwood-Buff solution theory coupled with the three-dimensional reference interaction site model (3D-RISM) theory. The volume changes associated with the transition are small and positive. The volume is analyzed by decomposing it into five contributions following the procedure proposed by Chalikian and Breslauer: the ideal volume, the van der Waals volume, the void volume, the thermal volume, and the interaction volume. The ideal volumes and the van der Waals volumes do not change appreciably upon the transition. In the both cases of glycine-peptide and glutamic acid-peptide, the changes in the void volumes are positive, while those in the thermal volumes are negative, and tend to balance those in the void volumes. The change in the interaction volume of glycine-peptide does not significantly contribute, while that of glutamic acid-peptide makes a negative contribution.  相似文献   

11.
The present paper is a systematic first approach to the problem of solvation thermodynamics of biomolecules. Most previous approaches have been only crude estimates of solvent contributions, and have simply assessed solvation free energy as proportional to surface areas. Here we estimate the various contributions and divide them into (a) hard-core interactions dependent upon the entire volume of solute and (b) the remainder of interactions manifested through surfaces, such as van der Waals, charge-charge, or hydrogen bonds. We have estimated the work to create a cavity with scaled-particle theory (SPT), the van der Waals interactions on the surface, and hydrogen bonds between the surface and the solvent. The conclusion here is that this latter term is the largest component of the solvation free energy of proteins. From estimates on nine diverse proteins, it is clear that the larger the protein, the more dominant is the hydrogen-bond term. In the next paper, we indicate that correlations between hydrogen-bonding groups on the surfaces could increase the magnitude of the hydrogen-bond contribution.  相似文献   

12.
Shape analysis methodology is applied to the study of 4-alkylpyrazoles which are known inhibitors of liver alcohol dehydrogenase. Elongation of the alkyl chain increases the inhibitory power, whereas branching of the chain diminishes the activity. These two counterpoised effects are studied simultaneously in a selected set of 4-alkylpyrazoles. A systematic conformational analysis followed by topological characterization of the van der Waals surfaces of all the local minima restricts the conformational space to potential bioactive structures. The analysis of the interrelation between the molecular electrostatic potential and van der Waals surfaces provides certain shape codes characteristic of each 4-alkylpyrazole. In both topological analyses van der Waals surfaces and molecular electrostatic potential van der Waals surface interrelations) graphical representations and analytical methods were used. A good correlation between the shape codes and the inhibitory activity is found for the linear derivatives. For branched pyrazoles, a tendency in their inhibitory power is predicted. Isopentylpyrazole is suggested to have the same inhibitory profile as 4-butylpyrazole, the linear derivative with one less carbon atom.  相似文献   

13.
Antifreeze proteins: an unusual receptor-ligand interaction   总被引:19,自引:0,他引:19  
Antifreeze proteins (AFPs) help organisms to survive below 0 degrees C by inhibiting ice growth. Although AFPs are structurally diverse, they typically present a large proportion of their surface area for binding to ice. Whereas earlier proposed binding mechanisms relied almost entirely on a hydrogen bond match between the AFP and ice, it now seems probable that van der Waals and hydrophobic interactions make a significant contribution to the enthalpy of adsorption. These interactions require intimate surface-surface complementarity between the receptor (AFP) and its ligand (ice).  相似文献   

14.
15.
Comparative binding energy (COMBINE) analysis was conducted for 18 substrates of the haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 (DhlA): 1-chlorobutane, 1-chlorohexane, dichloromethane, 1,2-dichloroethane, 1,2-dichloropropane, 2-chloroethanol, epichlorohydrine, 2-chloroacetonitrile, 2-chloroacetamide, and their brominated analogues. The purpose of the COMBINE analysis was to identify the amino acid residues determining the substrate specificity of the haloalkane dehalogenase. This knowledge is essential for the tailoring of this enzyme for biotechnological applications. Complexes of the enzyme with these substrates were modeled and then refined by molecular mechanics energy minimization. The intermolecular enzyme-substrate energy was decomposed into residue-wise van der Waals and electrostatic contributions and complemented by surface area dependent and electrostatic desolvation terms. Partial least-squares projection to latent structures analysis was then used to establish relationships between the energy contributions and the experimental apparent dissociation constants. A model containing van der Waals and electrostatic intermolecular interaction energy contributions calculated using the AMBER force field explained 91% (73% cross-validated) of the quantitative variance in the apparent dissociation constants. A model based on van der Waals intermolecular contributions from AMBER and electrostatic interactions derived from the Poisson-Boltzmann equation explained 93% (74% cross-validated) of the quantitative variance. COMBINE models predicted correctly the change in apparent dissociation constants upon single-point mutation of DhlA for six enzyme-substrate complexes. The amino acid residues contributing most significantly to the substrate specificity of DhlA were identified; they include Asp124, Trp125, Phe164, Phe172, Trp175, Phe222, Pro223, and Leu263. These residues are suitable targets for modification by site-directed mutagenesis.  相似文献   

16.
Ebie Tan A  Fleming KG 《Biochemistry》2008,47(46):12095-12103
Despite the key roles of oligomeric membrane proteins (MPs) in many known cellular pathways, the principles governing their oligomer stability are not well-understood. Previous work with the alpha-helical MPs bacteriorhodopsin (bR) and glycophorin A (GpA) shows that lost buried surface area linearly correlated with perturbations in protein stability. Although this is a significant discovery, the predictive power of this correlation is limited by the data. Because both bR and GpA have alpha-helical secondary structural motifs, it is unclear whether this correlation would be observed for MPs with a beta-barrel motif. We addressed this question by measuring the thermodynamic consequences of interfacial amino acid changes at the dimer interface of beta-barrel MP outer membrane phospholipase A (OMPLA). We created sequence variants to reduce the contact surface area of the OMPLA dimer interface by introducing single-alanine substitutions and used sedimentation equilibrium analytical ultracentrifugation to determine the dimerization free energies for these variants. The integrity of each variant was verified by two functional assays: specific activity and resistance to thermal denaturation, which showed that structural changes were restricted to the local environment. Using this information, we calculated the anticipated packing defects due to side chain deletion and compared this to the free energy perturbations for each residue. Contrary to the findings with bR and GpA, our study found no correlation between the contact surface area lost and the perturbations to OMPLA dimer stability. We conclude that van der Waals packing may not be a strong predictor of stability for all membrane proteins.  相似文献   

17.
A theoretical model has been developed in order to describe the organization of acyl chains in phospholipid bilayers. Since the model is intended to reproduce highly quantitative experimental results such as the deuterium magnetic resonance (NMR) data and to supplement the experimental information, all the rotameric degrees of freedom, the excluded volume interactions and the van der Waals interactions have been considered. The model is a direct extension of a generalized van der Waals theory of nematic liquid crystals to flexible molecules. In this picture, the anisotropy of the short-range repulsive forces which are treated by a hard core potential is introduced as the dominant factor governing intrinsic order among the chains. The anisotropy of the attractive forces, which are approximated by a molecular field, plays a somewhat secondary role. The dependence of the energy of interaction on the relative chain conformations is approximated by two order parameters reflecting respectively the ‘average shape’ of the molecules and the ‘average shape’ in a ‘mean orientation’. The influence of the interactions in the polar region on the lateral chain area is accounted for by an effective lateral pressure. In certain aspects the model has features in common with the Mar?elja theory.  相似文献   

18.
A linear stability analysis is performed for a black lipid membrane. The hydrodynamic model consists of a viscous hydrocarbon film sandwiched between two aqueous phases. Attractive forces (van der Waals and electrical) and repulsive forces (steric) are expressed as body forces in the equations of fluid motion in the three phases. The steric repulsion due to overlap of the hydrocarbon chains of the lipids at small film thicknesses is described via an exponentially decaying interaction potential. The dispersion equation displays two modes of vibrations: the bending mode with the two Film surfaces transversely in phase, and the squeezing mode with the two surfaces 180 degrees out of phase. For symmetrical films, these two modes are uncoupled, and the squeezing mode (with thickness variations) is stabilized by the repulsive interactions. For nonsymmetrical films (different surface tensions, surface charges, etc.). these two modes are coupled and the asymmetry induces a shift of the marginal stability curve to shorter wavelengths.  相似文献   

19.
All-atom molecular dynamics (MD) simulations in both explicit and implicit solvent, followed by MM-GBSA energy analysis, have been used to estimate binding free energies of four pyrimidine dicarboxamide inhibitors with human collagenase-3 (MMP-13) for comparison with experimental activities. Energetic analysis reveals that affinity is driven primarily by favorable van der Waals interactions and burial of total surface area. The computed effects of desolvation, as a function of ligand structure, quantitatively show that hydrophilic derivatives pay greater penalties upon binding than their related more hydrophobic analogs.  相似文献   

20.
Abstract

The gel to fluid phase transition or ordered to disordered phase transition observed in biological membranes are simulated by using constant energy Molecular Dynamics. The surface part of the membrane is modelled as a two-dimensional matrix formed by the head groups of the phospholipid molecules. Head molecules which are modelled as three spheres fused with three force centers, interact with each other via van der Waals and Coulomb type interactions. The -so called- impurity or foreign molecule embedded in the surface represents the protein type molecule which is present in biological membranes and control its activity. It is modelled as a pentagon having one force centers in each corner. It also interacts with the surface molecules again via van der Waals and Coulomb type interactions. The surface density is kept constant in the simulations of the systems with or without impurity. Structural and orientational changes due to impurity were observed and proved by monitoring two-dimensional order parameter. It has been shown that melting of the surface or breakage of the ordering of the surface molecules becomes easier and ordered to disordered phase transition temperature was lowered by 100 K if the impurity is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号