首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduction of aryl-nitroso compounds by pyridine and flavin coenzymes   总被引:3,自引:0,他引:3  
1. A systematic kinetic investigation of the reduction of aryl-nitroso compounds by pyridine and flavin coenzymes and their analogs, in enzymatic and nonenzymatic systems, has been reported. 2. Two main groups of nitroso compounds have been investigated, representatives nitroso-benzene and 1-nitroso-2-naphthol; in all enzymatic and nonenzymatic systems, the former was always reduced to phenyl-hydroxyl-amine and the latter to 1-amino-2-naphthol. 3. Pyridine compounds included NADH, APAD-4H2 and DBNA-4H2 in nonenzymatic systems, and liver alcohol dehydrogenase. Flavin compounds included 1,5-dihydrolumiflavin and various forms of reduced 5-ethyl-lumiflavin, in nonenzymatic systems, and the flavoenzymes glucose-oxidase and NADPH-cytochrome P450 reductase. 5. Pyridine coenzymes and their analogs reduced nitroso compounds by a direct hydride transfer, with a primary kinetic isotope of 9.5 +/- 2.2. 6. All flavin compounds (glucose-oxidase and its nonenzymatic analog 1,5-dihydrolumiflavin and NADPH-cytochrome P450 reductase and its analog 5-ethyl-1,5-dihydrolumiflavin) reduced aryl-nitroso compounds with high efficiency (k2 greater than 10(5)M(-1) min(-1)). 7. The flavin compounds have been shown to be much more efficient reductans of nitroso compounds, compared to pyridine coenzymes, both in enzymatic and nonenzymatic systems; the only exception to this rule presented the extremely efficient reduction of p-substituted aryl-nitroso compounds by liver alcohol dehydrogenase.  相似文献   

2.
Kavakli IH  Sancar A 《Biochemistry》2004,43(48):15103-15110
Escherichia coli DNA photolyase contains FADH(-) as the catalytic cofactor. The cofactor becomes oxidized to the FADH(*) blue neutral radical during purification. The E-FADH(*) form of the enzyme is catalytically inert but can be converted to the active E-FADH(-) form by a photoreduction reaction that involves intraprotein electron transfer from Trp306. It is thought that the E-FADH(*) form is also transiently generated during pyrimidine dimer repair by photoinduced electron transfer, and it has been suggested that the FADH(*) that is generated after each round of catalysis must be photoreduced before the enzyme can engage in subsequent rounds of repair. In this study, we introduced the Trp306Phe mutation into the chromosomal gene and tested the non-photoreducible W306F mutant for photorepair in vivo. We find that both wild-type and W306F mutant photolyases carry out at least 25 rounds of photorepair at the same rate. We conclude that photoreduction by intraprotein electron transfer is not part of the photolyase photocycle under physiological conditions.  相似文献   

3.
G Payne  P F Heelis  B R Rohrs  A Sancar 《Biochemistry》1987,26(22):7121-7127
Escherichia coli DNA photolyase is a flavoprotein that when purified is blue in color and contains a stable neutral radical FAD (E-FADH). In the presence of a suitable electron donor (i.e., thiols, tyrosine, or NADH) the radical FAD adsorbs visible light and undergoes photoreduction to the fully reduced FAD (E-FADH2). The in vitro quantum yield of dimer repair for E-FADH is 0.07 while that of E-FADH2 approaches the in vivo value of 1. Electron paramagnetic resonance studies on whole cells indicate that the in vivo form of photolyase is E-FADH2 with enzyme containing radical FAD generated predominantly during the ammonium sulfate precipitation step of the purification. Activity measurements of E-FADH using long-wavelength photoreactivating light indicate that enzyme containing FAD in the radical form is not active in dimer repair. Dimer repair observed with E-FADH at shorter wavelengths is probably photoreduction of E-FADH followed by dimer repair by E-FADH2.  相似文献   

4.
It is now widely accepted that, besides their well-established function in O(2) transport, hemoglobin and myoglobin also undergo several redox reactions aimed to scavenge toxic free radicals and reactive oxygen and nitrogen species. At least some of these reactions are believed to play an important physiological role in the defense against oxidative stress. This aspect is exemplified by the recently discovered neuroglobin, a globin expressed in the brain. Rather than being considerably involved in reversible O(2) binding, neuroglobin is likely to undergo redox reactions to protect neurons against oxidative and potentially pathogenic pathways, as those operating after episodes of tissue hypoxia or ischemia. A major part of the cellular damage occurring under such conditions has been ascribed to formation of peroxynitrite, that originates from the reaction between two biologically important free radicals, nitric oxide (NO ) and superoxide. Here we review the current knowledge of the reactions of different forms of hemoglobin, myoglobin, and neuroglobin with peroxynitrite and discuss their physiological role on the basis of measured rate constants and on the probability of occurrence of these reactions in vivo.  相似文献   

5.
T Iyanagi 《Biochemistry》1977,16(12):2725-2730
Hepatic NADH-cytochrome b5 reductase was reduced by 1 mol of dithionite or NADH per mol of enzyme-bound FAD, without forming a stable semiquinone or intermediate during the titrations. However, the addition of NAD+ to the partially reduced enzyme or illumination in the presence of both NAD+ and EDTA yielded a new intermediate. The intermediate had an absorption band at 375 nm and the optical spectrum resembled anionic semiquinones seen on reduction of other flavin enzymes. Electron paramagnetic resonance measurements confirmed the free-radical nature of the species. To explain the results, a disproportionation reaction between the oxidized and reduced NAD+ complexes (E-FAD-NAD+ + E-FADH2-NAD+ in equilibrium 2E-FADH.-NAD+) is assumed. Potentiometric titration of NADH-cytochrome b5 reductase at pH 7.0 with dithionite gave a midpoint potential of -258 mV; titration with NADH gave -160 mV. This difference may be due to a difference in the relative affinity of NAD+ for the reduced and oxidized forms of the enzyme. The effects of pH on the midpoint potential of the NAD+-free enzyme were very similar to those which have been measured with free FAD. At pH 7.0, midpoint potentials of trypsin-solubilized and detergent-solubilized cytochrome b5 were 13 and 0 mV, respectively.  相似文献   

6.
Protein folding occurs simultaneously with disulfide bond formation. In general, the in vitro folding of proteins containing disulfide bond(s) is carried out in the presence of redox reagents, such as glutathione, to permit native disulfide pairing to occur. It is well known that the formation of a disulfide bond and the correct tertiary structure of a target protein are strongly affected by the redox reagent used. However, little is known concerning the role of each amino acid residue of the redox reagent, such as glutathione. Therefore, we prepared glutathione derivatives - glutamyl-cysteinyl-arginine (ECR) and arginyl-cysteinyl-glycine (RCG) - and examined their ability to facilitate protein folding using lysozyme and prouroguanylin as model proteins. When the reduced and oxidized forms of RCG were used, folding recovery was greater than that for a typical glutathione redox system. This was particularly true when high protein concentrations were employed, whereas folding recovery using ECR was similar to that of the glutathione redox system. Kinetic analyses of the oxidative folding of prouroguanylin revealed that the folding velocity (K(RCG) = 3.69 × 10(-3) s(-1)) using reduced RCG/oxidized RCG was approximately threefold higher than that using reduced glutathione/oxidized glutathione. In addition, folding experiments using only the oxidized form of RCG or glutathione indicated that prouroguanylin was converted to the native conformation more efficiently in the case of RCG, compared with glutathione. The findings indicate that a positively charged redox molecule is preferred to accelerate disulfide-exchange reactions and that the RCG system is effective in mediating the formation of native disulfide bonds in proteins.  相似文献   

7.
At low concentrations of a glutathione redox buffer, the protein disulfide isomerase (PDI) catalyzed oxidative renaturation of reduced ribonuclease A exhibits a rapid but incomplete activation of ribonuclease, which precedes the steady-state reaction. This behavior can be attributed to a GSSG-dependent partitioning of the substrate, reduced ribonuclease, between two classes of thiol/disulfide redox forms, those that can be converted to active ribonuclease at low concentrations of GSH and those that cannot. With catalytic concentrations of PDI and near stoichiometric concentrations of glutathione disulfide, approximately 4 equiv (2 equiv of ribonuclease disulfide) of GSH are formed very rapidly followed by a slower formation of GSH, which corresponds to an additional 2 disulfide bond equiv. The rapid formation of RNase disulfide bonds and the subsequent rearrangement of incorrect disulfide isomers to active RNase are both catalyzed by PDI. In the absence of GSSG or other oxidants, disulfide bond equivalents of PDI can be used to form disulfide bonds in RNase in a stoichiometric reaction. In the absence of a glutathione redox buffer, the rate of reduced ribonuclease regeneration increases markedly with increasing PDI concentrations below the equivalence point; however, PDI in excess over stoichiometric concentrations inhibits RNase regeneration.  相似文献   

8.
The toxicity of acellular hemoglobin (Hb)-based therapeutics has been attributed in part to the uncontrolled oxidative reactions. A variety of antioxidant strategies to ameliorate potential oxidative damage in vivo have been suggested. We have examined the effects of (-)-epigallocatechin gallate (EGCG), a green tea polyphenol compound widely regarded as a chain-breaking antioxidant, on the oxidative stability of diaspirin crosslinked Hb (DBBF) and its cytotoxic ferryl intermediate. DBBF (ferrous) was rapidly oxidized to the ferric form in the presence of EGCG relative to the normal spontaneous oxidation of this Hb. The fast elimination of ferrous Hb is probably due to the ability of EGCG to produce hydrogen peroxide (H2O2) as these reactions were almost completely reversed by the addition of catalase and superoxide dismutase to the reaction medium. EGCG, however, effectively reduced ferryl back to ferric Hb in a biphasic kinetic reaction at physiological pH. At acidic pH where the autoreduction of protonated ferryl Hb is enhanced, a monophasic reduction process of the ferryl heme is achieved. A balance between pro and antioxidant properties of EGCG should be taken into account if EGCG is used in combination therapy with redox active acellular Hbs.  相似文献   

9.
The redox properties of the blue copper protein amicyanin have been studied with slow and fast scan protein-film cyclic voltammetry. At slow scan rates, which reveal the thermodynamics of the redox reactions, the reduction potential of amicyanin depends on pH in a sigmoidal manner, and the data can be analysed in terms of electron transfer being coupled to a single protonatable group with pKa(red)=6.3 and pKa(ox) < or = 3.2 at 22 degrees C. Voltammetry at higher scan rates reveals the kinetics and shows that the low-pH reduced form of amicyanin is not oxidised directly; instead, oxidation occurs only after conversion to the high-pH form. Simulations show that this conversion, which gates the electron transfer, occurs with a rate constant >750 s-1 at 25 degrees C. In order to decrease the rate of the coupled reaction, the experiments were performed at 0 degrees C, at which the rate constant for this conversion was determined to be 35 +/- 20 s-1. Together with evidence from NMR, the results lead to a mechanism involving protonation and dissociation of the copper coordinating histidine-96 in the reduced form.  相似文献   

10.
The velocity of the oxidative renaturation of reduced ribonuclease A catalyzed by protein disulfide isomerase (PDI) is strongly dependent on the composition of a glutathione/glutathione disulfide redox buffer. As with the uncatalyzed, glutathione-mediated oxidative folding of ribonuclease, the steady-state velocity of the PDI-catalyzed reaction displays a distinct optimum with respect to both the glutathione (GSH) and glutathione disulfide (GSSG) concentrations. Optimum activity is observed at [GSH] = 1.0 mM and [GSSG] = 0.2 mM. The apparent kcat at saturating RNase concentration is 0.46 +/- 0.05 mumol of RNase renatured min-1 (mumol of PDI)-1 compared to the apparent first-order rate constant for the uncatalyzed reaction of 0.02 +/- 0.01 min-1. Changes in GSH and GSSG concentration have a similar effect on the rate of both the PDI-catalyzed and uncatalyzed reactions except under the more oxidizing conditions employed, where the catalytic effectiveness of PDI is diminished. The ratio of the velocity of the catalyzed reaction to that of the uncatalyzed reaction increases as the quantity [GSH]2/[GSSG] increases and approaches a constant, limiting value at [GSH]2/[GSSG] greater than 1 mM, suggesting that a reduced, dithiol form of PDI is required for optimum activity. As long as the glutathione redox buffer is sufficiently reducing to maintain PDI in an active form [( GSH]2/[GSSG] greater than 1 mM), the rate acceleration provided by PDI is reasonably constant, although the actual rate may vary by more than an order of magnitude. PDI exhibits half of the maximum rate acceleration at a [GSH]2/[GSSG] of 0.06 +/- 0.01 mM.  相似文献   

11.
The role of hemoglobin in transporting oxygen is dependent on the reversible binding of oxygen to Fe(II) hemoglobin with molecular oxygen released at reduced oxygen pressures. The partially oxygenated hemoglobin formed with the release of oxygen from hemoglobin is susceptible to redox reactions where the functional Fe(II) heme is oxidized to Fe(III) and the substrate is reduced. In this article, we review two important redox reactions of hemoglobin and discuss the ramifications of these reactions. The reduction of oxygen to superoxide starts a cascade of oxidative reactions, which are a source for red cell-induced oxidative stress. The reduction of nitrite to nitric oxide produces a labile form of nitric oxide that can be a source for oxidative stress, but can also have important physiological functions.  相似文献   

12.
Equations of substrate-limited growth: the case for blackman kinetics   总被引:3,自引:0,他引:3  
A simplified model of cell metabolism, consisting of a series of linked reversible enzymatic reactions dependent on the concentration of a single external substrate has been developed. The general mathematical solution for this system of reactions is presented. This general solution confirms the concept of a rate-limiting step, or “master reaction”, in biological systems as first proposed by Blackman. The maximum rate of such a process is determined by, and equal to, the maximum rate of the slowest forward reaction in the series. Of practical interest in modeling the growth rate of cells are three cases developed from the general model. The simplest special case results in the Monod equation when the maximum forward rate of one enzymatic reaction in the cell is much less than the maximum forward rate of any other enzymatic reactions. More realistic is the case where the maximum forward rates of more than one enzymatic reaction are slow. When two slow enzymatic reactions are separated from each other by any number of fast reactions that overall can be described by a large equilibrium constant, the Blackman form results: and A third case is that in which two slow enzymatic steps are separated by an equilibrium constant that is not large. Unlike the Monod and Blackman forms, which contain only two arbitrary constants, this model contains three arbitrary constants: The Monod and Blackman forms are special cases of this three constant form. In comparing equations with two arbitrary constants the Monod equation gave poorer fit of the data in most cases than the Blackman form. It is concluded that workers modeling the growth of microorganisms should give a t least as much consideration to the Blackman form as is given to the Monod equation.  相似文献   

13.
Manganese-porphyrin reactions with lipids and lipoproteins   总被引:2,自引:0,他引:2  
Manganese porphyrin complexes serve to catalytically scavenge superoxide, hydrogen peroxide, and peroxynitrite. Herein, reactions of manganese 5,10,15,20-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)) with lipids and lipid hydroperoxides (LOOH) are examined. In linoleic acid and human low-density lipoprotein (LDL), MnTE-2-PyP(5+) promotes oxidative reactions when biological reductants are not present. By redox cycling between Mn(+3) and Mn(+4) forms, MnTE-2-PyP(5+) initiates lipid peroxidation via decomposition of 13(S)hydroperoxyoctadecadienoic acid [13(S)HPODE], with a second-order rate constant of 8.9 x 10(3) M(-1)s(-1)and k(cat) = 0.32 s(-1). Studies of LDL oxidation demonstrate that: (i) MnTE-2-PyP(5+) can directly oxidize LDL, (ii) MnTE-2-PyP(5+) does not inhibit Cu-induced LDL oxidation, and (iii) MnTE-2-PyP(5+) plus a reductant partially inhibit lipid peroxidation. MnTE-2-PyP(5+) (1-5 microM) also significantly inhibits FeCl(3) plus ascorbate-induced lipid peroxidation of rat brain homogenate. In summary, MnTE-2-PyP(5+) initiates membrane lipid and lipoprotein oxidation in the absence of biological reductants, while MnTE-2-PyP(5+) inhibits lipid oxidation reactions initiated by other oxidants when reductants are present. It is proposed that, as the Mn(+3) resting redox state of MnTE-2-PyP(5+) becomes oxidized to the Mn(+4) redox state, LOOH is decomposed to byproducts that propagate lipid oxidation reactions. When the manganese of MnTE-2-PyP(5+) is reduced to the +2 state by biological reductants, antioxidant reactions of the metalloporphyrin are favored.  相似文献   

14.
H2O2 was shown to reduce the copper ion of native bovine Cu,Zn superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) (ECu2+) and to oxidize the reduced enzyme (ECu+). The time-course of these processes was monitored by NMR measurement of the longitudinal relaxation rate of the water protons. A steady-state characterized by the same ratio [ECu2+]/[( EC2+] + [ECu+]) was obtained either by starting from the oxidized or the reduced enzyme. The kinetics of these processes appear to be quite complex, since different reactions between H2O2, or its reaction products, and the enzyme-bound copper control the reaction rate. The solution of the differential equations describing the kinetic processes showed that the oxidation and the reduction of the copper ion by H2O2 are first-order with respect to the copper ion itself only when these processes approach the steady-state. The rate constants of the reduction and oxidation reactions were calculated according to these equations and were found to have comparable values which are in the range 5-80 and 5-45 M-1.min-1, respectively, changing the pH from 5.6 to 7 at 0.21 M ionic strength. This result, together with the dependence of the reaction rates on pH and ionic strength, points to HO2- as the reactive species in both processes, and indicates that the electrostatic control of the access of the peroxide to the active site is the rate-determining step of the two redox reactions.  相似文献   

15.
Redox-sensitive variants of the green fluorescent protein (roGFPs) had previously been developed that allow "real-time" monitoring of the redox status of cellular compartments by fluorescence excitation ratiometry. However, the response time of these probes limits the study of certain rapid oxidative events, such as H2O2 bursts in cell signaling. The substitution of up to three positively charged amino acids adjacent to the introduced disulfide in roGFP1 (variants designated roGFP1-R1 through -R14) substantially improved the response rate. The pseudo first-order rate constants for oxidation by H2O2 and reduction by DTT and redox midpoint potentials were determined. The rate constants approximately doubled with each additional positively charged substitution, to nearly an order of magnitude total. The midpoint potentials are highly correlated with the rate increases, becoming more oxidizing with increasing numbers of positive substitutions. Crystal structures of two variants with opposite disulfide oxidation states have been determined: a 2.2 A resolution structure of oxidized "R7" containing two basic substitutions, and a 1.95 A resolution structure of reduced "R8" with one basic and one acidic substitution. Nonlinear Poisson-Boltzmann (PB) calculations are shown to accurately predict the effects of the substitutions on the rate constants. The effects of the substitutions on dimer formation, relative oxidative midpoint potentials, and oxidation and reduction rates are discussed. roGFPs are demonstrated to constitute an excellent model system for quantitative analysis of factors influencing thiol transfer reactions. roGFP1-R12 is most suitable for use in live cells, due to significantly increased reaction rate and increased pI.  相似文献   

16.
The cytotoxicity of many xenobiotics is related to their ability to undergo redox reactions and iron dependent free radical reactions. We have measured the ability of a number of redox active compounds to release iron from the cellular iron storage protein, ferritin. Compounds were reduced to their corresponding radicals with xanthine oxidase/hypoxanthine under N2 and the release of Fe2+ was monitored by complexation with ferrozine. Ferritin iron was released by a number of bipyridyl radicals including those derived from diquat and paraquat, the anthracycline radicals of adriamycin, daunorubicin and epirubicin, the semiquinones of anthraquinone-2-sulphonate, 1,5 and 2,6-dihydroxyanthraquinone, 1-hydroxyanthraquinone, purpurin, and plumbagin, and the nitroaromatic radicals of nitrofurantoin and metronidazole. In each case, iron release was more efficient than with an equivalent flux of superoxide. Introduction of air decreased the rate of iron release, presumably because the organic radicals reacted with O2 to form superoxide. In air, iron release was inhibited by superoxide dismutase. Semiquinones of menadione, benzoquinone, duroquinone, anthraquinone 1,5 and 2,6-disulphonate, 1,4 naphthoquinone-2-sulphonate and naphthoquinone, when formed under N2, were unable to release ferrin iron. In air, these systems gave low rates of superoxide dismutase-inhibitible iron release. Of the compounds investigated, those with a single electron reduction potential less than that of ferritin were able to release ferritin iron.  相似文献   

17.
Cytochrome P-450 LM2 reduction was measured at a series of NADPH concentrations in the absence of substrate and in the presence of 1 mM benzphetamine. In the absence of substrate reduction could be described as a biphasic process with 55% of the reaction occurring in the first phase (at 20 microM NADPH). When benzphetamine was present, the fraction of the reaction occurring in the first phase was increased to 91%. When examined either in the absence or presence of benzphetamine, the rate constant and fraction of LM2 reduced in the fast phase were decreased as the NADPH concentration was decreased. In each case the fraction of LM2 reduced in the second phase was not substantially altered over the NADPH concentrations examined. To explain the effect of NADPH concentration on the initial rate of LM2 reduction, the effect of NADPH on the reduction of NADPH-cytochrome P-450 reductase was examined. Due to the presence of two flavins within each reductase molecule, there would be nine possible oxidation-reduction states of the reductase which may be present at a given NADPH concentration. Based on the redox potentials for the flavin half-reactions and for NADPH oxidation, the relative concentrations of each of the reductase subspecies could be determined. Rate constants were assigned for the reduction of LM2 by the various reductase subspecies, and the theoretical initial rates of LM2 reduction at various NADPH concentrations were compared with values obtained experimentally. The experimental data are consistent with a model where, under the conditions of this assay, the fully reduced reductase is the form primarily responsible for the reduction of LM2.  相似文献   

18.
Abstract

The role of hemoglobin in transporting oxygen is dependent on the reversible binding of oxygen to Fe(II) hemoglobin with molecular oxygen released at reduced oxygen pressures. The partially oxygenated hemoglobin formed with the release of oxygen from hemoglobin is susceptible to redox reactions where the functional Fe(II) heme is oxidized to Fe(III) and the substrate is reduced. In this article, we review two important redox reactions of hemoglobin and discuss the ramifications of these reactions. The reduction of oxygen to superoxide starts a cascade of oxidative reactions, which are a source for red cell-induced oxidative stress. The reduction of nitrite to nitric oxide produces a labile form of nitric oxide that can be a source for oxidative stress, but can also have important physiological functions.  相似文献   

19.
Polle A 《Plant physiology》2001,126(1):445-462
The present study introduces metabolic modeling as a new tool to analyze the network of redox reactions composing the superoxide dismutase-ascorbate (Asc)-glutathione (GSH) cycle. Based on previously determined concentrations of antioxidants and defense enzymes in chloroplasts, kinetic properties of antioxidative enzymes, and nonenzymatic rate constants of antioxidants with reactive oxygen, models were constructed to simulate oxidative stress and calculate changes in concentrations and fluxes of oxidants and antioxidants. Simulated oxidative stress in chloroplasts did not result in a significant accumulation of O2*- and H2O2 when the supply with reductant was sufficient. Model results suggest that the coupling between Asc- and GSH-related redox systems was weak because monodehydroascorbate radical reductase prevented dehydroascorbate (DHA) formation efficiently. DHA reductase activity was dispensable. Glutathione reductase was mainly required for the recycling of GSH oxidized in nonenzymatic reactions. In the absence of monodehydroascorbate radical reductase and DHA reductase, glutathione reductase and GSH were capable to maintain the Asc pool more than 99% reduced. This suggests that measured DHA/Asc ratios do not reflect a redox balance related to the Asc-GSH-cycle. Decreases in Asc peroxidase resulted in marked H2O2 accumulation without significant effects on the redox balance of Asc/DHA or GSH/GSSG. Simulated loss of SOD resulted in higher H2O2 production rates, thereby affecting all subsequent steps of the Asc-GSH-cycle. In conclusion, modeling approaches contribute to the theoretical understanding of the functioning of antioxidant systems by pointing out questions that need to be validated and provide additional information that is useful to develop breeding strategies for higher stress resistance in plants.  相似文献   

20.
Hydroxyurea represents an approved treatment for sickle cell anemia and acts as a nitric oxide donor under oxidative conditions in vitro. Electron paramagnetic resonance spectroscopy shows that hydroxyurea reacts with oxy-, deoxy-, and methemoglobin to produce 2-6% of iron nitrosyl hemoglobin. No S-nitrosohemoglobin forms during these reactions. Cyanide and carbon monoxide trapping studies reveal that hydroxyurea oxidizes deoxyhemoglobin to methemoglobin and reduces methemoglobin to deoxyhemoglobin. Similar experiments reveal that iron nitrosyl hemoglobin formation specifically occurs during the reaction of hydroxyurea and methemoglobin. Experiments with hydroxyurea analogues indicate that nitric oxide transfer requires an unsubstituted acylhydroxylamine group and that the reactions of hydroxyurea and deoxy- and methemoglobin likely proceed by inner-sphere mechanisms. The formation of nitrate during the reaction of hydroxyurea and oxyhemoglobin and the lack of nitrous oxide production in these reactions suggest the intermediacy of nitric oxide as opposed to its redox form nitroxyl. A mechanistic model that includes a redox cycle between deoxyhemoglobin and methemoglobin has been forwarded to explain these results that define the reactivity of hydroxyurea and hemoglobin. These direct nitric oxide producing reactions of hydroxyurea and hemoglobin may contribute to the overall pathophysiological properties of this drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号