首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently reported a two-stage genomewide screen of 48 sib pairs affected with intracranial aneurysms (IAs) that revealed suggestive linkage to chromosome 19q13, with a LOD score of 2.58. The region supporting linkage spanned ~22 cM. Here, we report a follow-up study of the locus at 19q13, with a sample size expanded to 139 affected sib pairs, along with 83 other affected relative pairs (222 affected relative pairs in total). Suggestive linkage was observed in both independent sample sets, and linkage was significant in the combined set at 70 cM (LOD score 3.50; P=.00006) and at 80 cM (LOD score 3.93; P=.00002). Linkage was highly significant at 70 cM (LOD score 5.70; P=.000001) and at 80 cM (LOD score 3.99; P=.00005) when a covariate measuring the number of affected individuals in the nuclear family was included. To evaluate further the contribution to the linkage signal from families with more than two affected relatives, we performed model-based linkage analysis with a recessive model and a range of penetrances, and we obtained maximum linkage at 70 cM (LOD score 3.16; P=.00007) with a penetrance of 0.3. We then estimated location by using GENEFINDER. The most likely location for a gene predisposing to IAs in the Finnish population is in a region with a 95% confidence interval of 11.6 cM (P=.00007) centered 2.0 cM proximal to D19S246.  相似文献   

2.
Low bone mineral density (BMD) is a major risk factor for osteoporotic fracture. Studies of BMD in families and twins have shown that this trait is under strong genetic control. To identify regions of the genome that contain quantitative trait loci (QTL) for BMD, we performed independent genomewide screens, using two complementary study designs. We analyzed unselected nonidentical twin pairs (1,094 pedigrees) and highly selected, extremely discordant or concordant (EDAC) sib pairs (254 pedigrees). Nonparametric multipoint linkage (NPL) analyses were undertaken for lumbar spine and total-hip BMD in both cohorts and for whole-body BMD in the unselected twin pairs. The maximum evidence of linkage in the unselected twins (spine BMD, LOD 2.7) and the EDAC pedigrees (spine BMD, LOD 2.1) was observed at chromosome 3p21 (76 cM and 69 cM, respectively). These combined data indicate the presence, in this region, of a gene that regulates BMD. Furthermore, evidence of linkage in the twin cohort (whole-body BMD; LOD 2.4) at chromosome 1p36 (17 cM) supports previous findings of suggestive linkage to BMD in the region. Weaker evidence of linkage (LOD 1.0-2.3) in either cohort, but not both, indicates the locality of additional QTLs. These studies validate the use, in linkage analysis, of large cohorts of unselected twins phenotyped for multiple traits, and they highlight the importance of conducting genome scans in replicate populations as a prelude to positional cloning and gene discovery.  相似文献   

3.
We conducted genomewide linkage analyses on 1,152 individuals from 250 families segregating for bipolar disorder and related affective illnesses. These pedigrees were ascertained at 10 sites in the United States, through a proband with bipolar I affective disorder and a sibling with bipolar I or schizoaffective disorder, bipolar type. Uniform methods of ascertainment and assessment were used at all sites. A 9-cM screen was performed by use of 391 markers, with an average heterozygosity of 0.76. Multipoint, nonparametric linkage analyses were conducted in affected relative pairs. Additionally, simulation analyses were performed to determine genomewide significance levels for this study. Three hierarchical models of affection were analyzed. Significant evidence for linkage (genomewide P<.05) was found on chromosome 17q, with a peak maximum LOD score of 3.63, at the marker D17S928, and on chromosome 6q, with a peak maximum LOD score of 3.61, near the marker D6S1021. These loci met both standard and simulation-based criteria for genomewide significance. Suggestive evidence of linkage was observed in three other regions (genomewide P<.10), on chromosomes 2p, 3q, and 8q. This study, which is based on the largest linkage sample for bipolar disorder analyzed to date, indicates that several genes contribute to bipolar disorder.  相似文献   

4.
Chronic obstructive pulmonary disease (COPD) is a common, complex disease associated with substantial morbidity and mortality. COPD is defined by irreversible airflow obstruction; airflow obstruction is typically determined by reductions in quantitative spirometric indices, including forced expiratory volume at 1 s (FEV(1)) and the ratio of FEV(1) to forced vital capacity (FVC). To identify genetic determinants of quantitative spirometric phenotypes, an autosomal 10-cM genomewide scan of short tandem repeat (STR) polymorphic markers was performed in 72 pedigrees (585 individuals) ascertained through probands with severe early-onset COPD. Multipoint variance-component linkage analysis (using SOLAR) was performed for quantitative phenotypes, including FEV(1), FVC, and FEV(1)/FVC. In the initial genomewide scan, significant evidence for linkage to FEV(1)/FVC was demonstrated on chromosome 2q (LOD score 4.12 at 222 cM). Suggestive evidence was found for linkage to FEV(1)/FVC on chromosomes 1 (LOD score 1.92 at 120 cM) and 17 (LOD score 2.03 at 67 cM) and to FVC on chromosome 1 (LOD score 2.05 at 13 cM). The highest LOD score for FEV(1) in the initial genomewide scan was 1.53, on chromosome 12, at 36 cM. After inclusion of 12 additional STR markers on chromosome 12p, which had been previously genotyped in this population, suggestive evidence for linkage of FEV(1) (LOD score 2.43 at 37 cM) to this region was demonstrated. These observations provide both significant evidence for an early-onset COPD-susceptibility locus on chromosome 2 and suggestive evidence for linkage of spirometry-related phenotypes to several other genomic regions. The significant linkage of FEV(1)/FVC to chromosome 2q could reflect one or more genes influencing the development of airflow obstruction or dysanapsis.  相似文献   

5.
Epidemiological studies have demonstrated that genetic factors account for at least 50% of the liability for nicotine dependence (ND). Although several linkage studies have been conducted, all samples to date were primarily of European origin. In this study, we conducted a genomewide scan of 1,261 individuals, representing 402 nuclear families, of African American (AA) origin. We examined 385 autosomal microsatellite markers for ND, which was assessed by smoking quantity (SQ), the Heaviness of Smoking Index (HSI), and the Fagerstrom Test for ND (FTND). After performing linkage analyses using various methods implemented in the GENEHUNTER and S.A.G.E. programs, we found a region near marker D10S1432 on chromosome 10q22 that showed a significant linkage to indexed SQ, with a maximum LOD score of 4.17 at 92 cM and suggestive linkage to HSI, SQ, and log-transformed SQ. Additionally, we identified three regions that met the criteria for suggestive linkage to at least one ND measure: on chromosomes 9q31 at marker D9S1825, 11p11 between markers D11S1993 and D11S1344, and 13q13 between markers D13S325 and D13S788. Other locations on chromosomes 15p11, 17q25, and 18q12 exhibited some evidence of linkage for ND (LOD >1.44). The four regions with significant or suggestive linkage were positive for multiple ND measures by multiple statistical methods. Some of these regions have been linked to smoking behavior at nominally significant levels in other studies, which provides independent replication of the regions for ND in different cohorts. In summary, we found significant linkage on chromosome 10q22 and suggestive linkage on chromosomes 9, 11, and 13 for major genetic determinants of ND in an AA sample. Further analysis of these positive regions by fine mapping and/or association analysis is thus warranted. To our knowledge, this study represents the first genomewide linkage scan of ND in an AA sample.  相似文献   

6.
We undertook a genomewide linkage study in a total of 353 affected sib pairs (ASPs) with schizophrenia. Our sample consisted of 179 ASPs from the United Kingdom, 134 from Sweden, and 40 from the United States. We typed 372 microsatellite markers at approximately 10-cM intervals. Our strongest finding was a LOD score of 3.87 on chromosome 10q25.3-q26.3, with positive results being contributed by all three samples and a LOD-1 interval of 15 cM. This finding achieved genomewide significance (P<.05), on the basis of simulation studies. We also found two regions, 17p11.2-q25.1 (maximum LOD score [MLS] = 3.35) and 22q11 (MLS = 2.29), in which the evidence for linkage was highly suggestive. Linkage to all of these regions has been supported by other studies. Moreover, we found strong evidence for linkage (genomewide P<.02) to 17p11.2-q25.1 in a single pedigree with schizophrenia. In our view, the evidence is now sufficiently compelling to undertake detailed mapping studies of these three regions.  相似文献   

7.
Attention-deficit/hyperactivity disorder (ADHD [MIM 143465]) is the most common behavioral disorder of childhood. Twin, adoption, segregation, association, and linkage studies have confirmed that genetics plays a major role in conferring susceptibility to ADHD. We applied model-based and model-free linkage analyses, as well as the pedigree disequilibrium test, to the results of a genomewide scan of extended and multigenerational families with ADHD from a genetic isolate. In these families, ADHD is highly comorbid with conduct and oppositional defiant disorders, as well as with alcohol and tobacco dependence. We found evidence of linkage to markers at chromosomes 4q13.2, 5q33.3, 8q11.23, 11q22, and 17p11 in individual families. Fine mapping applied to these regions resulted in significant linkage in the combined families at chromosomes 4q13.2 (two-point allele-sharing LOD score from LODPAL = 4.44 at D4S3248), 5q33.3 (two-point allele-sharing LOD score from LODPAL = 8.22 at D5S490), 11q22 (two-point allele-sharing LOD score from LODPAL = 5.77 at D11S1998; multipoint nonparametric linkage [NPL]-log[P value] = 5.49 at approximately 128 cM), and 17p11 (multipoint NPL-log [P value] >12 at approximately 12 cM; multipoint maximum location score 2.48 [alpha = 0.10] at approximately 12 cM; two-point allele-sharing LOD score from LODPAL = 3.73 at D17S1159). Additionally, suggestive linkage was found at chromosome 8q11.23 (combined two-point NPL-log [P value] >3.0 at D8S2332). Several of these regions are novel (4q13.2, 5q33.3, and 8q11.23), whereas others replicate already-published loci (11q22 and 17p11). The concordance between results from different analytical methods of linkage and the replication of data between two independent studies suggest that these loci truly harbor ADHD susceptibility genes.  相似文献   

8.
Severe combined immunodeficiency disease (SCID) consists of a group of heterogeneous genetic disorders. The most severe phenotype, T-B- SCID, is inherited as an autosomal recessive trait and is characterized by a profound deficiency of both T cell and B cell immunity. There is a uniquely high frequency of T-B- SCID among Athabascan-speaking Native Americans (A-SCID). To localize the A-SCID gene, we conducted a genomewide search, using linkage analysis of approximately 300 microsatellite markers in 14 affected Athabascan-speaking Native American families. We obtained conclusive evidence for linkage of the A-SCID locus to markers on chromosome 10p. The maximum pairwise LOD scores 4.53 and 4.60 were obtained from two adjacent markers, D10S191 and D10S1653, respectively, at a recombination fraction of straight theta=.00. Recombination events placed the gene in an interval of approximately 6.5 cM flanked by D10S1664 and D10S674. Multipoint analysis positioned the gene for the A-SCID phenotype between D10S191 and D10S1653, with a peak LOD score of 5.10 at D10S191. Strong linkage disequilibrium was found in five linked markers spanning approximately 6.5 cM in the candidate region, suggesting a founder effect with an ancestral mutation that occurred sometime before 1300 A.D.  相似文献   

9.
Paget disease of bone (PDB) is a common disorder characterized by focal abnormalities of increased and disorganized bone turnover. Genetic factors are important in the pathogenesis of PDB, and previous studies have shown that the PDB-like bone dysplasia familial expansile osteolysis is caused by activating mutations in the TNFRSF11A gene that encodes receptor activator of nuclear factor kappa B (RANK); however, linkage studies, coupled with mutation screening, have excluded involvement of RANK in the vast majority of patients with PDB. To identify other candidate loci for PDB, we conducted a genomewide search in 319 individuals, from 62 kindreds with familial PDB, who were predominantly of British descent. The pattern of inheritance in the study group as a whole was consistent with autosomal dominant transmission of the disease. Parametric multipoint linkage analysis, under a model of heterogeneity, identified three chromosomal regions with LOD scores above the threshold for suggestive linkage. These were on chromosomes 2q36 (LOD score 2.7 at 218.24 cM), 5q35 (LOD score 3.0 at 189.63 cM), and 10p13 (LOD score 2.6 at 41.43 cM). For each of these loci, formal heterogeneity testing with HOMOG supported a model of linkage with heterogeneity, as opposed to no linkage or linkage with homogeneity. Two-point linkage analysis with a series of markers from the 5q35 region in another large kindred with autosomal dominant familial PDB also supported linkage to the candidate region with a maximum LOD score of 3.47 at D5S2034 (187.8 cM). These data indicate the presence of several susceptibility loci for PDB and identify a strong candidate locus for the disease, on chromosome 5q35.  相似文献   

10.
Recent studies have suggested that a high-density single nucleotide polymorphism (SNP) marker set could provide equivalent or even superior information compared with currently used microsatellite (STR) marker sets for gene mapping by linkage. The focus of this study was to compare results obtained from linkage analyses involving extended pedigrees with STR and single-nucleotide polymorphism (SNP) marker sets. We also wanted to compare the performance of current linkage programs in the presence of high marker density and extended pedigree structures. One replicate of the Genetic Analysis Workshop 14 (GAW14) simulated extended pedigrees (n = 50) from New York City was analyzed to identify the major gene D2. Four marker sets with varying information content and density on chromosome 3 (STR [7.5 cM]; SNP [3 cM, 1 cM, 0.3 cM]) were analyzed to detect two traits, the original affection status, and a redefined trait more closely correlated with D2. Multipoint parametric and nonparametric linkage analyses (NPL) were performed using programs GENEHUNTER, MERLIN, SIMWALK2, and S.A.G.E. SIBPAL. Our results suggested that the densest SNP map (0.3 cM) had the greatest power to detect linkage for the original trait (genetic heterogeneity), with the highest LOD score/NPL score and mapping precision. However, no significant improvement in linkage signals was observed with the densest SNP map compared with STR or SNP-1 cM maps for the redefined affection status (genetic homogeneity), possibly due to the extremely high information contents for all maps. Finally, our results suggested that each linkage program had limitations in handling the large, complex pedigrees as well as a high-density SNP marker set.  相似文献   

11.
Alzheimer disease (AD) is the most common cause of dementia. We conducted a genome screen of 103 patients with late-onset AD who were ascertained as part of the Genetic Research in Isolated Populations (GRIP) program that is conducted in a recently isolated population from the southwestern area of The Netherlands. All patients and their 170 closely related relatives were genotyped using 402 microsatellite markers. Extensive genealogy information was collected, which resulted in an extremely large and complex pedigree of 4,645 members. The pedigree was split into 35 subpedigrees, to reduce the computational burden of linkage analysis. Simulations aiming to evaluate the effect of pedigree splitting on false-positive probabilities showed that a LOD score of 3.64 corresponds to 5% genomewide type I error. Multipoint analysis revealed four significant and one suggestive linkage peaks. The strongest evidence of linkage was found for chromosome 1q21 (heterogeneity LOD [HLOD]=5.20 at marker D1S498). Approximately 30 cM upstream of this locus, we found another peak at 1q25 (HLOD=4.0 at marker D1S218). These two loci are in a previously established linkage region. We also confirmed the AD locus at 10q22-24 (HLOD=4.15 at marker D10S185). There was significant evidence of linkage of AD to chromosome 3q22-24 (HLOD=4.44 at marker D3S1569). For chromosome 11q24-25, there was suggestive evidence of linkage (HLOD=3.29 at marker D11S1320). We next tested for association between cognitive function and 4,173 single-nucleotide polymorphisms in the linked regions in an independent sample consisting of 197 individuals from the GRIP region. After adjusting for multiple testing, we were able to detect significant associations for cognitive function in four of five AD-linked regions, including the new region on chromosome 3q22-24 and regions 1q25, 10q22-24, and 11q25. With use of cognitive function as an endophenotype of AD, our study indicates the that the RGSL2, RALGPS2, and C1orf49 genes are the potential disease-causing genes at 1q25. Our analysis of chromosome 10q22-24 points to the HTR7, MPHOSPH1, and CYP2C cluster. This is the first genomewide screen that showed significant linkage to chromosome 3q23 markers. For this region, our analysis identified the NMNAT3 and CLSTN2 genes. Our findings confirm linkage to chromosome 11q25. We were unable to confirm SORL1; instead, our analysis points to the OPCML and HNT genes.  相似文献   

12.
Genome scans in Icelandic, Australian and New Zealand, and Finnish families have localized putative susceptibility loci for preeclampsia/ eclampsia to chromosome 2. The locus mapped in the Australian and New Zealand study (designated PREG1) was thought to be the same locus as that identified in the Icelandic study. In both these studies, two distinct quantitative trait locus (QTL) regions were evident on chromosome 2. Here, we describe our fine mapping of the PREG1 locus and a genetic analysis of two positional candidate genes. Twenty-five additional microsatellite markers were genotyped within the 74-cM linkage region defined by the combined Icelandic and Australian and New Zealand genome scans. The overall position and shape of the localization evidence obtained using nonparametric multipoint analysis did not change from that seen previously in our 10-cM resolution genome scan; two peaks were displayed, one on chromosome 2p at marker D2S388 (107.46 cM) and the other on chromosome 2q at 151.5 cM at marker D2S2313. Using the robust two-point linkage analysis implemented in the Analyze program, all 25 markers gave positive LOD scores with significant evidence of linkage being seen at marker D2S2313 (151.5 cM), achieving a LOD score of 3.37 under a strict diagnostic model. Suggestive evidence of linkage was seen at marker D2S388 (107.46 cM) with a LOD score of 2.22 under the general diagnostic model. Two candidate genes beneath the peak on chromosome 2p were selected for further analysis using public single nucleotide polymorphisms (SNPs) within these genes. Maximum LOD scores were obtained for an SNP in TACR1 (LOD = 3.5) and for an SNP in TCF7L1 (LOD = 3.33), both achieving genome-wide significance. However, no evidence of association was seen with any of the markers tested. These data strongly support the presence of a susceptibility gene on chromosome 2p11-12 and substantiate the possibility of a second locus on chromosome 2q23.  相似文献   

13.
We present a two-stage genomewide scan for osteoarthritis-susceptibility loci, using 481 families that each contain at least one affected sibling pair. The first stage, with 272 microsatellite markers and 297 families, involved a sparse map covering 23 chromosomes at intervals of approximately 15 cM. Sixteen markers that showed evidence of linkage at nominal P相似文献   

14.
We performed a genomewide scan for genes that predispose to low serum HDL cholesterol (HDL-C) in 25 well-defined Finnish families that were ascertained for familial low HDL-C and premature coronary heart disease. The potential loci for low HDL-C that were identified initially were tested in an independent sample group of 29 Finnish families that were ascertained for familial combined hyperlipidemia (FCHL), expressing low HDL-C as one component trait. The data from the previous genome scan were also reanalyzed for this trait. We found evidence for linkage between the low-HDL-C trait and three loci, in a pooled data analysis of families with low HDL-C and FCHL. The strongest statistical evidence was obtained at a locus on chromosome 8q23, with a two-point LOD score of 4.7 under a recessive mode of inheritance and a multipoint LOD score of 3.3. Evidence for linkage also emerged for loci on chromosomes 16q24.1-24.2 and 20q13.11, the latter representing a recently characterized region for type 2 diabetes. Besides these three loci, loci on chromosomes 2p and 3p showed linkage in the families with low HDL-C and a locus on 2ptel in the families with FCHL.  相似文献   

15.

Background

Human lifespan is approximately 25% heritable, and genetic factors may be particularly important for achieving exceptional longevity. Accordingly, siblings of centenarians have a dramatically higher probability of reaching extreme old age than the general population.

Methodology/Principal Findings

To map the loci conferring a survival advantage, we performed the second genomewide linkage scan on human longevity and the first using a high-density marker panel of single nucleotide polymorphisms. By systematically testing a range of minimum age cutoffs in 279 families with multiple long-lived siblings, we identified a locus on chromosome 3p24-22 with a genomewide significant allele-sharing LOD score of 4.02 (empirical P = 0.037) and a locus on chromosome 9q31-34 with a highly suggestive LOD score of 3.89 (empirical P = 0.054). The empirical P value for the combined result was 0.002. A third novel locus with a LOD score of 4.05 on chromosome 12q24 was detected in a subset of the data, and we also obtained modest evidence for a previously reported interval on chromosome 4q22-25.

Conclusions/Significance

Our linkage data should facilitate the discovery of both common and rare variants that determine genetic variability in lifespan.  相似文献   

16.
The prevalence of type 2 diabetes among Australian residents is 7.5%; however, prevalence rates up to six times higher have been reported for indigenous Australian communities. Epidemiological evidence implicates genetic factors in the susceptibility of indigenous Australians to type 2 diabetes and supports the hypothesis of the "thrifty genotype," but, to date, the nature of the genetic predisposition is unknown. We have ascertained clinical details from a community of indigenous Australian descent in North Stradbroke Island, Queensland. In this population, the phenotype is characterized by severe insulin resistance. We have conducted a genomewide scan, at an average resolution of 10 cM, for type 2 diabetes-susceptibility genes in a large multigeneration pedigree from this community. Parametric linkage analysis undertaken using FASTLINK version 4.1p yielded a maximum two-point LOD score of +2.97 at marker D2S2345. Multipoint analysis yielded a peak LOD score of +3.9 <1 cM from marker D2S2345, with an 18-cM 3-LOD support interval. Secondary peak LOD scores were noted on chromosome 3 (+1.8 at recombination fraction [theta] 0.05, at marker D3S1311) and chromosome 8 (+1.77 at theta=0.0, at marker D8S549). These chromosomal regions are likely to harbor novel susceptibility genes for type 2 diabetes in the indigenous Australian population.  相似文献   

17.
Nonsyndromic cleft lip with or without cleft palate (CL-P) is a common congenital anomaly with incidence ranging from 1 in 300 to 1 in 2,500 live births. We analyzed two Indian pedigrees (UR017 and UR019) with isolated, nonsyndromic CL-P, in which the anomaly segregates as an autosomal dominant trait. The phenotype was variable, ranging from unilateral to bilateral CL-P. A genomewide linkage scan that used approximately 10,000 SNPs was performed. Nonparametric linkage (NPL) analysis identified 11 genomic regions (NPL>3.5; P<.005) that could potentially harbor CL-P susceptibility variations. Among those, the most significant evidence was for chromosome 13q33.1-34 at marker rs1830756 (NPL=5.57; P=.00024). This was also supported by parametric linkage; MOD score (LOD scores maximized over genetic model parameters) analysis favored an autosomal dominant model. The maximum LOD score was 4.45, and heterogeneity LOD was 4.45 (alpha =100%). Haplotype analysis with informative crossovers enabled the mapping of the CL-P locus to a region of approximately 20.17 cM (7.42 Mb) between SNPs rs951095 and rs726455. Thus, we have identified a novel genomic region on 13q33.1-34 that harbors a high-risk variant for CL-P in these Indian families.  相似文献   

18.
A locus for migraine without aura maps on chromosome 14q21.2-q22.3   总被引:8,自引:0,他引:8  
Migraine is a common and disabling neurological disease of unknown origin characterized by a remarkable clinical variability. It shows strong familial aggregation, suggesting that genetic factors are involved in its pathogenesis. Different approaches have been used to elucidate this hereditary component, but a unique transmission model and causative gene(s) have not yet been identified. We report clinical and molecular data from a large Italian pedigree in which migraine without aura (MO) segregates as an autosomal dominant trait. After exclusion of any association between MO and the known familial hemiplegic migraine and migraine with aura loci, we performed a genomewide linkage analysis using 482 polymorphic microsatellite markers. We obtained significant evidence of linkage between the MO phenotype and the marker D14S978 on 14q22.1 (maximum two-point LOD score of 3.70, at a recombination fraction of 0.01). Multipoint parametric analysis (maximum LOD score of 5.25 between markers D14S976 and D14S978) and haplotype construction showed strong evidence of linkage in a region of 10 cM flanked by markers D14S1027 and D14S980 on chromosome 14q21.2-q22.3. These results indicate the first evidence of a genetic locus associated with MO on chromosome 14.  相似文献   

19.
20.
Fibrodysplasia ossificans progressiva (FOP) is a very rare disease characterized by congenital malformation of the great toes and progressive heterotopic ossification of muscles. To identify the chromosomal localization of the FOP gene, we conducted a genomewide linkage analysis using seven affected families. The FOP phenotype is linked to markers located in the 17q21-22 region (LOD score of 3.41 at the recombination fraction theta = 0). Crossover events localize the putative FOP gene within a 12cM interval, bordered proximally by D17S809 and distally by D17S1838. Noggin (NOG) gene, located in 17q22, is an excellent candidate gene for FOP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号