首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Amino acid sequence data have revealed that the bo-type ubiquinol oxidase from Escherichia coli is closely related to the eukaryotic aa3-type cytochrome c oxidases. In the cytochrome c oxidases, the reduction of oxygen to water occurs at a binuclear center comprised of heme a3 and Cu(B). In this paper, Fourier transform infrared (FTIR) spectroscopy of CO bound to the enzyme is used to directly demonstrate that the E. coli bo-type ubiquinol oxidase also contains a heme-copper binuclear center. Photolysis of CO ligated to heme o at low temperatures (e.g., 30 K) results in formation of a CO-Cu complex, showing that there is a heme-Cu(B) binuclear center similar to that formed by heme a3 and Cu(B) in the eukaryotic oxidase. It is further demonstrated that the cyoE gene product is required for the correct assembly of this binuclear center, although this polypeptide is not required as a component of the active enzyme in vitro. The cyoE gene product is homologous to COX10, a nuclear gene product from Saccharomyces cerevisiae, which is required for the assembly of yeast cytochrome c oxidase. Deletion of the cyoE gene results in an inactive quinol oxidase that is, however, assembled in the membrane. FTIR analysis of bound CO shows that Cu(B) is present in this mutant but that the heme-Cu(B) binuclear center is abnormal. Analysis of the heme content of the membrane suggests that the cyoE deletion results in the insertion of heme B (protoheme IX) in the binuclear center, rather than heme O.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have investigated the kinetic and thermodynamic properties of carbon monoxide binding to the fully reduced quinol oxidase (cytochrome aa(3)) from the hyperthermophilic archaeon Acidianus ambivalens. After flash photolysis of CO from heme a(3), the complex recombines with an apparent rate constant of approximately 3 s(-1), which is much slower than with the bovine cytochrome c oxidase (approximately 80 s(-1)). Investigation of the CO-recombination rate as a function of the CO concentration shows that the rate saturates at high CO concentrations, which indicates that CO must bind transiently to Cu(B) before binding to heme a(3). With the A. ambivalens enzyme the rate reached 50% of its maximum level (which reflects the dissociation constant of the Cu(B)(CO) complex) at approximately 13 microM CO, which is a concentration approximately 10(3) times smaller than for the bovine enzyme (approximately 11 mM). After CO dissociation we observed a rapid absorbance relaxation with a rate constant of approximately 1.4 x 10(4) s(-1), tentatively ascribed to a heme-pocket relaxation associated with release of CO after transient binding to Cu(B). The equilibrium constant for CO transfer from Cu(B) to heme a(3) was approximately 10(4) times smaller for the A. ambivalens than for the bovine enzyme. The approximately 10(3) times smaller Cu(B)(CO) dissociation constant, in combination with the approximately 10(4) times smaller equilibrium constant for the internal CO transfer, results in an apparent dissociation constant of the heme a(3)(CO) complex which is "only" about 10 times larger for the A. ambivalens ( approximately 4 x 10(-3) mM) than for the bovine (0.3 x 10(-3) mM) enzyme. In summary, the results show that while the basic mechanism of CO binding to the binuclear center is similar in the A. ambivalens and bovine (and R. sphaeroides) enzymes, the heme-pocket dynamics of the two enzymes are dramatically different, which is discussed in terms of the different structural details of the A. ambivalens quinol oxidase and adaptation to different living conditions.  相似文献   

3.
Electron nuclear double resonance (ENDOR) was performed on the protein-bound, stabilized, high-affinity ubisemiquinone radical, QH*-, of bo3 quinol oxidase to determine its electronic spin distribution and to probe its interaction with its surroundings. Until this present work, such ENDOR studies of protein-stabilized ubisemiquinone centers have only been done on photosynthetic reaction centers whose function is to reduce a ubiquinol pool. In contrast, QH*- serves to oxidize a ubiquinol pool in the course of electron transfer from the ubiquinol pool to the oxygen-consuming center of terminal bo3 oxidase. As documented by large hyperfine couplings (>10 MHz) to nonexchangeable protons on the QH*- ubisemiquinone ring, we provide evidence for an electronic distribution on QH*- that is different from that of the semiquinones of reaction centers. Since the ubisemiquinone itself is physically nearly identical in both QH*- and the bacterial photosynthetic reaction centers, this electronic difference is evidently a function of the local protein environment. Interaction of QH*- with this local protein environment was explicitly shown by exchangeable deuteron ENDOR that implied hydrogen bonding to the quinone and by weak proton hyperfine couplings to the local protein matrix.  相似文献   

4.
Properties of the two terminal oxidases of Escherichia coli.   总被引:13,自引:0,他引:13  
Proton translocation coupled to oxidation of ubiquinol by O2 was studied in spheroplasts of two mutant strains of Escherichia coli, one of which expresses cytochrome d, but not cytochrome bo, and the other expressing only the latter. O2 pulse experiments revealed that cytochrome d catalyzes separation of the protons and electrons of ubiquinol oxidation but is not a proton pump. In contrast, cytochrome bo functions as a proton pump in addition to separating the charges of quinol oxidation. E. coli membranes and isolated cytochrome bo lack the CuA center typical of cytochrome c oxidase, and the isolated enzyme contains only 1Cu/2Fe. Optical spectra indicate that high-spin heme o contributes less than 10% to the reduced minus oxidized 560-nm band of the enzyme. Pyridine hemochrome spectra suggest that the hemes of cytochrome bo are not protohemes. Proteoliposomes with cytochrome bo exhibited good respiratory control, but H+/e- during quinol oxidation was only 0.3-0.7. This was attributed to an "inside out" orientation of a significant fraction of the enzyme. Possible metabolic benefits of expressing both cytochromes bo and d in E. coli are discussed.  相似文献   

5.
Cytochrome c oxidase is a redox-driven proton pump. The enzyme has two proton input pathways, leading from the solution on the N-side to the binuclear center. One of these pathways, the K-pathway, is used for proton uptake upon reduction of the binuclear center. It is also important for local charge compensation during reaction of the fully reduced enzyme with O2. Two different locations have been proposed to constitute the entry point of the K-pathway: near S(I-299) or near E(II-101), respectively, in the Rhodobacter sphaeroides enzyme. The experiments discussed in this study are aimed at identifying the location of the entry point. The kinetics and extent of flash-induced proton release coupled to oxidation of heme a3 (tau congruent with 2 ms at pH 8.8 in the wild-type enzyme) in the absence of O2 were investigated in the ED(II-101), SD(I-299), and KM(I-362) mutant enzymes, i.e., at the two proposed entry points and in the middle of the pathway, respectively. This reaction was completely blocked in KM(I-362), while it was slowed by factors of 25 and 40 in the ED(II-101) and SD(I-299) mutant enzymes, respectively. During reaction of the fully reduced enzyme with O2, electron transfer from heme a to the catalytic site (during P(R)-formation) was blocked in the KM(I-362) and SD(I-299)/SG(I-299) but not in the ED(II-101)/ EA(II-101) mutant enzymes. The results are interpreted as follows: Residue K(I-362) is involved in both proton transfer and charge compensation (in different reaction steps). The impaired proton release in the S(I-299) mutant enzymes is an indirect effect due to an altered environment of K(I-362). E(II-101), on the other hand, is likely to be part of the K-pathway since mutation of this residue results in impaired proton release but does not affect the P(R) formation kinetics; i.e., the properties of K(I-362) are not altered. Consequently, we conclude that the entry point of the K-pathway is located near E(II-101).  相似文献   

6.
Cytochrome bd is a quinol oxidase from Escherichia coli, which is optimally expressed under microaerophilic growth conditions. The enzyme catalyzes the two-electron oxidation of either ubiquinol or menaquinol in the membrane and scavenges O2 at low concentrations, reducing it to water. Previous work has shown that, although cytochrome bd does not pump protons, turnover is coupled to the generation of a proton motive force. The generation of a proton electrochemical gradient results from the release of protons from the oxidation of quinol to the periplasm and the uptake of protons used to form H2O from the cytoplasm. Because the active site has been shown to be located near the periplasmic side of the membrane, a proton channel must facilitate the delivery of protons from the cytoplasm to the site of water formation. Two conserved glutamic acid residues, E107 and E99, are located in transmembrane helix III in subunit I and have been proposed to form part of this putative proton channel. In the current work, it is shown that mutations in either of these residues results in the loss of quinol oxidase activity and can result in the loss of the two hemes at the active site, hemes d and b595. One mutant, E107Q, while being totally inactive, retains the hemes. Fourier transform infrared (FTIR) redox difference spectroscopy has identified absorption bands from the COOH group of E107. The data show that E107 is protonated at pH 7.6 and that it is perturbed by the reduction of the heme d/heme b595 binuclear center at the active site. In contrast, mutation of an acidic residue known to be at or near the quinol-binding site (E257A) also inactivates the enzyme but has no substantial influence on the FTIR redox difference spectrum. Mutagenesis shows that there are several acidic residues, including E99 and E107 as well as D29 (in CydB), which are important for the assembly or stability of the heme d/heme b595 active site.  相似文献   

7.
We have investigated the CO-recombination kinetics after flash photolysis of CO from the "half-reduced" cytochrome c oxidase as a function of pH. In addition, the reaction was investigated in mutant enzymes in which Lys(I-362) and Ser(I-299), located approximately in the middle of the K-pathway and near the enzyme surface, respectively, were modified. Laser-flash induced dissociation of CO is followed by rapid internal electron transfer from heme a(3) to a. At pH>7 this electron transfer is associated with proton release to the bulk solution (tau congruent with 1 ms at pH 8). Thus, the CO-recombination kinetics reflects protonation events at the catalytic site. In the wild-type enzyme, below pH approximately 7, the main component in the CO-recombination displayed a rate of approximately 20 s(-1). Above pH approximately 7, a slow CO-recombination component developed with a rate that decreased from approximately 8 s(-1) at pH 8 to approximately 1 s(-1) at pH 10. This slow component was not observed with KM(I-362), while with the SD(I-299)/SG(I-299) mutant enzymes at each pH it was slower than with the wild-type enzyme. The results are interpreted in terms of proton release from H(2)O in the catalytic site after CO dissociation, followed by OH(-) binding to the oxidized heme a(3). The CO-recombination kinetics is proposed to be determined by the protonation rate of OH(-) and not dissociation of OH(-), i.e. the K-pathway transfers protons and not OH(-). With the KM(I-362) mutant enzyme the proton is not released, i.e. OH(-) is not formed. With the SD(I-299)/SG(I-299) mutant enzymes the proton is released, but both the release and uptake are slowed by the mutations. During reaction of the reduced enzyme with O(2), the H(2)O at the binuclear center is most likely involved as a proton donor in the O-O cleavage reaction.  相似文献   

8.
The cytochrome bd quinol oxidase is one of two respiratory oxidases in Escherichia coli. It oxidizes dihydroubiquinol or dihydromenaquinol while reducing dioxygen to water. The bd-type oxidases have only been found in prokaryotes and have been implicated in the survival of some bacteria, including pathogens, under conditions of low aeration. With a high affinity for dioxygen, cytochrome bd not only couples respiration to the generation of a proton motive force but also scavenges O(2). In the current work, the role of a highly conserved arginine residue is explored by site-directed mutagenesis. Four mutations were made: R391A, R391K, R391M, and R391Q. All of the mutations except R391K result in enzyme lacking ubiquinol oxidase activity. Oxidase activity using the artificial reductant N,N,N',N'-tetramethyl-p-phenylenediamine in place of ubiquinol was, however, unimpaired by the mutations, indicating that the catalytic center where O(2) is reduced is intact. UV-visible spectra of each of the mutant oxidases show no perturbations to any of the three heme components (heme b(558), heme b(595), and heme d). However, spectroelectrochemical titrations of the R391A mutant reveal that the midpoint potentials of all of the heme components are substantially lower compared with the wild type enzyme. Since Arg(391) is close to Met(393), one of the axial ligands to heme b(558), it is to be expected that the R391A mutation might destabilize the reduced form of heme b(558). The fact that the midpoint potentials of heme d and heme b(595) are also significantly lowered in the R391A mutant is consistent with these hemes being physically close together on the periplasmic side of the membrane.  相似文献   

9.
Various protolytic residues in subunit I of aa3-600 quinol oxidase of the aerobic Gram-positive Bacillus subtilis were mutagenized to nonpolar residues. Two of the mutations, Y284F and K304L, impaired the bioenergetic function of the microorganism. The Y284F mutation suppressed the electron-transfer activity of quinol oxidase and altered its interaction with CO and H2O2, thus showing destruction of the binuclear domain as observed for the bo3 quinol oxidase of Escherichia coli. The K304L mutation did not alter significantly the redox activity of the oxidase and its interaction with CO and H2O2 but suppressed the proton pumping activity of the enzyme. These results show that the K304 residue, which is invariantly conserved (as K or R) in practically all the sequences of the heme-copper oxidases so far available (around 100), is essential for the proton pumping activity of the oxidase.  相似文献   

10.
The membrane bound aa(3)-type quinol:oxygen oxidoreductase from the hyperthermophilic archaeon, Acidianus ambivalens, which thrives at a pH of 2.5 and a temperature of 80 degrees C, has several unique structural and functional features as compared to the other members of the heme-copper oxygen reductase superfamily, but shares the common redox-coupled, proton-pumping function. To better understand the properties of the heme a(3)-Cu(B) catalytic site, a resonance Raman spectroscopic study of the enzyme under a variety of conditions and in the presence of various ligands was carried out. Assignments of several heme vibrational modes as well as iron-ligand stretching modes are made to serve as a basis for comparing the structure of the enzyme to that of other oxygen reductases. The CO-bound oxidase has conformations that are similar to those of other oxygen reductases. However, the addition of CO to the resting enzyme does not generate a mixed valence species as in the bovine aa(3) enzyme. The cyanide complex of the oxidized enzyme of A. ambivalens does not display the high stability of its bovine counterpart, and a redox titration demonstrates that there is an extensive heme-heme interaction reflected in the midpoint potentials of the cyanide adduct. The A. ambivalens oxygen reductase is very stable under acidic conditions, but it undergoes an earlier alkaline transition than the bovine enzyme. The A. ambivalens enzyme exhibits a redox-linked reversible conformational transition in the heme a(3)-Cu(B) center. The pH dependence and H/D exchange demonstrate that the conformational transition is associated with proton movements involving a group or groups with a pK(a) of approximately 3.8. The observed reversibility and involvement of protons in the redox-coupled conformational transition support the proton translocation model presented earlier. The implications of such conformational changes are discussed in relation to general redox-coupled proton pumping mechanisms in the heme-copper oxygen reductases.  相似文献   

11.
In cytochrome c oxidase, oxido-reductions of heme a/Cu(A) and heme a3/Cu(B) are cooperatively linked to proton transfer at acid/base groups in the enzyme. H+/e- cooperative linkage at Fe(a3)/Cu(B) is envisaged to be involved in proton pump mechanisms confined to the binuclear center. Models have also been proposed which involve a role in proton pumping of cooperative H+/e- linkage at heme a (and Cu(A)). Observations will be presented on: (i) proton consumption in the reduction of molecular oxygen to H2O in soluble bovine heart cytochrome c oxidase; (ii) proton release/uptake associated with anaerobic oxidation/reduction of heme a/Cu(A) and heme a3/Cu(B) in the soluble oxidase; (iii) H+ release in the external phase (i.e. H+ pumping) associated with the oxidative (R-->O transition), reductive (O-->R transition) and a full catalytic cycle (R-->O-->R transition) of membrane-reconstituted cytochrome c oxidase. A model is presented in which cooperative H+/e- linkage at heme a/Cu(A) and heme a3/Cu(B) with acid/base clusters, C1 and C2 respectively, and protonmotive steps of the reduction of O2 to water are involved in proton pumping.  相似文献   

12.
We have developed theory and the computational scheme for the analysis of the kinetics of the membrane potential generated by cytochrome c oxidase upon single electron injection into the enzyme. The theory allows one to connect the charge motions inside the enzyme to the membrane potential observed in the experiments by using data from the "dielectric topography" map of the enzyme that we have created. The developed theory is applied for the analysis of the potentiometric data recently reported by the Wikstr?m group [I. Belevich, D.A. Bloch, N. Belevich, M. Wikstr?m and M.I. Verkhovsky, Exploring the proton pump mechanism of cytochrome c oxidase in real time, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 2685-2690] on the O to E transition in Paracoccus denitrificans oxidase. Our analysis suggests, that the electron transfer to the binuclear center is coupled to a proton transfer (proton loading) to a group just "above" the binuclear center of the enzyme, from which the pumped proton is subsequently expelled by the chemical proton arriving to the binuclear center. The identity of the pump site could not be determined with certainty, but could be localized to the group of residues His326 (His291 in bovine), propionates of heme a(3), Arg 473/474, and Trp164. The analysis also suggests that the dielectric distance from the P-side to Fe a is 0.4 or larger. The difficulties and pitfalls of quantitative interpretation of potentiometric data are discussed.  相似文献   

13.
A CuB-deficient mutant of the Escherichia coli bo-type ubiquinol oxidase exhibits a very low oxidase activity that is consistent with a decreased dioxygen binding rate. During the turnover, a photolabile reaction intermediate persists for a few hundred milliseconds, due to much slower heme o-to-ligand electron transfer. Thus, the lack of CuB seems to have endowed the mutant enzyme with myoglobin-like properties, thereby stabilizing the CO-bound form, too. Accordingly we conclude that CuB plays a pivotal role in preferential trapping and efficient reduction of dioxygen at the heme-copper binuclear center.  相似文献   

14.
Proton pumping heme-copper oxidases represent the terminal, energy-transfer enzymes of respiratory chains in prokaryotes and eukaryotes. The CuB-heme a3 (or heme o) binuclear center, associated with the largest subunit I of cytochrome c and quinol oxidases, is directly involved in the coupling between dioxygen reduction and proton pumping. The role of the other subunits is less clear. The following aspects will be covered in this paper:i) the efficiency of coupling in the mitochondrial aa3 cytochrome c oxidase. In particular, the effect of respiratory rate and protonmotive force on the H+/e? stoichiometry and the role of subunit IV; ii) mutational analysis of the aa3 quinol oxidase of Bacillus subtilis addressed to the role of subunit III, subunit IV and specific residues in subunit I; iii) possible models of the protonmotive catalytic cycle at the binuclear center. The observations available suggest that H+/e?coupling is based on the combination of protonmotive redox catalysis at the binuclear center and co-operative proton transfer in the protein.  相似文献   

15.
During the last few years our knowledge of the structure and function of heme copper oxidases has greatly profited from the use of site-directed mutagenesis in combination with biophysical techniques. This, together with the recently-determined crystal structures of cytochrome c oxidase, has now made it possible to design experiments aimed at targeting specific pump mechanisms. Here, we summarize results from our recent kinetic studies of electron and proton-transfer reactions in wild-type and mutant forms of cytochrome c oxidase from Rhodobacter sphaeroides. These studies have made it possible to identify amino acid residues involved in proton transfer during specific reaction steps and provide a basis for discussion of mechanisms of electron and proton transfer in terminal oxidases. The results indicate that the pathway through K(I-362)/T(I-359), but not through D(I-132)/E(I-286), is used for proton transfer to a protonatable group interacting electrostatically with heme a 3, i.e., upon reduction of the binuclear center. The pathway through D(I-132)/E(I-286) is used for uptake of pumped and substrate protons during the pumping steps during O2 reduction.  相似文献   

16.
The mechanism of the dioxygen (O(2)) reduction conducted by cytochrome bo-type quinol oxidase was investigated using submillisecond-resolved freeze-quench EPR spectroscopy. The fully reduced form of the wild-type enzyme (WT) with the bound ubiquinone-8 at the high-affinity quinone-binding site was mixed with an O(2)-saturated solution, and the subsequent reaction was quenched at different time intervals from 0.2 to 50 ms. The EPR signals derived from the binuclear center and heme b were weak in the time domain from 0.2 to 0.5 ms. The signals derived from the ferric heme b and hydroxide-bound ferric heme o increased simultaneously after 1 ms, indicating that the oxidation of heme b is coupled to the formation of hydroxy heme o. In contrast, the enzyme without the bound ubiquinone-8 (Delta UbiA) showed the faster oxidation of heme b and the slower formation of hydroxy heme o than WT. It is interpreted that the F(I) intermediate possessing ferryl-oxo heme o, cupric Cu(B), and ferric heme b is converted to the F(II) intermediate within 0.2 ms by an electron transfer from the bound ubiquinonol-8 to ferric heme b. The conversion of the F(II) intermediate to the hydroxy intermediate occurred after 1 ms and was accompanied by the one-electron transfer from heme b to the binuclear center. Finally, it is suggested that the hydroxy intermediate possesses no bridging ligand between heme o and Cu(B) and is the final intermediate in the turnover cycle of cytochrome bo under steady-state conditions.  相似文献   

17.
Cooperative linkage of solute binding at separate binding sites in allosteric proteins is an important functional attribute of soluble and membrane bound hemoproteins. Analysis of proton/electron coupling at the four redox centers, i.e. Cu(A), heme a, heme a(3) and Cu(B), in the purified bovine cytochrome c oxidase in the unliganded, CO-liganded and CN-liganded states is presented. These studies are based on direct measurement of scalar proton translocation associated with oxido-reduction of the metal centers and pH dependence of the midpoint potential of the redox centers. Heme a (and Cu(A)) exhibits a cooperative proton/electron linkage (Bohr effect). Bohr effect seems also to be associated with the oxygen-reduction chemistry at the heme a(3)-Cu(B) binuclear center. Data on electron transfer in cytochrome c oxidase are also presented, which, together with structural data, provide evidence showing the occurrence of direct electron transfer from Cu(A) to the binuclear center in addition to electron transfer via heme a. A survey of structural and functional data showing the essential role of cooperative proton/electron linkage at heme a in the proton pump of cytochrome c oxidase is presented. On the basis of this and related functional and structural information, variants for cooperative mechanisms in the proton pump of the oxidase are examined.  相似文献   

18.
Membrane-bound heme-copper oxidases catalyze the reduction of O(2) to water. Part of the free energy associated with this process is used to pump protons across the membrane. The O(2) reduction reaction results in formation of high-pK(a) protonatable groups at the catalytic site. The free energy associated with protonation of these groups is used for proton pumping. One of these protonatable groups is OH(-), coordinated to the heme and Cu(B) at the catalytic site. Here we present results from EPR experiments on the Rhodobacter sphaeroides cytochrome c oxidase, which show that at high pH (9) approximately 50% of oxidized heme a(3) is hydroxide-ligated, while at low pH (6.5), no hydroxide is bound to heme a(3). The kinetics of hydroxide binding to heme a(3) were investigated after dissociation of CO from heme a(3) in the enzyme in which the heme a(3)-Cu(B) center was reduced while the remaining redox sites were oxidized. The dissociation of CO results in a decrease of the midpoint potential of heme a(3), which results in electron transfer (tau approximately equal 3 micros) from heme a(3) to heme a in approximately 100% of the enzyme population. At pH >7.5, the electron transfer is followed by proton release from a H(2)O molecule to the bulk solution (tau approximately equal 2 ms at pH 9). This reaction is also associated with absorbance changes of heme a(3), which on the basis of the results from the EPR experiments are attributed to formation of hydroxide-ligated heme a(3). The OH(-) bound to heme a(3) under equilibrium conditions at high pH is also formed transiently after O(2) reduction at low pH. It is proposed that the free energy associated with electron transfer to the binuclear center and protonation of this OH(-) upon reduction of the recently oxidized enzyme provides the driving force for the pumping of one proton.  相似文献   

19.
Both the aa(3)-type cytochrome c oxidase from Rhodobacter sphaeroides (RsCcO(aa3)) and the closely related bo(3)-type ubiquinol oxidase from Escherichia coli (EcQO(bo3)) possess a proton-conducting D-channel that terminates at a glutamic acid, E286, which is critical for controlling proton transfer to the active site for oxygen chemistry and to a proton loading site for proton pumping. E286 mutations in each enzyme block proton flux and, therefore, inhibit oxidase function. In the current work, resonance Raman spectroscopy was used to show that the E286A and E286C mutations in RsCcO(aa3) result in long range conformational changes that influence the protein interactions with both heme a and heme a(3). Therefore, the severe reduction of the steady-state activity of the E286 mutants in RsCcO(aa3) to ~0.05% is not simply a result of the direct blockage of the D-channel, but it is also a consequence of the conformational changes induced by the mutations to heme a and to the heme a(3)-Cu(B) active site. In contrast, the E286C mutation of EcQO(bo3) exhibits no evidence of conformational changes at the two heme sites, indicating that its reduced activity (3%) is exclusively a result of the inhibition of proton transfer from the D-channel. We propose that in RsCcO(aa3), the E286 mutations severely perturb the active site through a close interaction with F282, which lies between E286 and the heme-copper active site. The local structure around E286 in EcQO(bo3) is different, providing a rationale for the very different effects of E286 mutations in the two enzymes. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.  相似文献   

20.
We have investigated the electron-proton coupling during the peroxy (P(R)) to oxo-ferryl (F) and F to oxidised (O) transitions in cytochrome c oxidase from Rhodobacter sphaeroides. The kinetics of these reactions were investigated in two different mutant enzymes: (1) ED(I-286), in which one of the key residues in the D-pathway, E(I-286), was replaced by an aspartate which has a shorter side chain than that of the glutamate and, (2) ML(II-263), in which the redox potential of Cu(A) is increased by approximately 100 mV, which slows electron transfer to the binuclear centre during the F-->O transition by a factor of approximately 200. In ED(I-286) proton uptake during P(R)-->F was slowed by a factor of approximately 5, which indicates that E(I-286) is the proton donor to P(R). In addition, in the mutant enzyme the F-->O transition rate displayed a deuterium isotope effect of approximately 2.5 as compared with approximately 7 in the wild-type enzyme. Since the entire deuterium isotope effect was shown to be associated with a single proton-transfer reaction in which the proton donor and acceptor must approach each other (M. Karpefors, P. Adelroth, P. Brzezinski, Biochemistry 39 (2000) 6850), the smaller deuterium isotope effect in ED(I-286) indicates that proton transfer from E(I-286) determines the rate also of the F-->O transition. In ML(II-263) the electron-transfer to the binuclear centre is slower than the intrinsic proton-transfer rate through the D-pathway. Nevertheless, both electron and proton transfer to the binuclear centre displayed a deuterium isotope effect of approximately 8, i.e., about the same as in the wild-type enzyme, which shows that these reactions are intimately coupled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号