首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Autohydrolysis is a hot water pretreatment to extract soluble components from wood that can be used prior to converting the woody residuals into paper, wood products, fuel, or other goods. In this study, mixed softwood chips were autohydrolyzed in hot water at 150, 160, 170, and 180 °C for 1 and 2 h residence times. The objective was to understand the tradeoff between the extraction of fermentable sugar and the residual solid total energy of combustion quantitatively. This process strategy will be referred to as “value prior to combustion”. High-performance liquid chromatography was used to determine chemical compositions (sugars and byproducts such as acetic acid, furfural, and hydroxymethylfurfural) of the extracted liquid and residuals; a bomb calorimeter was used to measure the heating value of original wood and solid residue. As the autohydrolysis temperature increased, material balances of the system indicated higher volatile byproducts loss. More hemicelluloses were solubilized by the hot water extraction process at higher temperatures and longer residence times, and a greater degree of sugar degradation was also observed. The maximum sugar yield was determined to occur at conditions of 170 °C for 2 h, during which 13 g of sugar was recovered from the extract out of 100 g of oven-dried wood. The heating value of the solid residues after extraction was greater than the original wood. The total energy content of the solid residual after extraction ranged from 85 to 98 % of the original energy content of the feed with higher temperatures reducing the total energy content.  相似文献   

2.
The visibility of using municipal bio-waste, wood shavings, as a potential feedstock for ethanol production was investigated. Dilute acid hydrolysis of wood shavings with H?PO? was undertaken in autoclave parr reactor. A combined severity factor (CSF) was used to integrate the effects of hydrolysis times, temperature and acid concentration into a single variable. Xylose concentration reached a maximum value of 17 g/100 g dry mass corresponding to a yield of 100% at the best identified conditions of 2.5 wt.% H?PO?, 175 °C and 10 min reaction time corresponding to a CSF of 1.9. However, for glucose, an average yield of 30% was obtained at 5 wt.% H?PO?, 200 °C and 10 min. Xylose production increased with increasing temperature and acid concentration, but its transformation to the degradation product furfural was also catalysed by those factors. The maximum furfural formed was 3 g/100 g dry mass, corresponding to the 24% yield.  相似文献   

3.
A by-product of rice bran oil and protein production was treated with water and compressed hot water at 20 degrees C to 260 degrees C for 5 min, and at 200 degrees C and 260 degrees C for 5 to 120 min. Each extract was evaluated for its yield, radical scavenging activity, carbohydrate, protein, total phenolic and furfural contents, molecular-mass distribution and antioxidative activity. The maximum yield was obtained at 200 degrees C. The radical scavenging activity and the protein, total phenolic and furfural contents of the extract increased with increasing temperature. However, the carbohydrate content abruptly decreased when treated at above 200 degrees C. The extract treated at 260 degrees C for 5 min exhibited suppressive activity toward the autoxidation of linoleic acid. Each extract obtained at temperatures lower than or equal to 200 degrees C exhibited emulsifying ability.  相似文献   

4.
Eom IY  Kim KH  Kim JY  Lee SM  Yeo HM  Choi IG  Choi JW 《Bioresource technology》2011,102(3):3437-3444
Poplar wood powders were treated with distilled water, tap water, HCl and HF, respectively, to remove inorganics from the biomass and to investigate effect of demineralization processes on pyrolysis behavior of the biomass. TG and DTG revealed that maximum degradation temperatures rose slightly from 362°C for control to 372°C, 366°C and 368°C after demineralization with distilled water, HCl and HF, respectively. Maximum degradation rates also increased from 0.96%/°C for control to 1.15%/°C for HF-biomass, 1.23%/°C for DI-H(2)O-biomass, and 1.55%/°C for HCl-biomass. Analytical pyrolysis-GC/MS of demineralized biomasses produced approximately 45 pyrolysis compounds. Total amount of low molecular weight compounds, such as acetic acid, acetol, and 3-hydroxypropanal, was significantly lowered in the demineralized biomasses. But levoglucosan increased 2-10-folds in the demineralized biomasses. One of the features regarding lignin derivatives was the reduction of the amount of C6-type phenols, such as phenol, guaiacol, and syringol after demineralization.  相似文献   

5.
Properties of film from splendid squid (Loligo formosana) skin gelatin extracted at different temperatures (50-80°C) were investigated. Tensile strength (TS) and elongation at break (EAB) of films decreased, but water vapour permeability (WVP) increased (P<0.05) as the extraction temperature increased. Increase in transparency value with coincidental decrease in lightness was observed with increasing extraction temperatures. Electrophoretic study revealed that degradation of gelatin became more pronounced with increasing extraction temperatures. As a consequence, their corresponding films had the lower mechanical properties. FTIR spectra of obtained gelatin films revealed the significant loss of molecular order of the triple helix. Thermogravimetric analysis indicated that F80 exhibited the higher heat susceptibility and weight loss. Loosen structure was observed in film prepared from gelatin with increasing extraction temperatures. Thus, the temperature used for gelatin extraction from splendid squid skin directly affected the properties of corresponding films.  相似文献   

6.
Liu S  Lu H  Hu R  Shupe A  Lin L  Liang B 《Biotechnology advances》2012,30(4):785-810
Woody biomass is renewable only if sustainable production is imposed. An optimum and sustainable biomass stand production rate is found to be one with the incremental growth rate at harvest equal to the average overall growth rate. Utilization of woody biomass leads to a sustainable economy. Woody biomass is comprised of at least four components: extractives, hemicellulose, lignin and cellulose. While extractives and hemicellulose are least resistant to chemical and thermal degradation, cellulose is most resistant to chemical, thermal, and biological attack. The difference or heterogeneity in reactivity leads to the recalcitrance of woody biomass at conversion. A selection of processes is presented together as a biorefinery based on incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. A preference is given to a biorefinery absent of pretreatment and detoxification process that produce waste byproducts. While numerous biorefinery approaches are known, a focused review on the integrated studies of water-based biorefinery processes is presented. Hot-water extraction is the first process step to extract value from woody biomass while improving the quality of the remaining solid material. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers, aromatics and acetic acid in the hardwood extract are the major components having the greatest potential value for development. Higher temperature and longer residence time lead to higher mass removal. While high temperature (>200°C) can lead to nearly total dissolution, the amount of sugars present in the extraction liquor decreases rapidly with temperature. Dilute acid hydrolysis of concentrated wood extracts renders the wood extract with monomeric sugars. At higher acid concentration and higher temperature the hydrolysis produced more xylose monomers in a comparatively shorter period of reaction time. Xylose is the most abundant monomeric sugar in the hydrolysate. The other comparatively small amounts of monomeric sugars include arabinose, glucose, rhamnose, mannose and galactose. Acetic acid, formic acid, furfural, HMF and other byproducts are inevitably generated during the acid hydrolysis process. Short reaction time is preferred for the hydrolysis of hot-water wood extracts. Acid hydrolysis presents a perfect opportunity for the removal or separation of aromatic materials from the wood extract/hydrolysate. The hot-water wood extract hydrolysate, after solid-removal, can be purified by Nano-membrane filtration to yield a fermentable sugar stream. Fermentation products such as ethanol can be produced from the sugar stream without a detoxification step.  相似文献   

7.
To reduce the risks associated with global transport of wood infested with pinewood nematode Bursaphelenchus xylophilus, microwave irradiation was tested at 14 temperatures in replicated wood samples to determine the temperature that would kill 99.9968% of nematodes in a sample of ≥ 100,000 organisms, meeting a level of efficacy of Probit 9. Treatment of these heavily infested wood samples (mean of > 1,000 nematodes/g of sapwood) produced 100% mortality at 56 °C and above, held for 1 min. Because this "brute force" approach to Probit 9 treats individual nematodes as the observational unit regardless of the number of wood samples it takes to treat this number of organisms, we also used a modeling approach. The best fit was to a Probit function, which estimated lethal temperature at 62.2 (95% confidence interval 59.0-70.0) °C. This discrepancy between the observed and predicted temperature to achieve Probit 9 efficacy may have been the result of an inherently limited sample size when predicting the true mean from the total population. The rate of temperature increase in the small wood samples (rise time) did not affect final nematode mortality at 56 °C. In addition, microwave treatment of industrial size, infested wood blocks killed 100% of > 200,000 nematodes at ≥ 56 °C held for 1 min in replicated wood samples. The 3(rd)-stage juvenile (J3) of the nematode, that is resistant to cold temperatures and desiccation, was abundant in our wood samples and did not show any resistance to microwave treatment. Regression analysis of internal wood temperatures as a function of surface temperature produced a regression equation that could be used with a relatively high degree of accuracy to predict internal wood temperatures, under the conditions of this study. These results provide strong evidence of the ability of microwave treatment to successfully eradicate B. xylophilus in infested wood at or above 56 °C held for 1 min.  相似文献   

8.
The role of diet temperature in ingestive behavior is poorly understood. We examined the importance of stimulus temperature and water-restriction state on the preference for and intake of water and sucrose. Using custom-designed equipment that allows us to monitor and maintain solution temperatures during testing (±0.1 °C), we conducted a series of 2-bottle preference tests (10 °C water vs. sucrose 10-40 °C) and brief access tests (10-40 °C water and sucrose). Water-restricted rats preferred cold water over any sucrose concentration (0.0-1.0 M) if the sucrose was 30 or 40 °C, whereas the same rats preferred sucrose at all concentrations and temperatures when unrestricted suggesting that the water-restriction state interacts with temperature preference. In a series of brief-access tests using a Davis Rig (MS-180), rats reduced licking to cold sucrose compared with 20 °C sucrose, suggesting that unlike water, cold temperature reduced the palatability of sucrose.  相似文献   

9.
Physiological studies often involve the repeated measurement of individuals over a range of ordered categorical conditions, for example, varying ambient temperature. We illustrate here the use of a priori contrasts for multivariate repeated-measures ANOVA by analyzing the thermal responses of various physiological variables for a small marsupial, the dibbler (Parantechinus apicalis). Our analyses showed that dibblers conform closely to the Scholander-Irving model of endothermy. Body temperature was constant at low air temperatures, was 36.3 ± 0.24°C at thermoneutrality (30°C), and increased at 35°C. Metabolic rate decreased with increasing ambient temperature to a basal rate of 0.619 ± 0.036 mL O(2) g(-1) h(-1) at 30°C; it extrapolated closely to thermoneutral body temperature. Increased oxygen demand at lower ambient temperature was met by increased respiratory minute volume, achieved by increased respiratory frequency and tidal volume; oxygen extraction was constant at about 19%. Evaporative water loss and wet and dry thermal conductance increased markedly at high ambient temperatures but not sufficiently to maintain constant body temperature. Relative water economy was similar to that of other small marsupials, increasing linearly at lower air temperatures with a point of relative water economy of 20.3°C. We conclude that a priori contrasts provide a statistically appropriate and powerful analysis that can be used routinely to statistically describe the pattern of response of physiological variables to a categorical factor and are especially useful for repeated-measures ANOVA designs common to many physiological studies.  相似文献   

10.
Defatted rice bran was treated with subcritical water in the temperature range of 180–280 °C for 5 min using 117 mL and 9 mL vessels to produce the extracts. The total sugar and protein contents and radical scavenging activity of the extracts were then estimated for both vessels. The total sugar concentration of ca. 0.3 g/L-extract was the highest for the extracts at 200 °C, and it significantly decreased at the higher temperatures. The protein concentration and radical scavenging activity were higher at the higher temperatures. Extraction was also done at 200 °C and 260 °C for various times using the small vessel. The total sugar concentration decreased with the increasing extraction time, while the protein concentration and radical scavenging activity only slightly depended on the extraction time. The extracts at 200 °C or lower temperatures using the large vessel possessed the emulsifying and emulsion-stabilizing activities. The HPLC analysis of the extract at 260 °C for 5 min using the small vessel indicated that it contained both hydrophilic and hydrophobic substances. The hydrophilic fraction of the extract mainly contained low-molecular-mass substances.  相似文献   

11.
Developmental times and survivorship of tarnished plant bug nymphs, Lygus lineolaris (Palisot de Beauvois), and longevity and reproduction of adult tarnished plant bug adults reared on green beans were studied at multiple constant temperatures. The developmental time for each life stage and the total time from egg to adult decreased with increasing temperature. Eggs required the longest time to develop followed by fifth instars and then first-instars. Total developmental time from egg to adult was shortest at 32°C, requiring 18.0 ± 0.3 d and 416.7 ± 31.3 DD above 7.9°C, the estimated minimum temperature for development from egg to adult. Sex did not affect total developmental times and did not affect median survival time. Adults lived significantly fewer days at high temperatures (30-32°C: 17-19 d) compared with temperatures below 30°C (range: 24.5-39.4 d) and the number of eggs laid per day increased from ≈ 4 at 18°C to a maximum of 9.5 eggs per day at 30°C. Total egg production over the lifetime of female tarnished plant bugs increased with temperature reaching a maximum of 175 eggs on average at 27°C, total egg production declined at temperatures above 27°C (30°C: 110.8, 32°C: 77.3 eggs per female). The highest net reproductive rate 74.5 (R(0)) was obtained from insects maintained at 27°C. The intrinsic rate of natural increase (r(m)) increased linearly with temperature to a maximum value of 0.1852 at 30°C, and then decreased at 32°C. Generation and doubling times of the population were shortest at 30°C, 21.0 and 3.7 d, respectively.  相似文献   

12.
Field measurements of photosynthesis of Vitis vinifera cv. Semillon leaves in relation to a hot climate, and responses to photon flux densities (PFDs) and internal CO(2) concentrations (c(i) ) at leaf temperatures from 20 to 40 °C were undertaken. Average rates of photosynthesis measured in situ decreased with increasing temperature and were 60% inhibited at 45 °C compared with 25 °C. This reduction in photosynthesis was attributed to 15-30% stomatal closure. Light response curves at different temperatures revealed light-saturated photosynthesis optimal at 30 °C but also PFDs saturating photosynthesis increased from 550 to 1200 μmol (photons) m(-2)s(-1) as temperatures increased. Photosynthesis under saturating CO(2) concentrations was optimal at 36 °C while maximum rates of ribulose 1,5-bisphosphate (RuBP) carboxylation (V(cmax)) and potential maximum electron transport rates (J(max)) were also optimal at 39 and 36 °C, respectively. Furthermore, the high temperature-induced reduction in photosynthesis at ambient CO(2) was largely eliminated. The chloroplast CO(2) concentration at the transition from RuBP regeneration to RuBP carboxylation-limited assimilation increased steeply with an increase in leaf temperature. Semillon assimilation in situ was limited by RuBP regeneration below 30 °C and above limited by RuBP carboxylation, suggesting high temperatures are detrimental to carbon fixation in this species.  相似文献   

13.
A batch reactor was used to investigate the dilute acid hydrolysis reaction of alpha-cellulose and sugar decomposition reactions. Varying the sulfuric acid concentration from 0.07 to 5.0% for reaction temperatures between 180 and 220°C significantly affected glucose yields, which ranged from about 70% to below 10%. Increasing the reaction temperature enhanced this effect. Similar experimental results were obtained for the decomposition of xylose. For sugar decomposition reactions, less than 0.3 g/L of furfural and 5-hydroxymethylfurfural (5-HMF) were produced from glucose and xylose in the absence of sulfuric acid at 190°C and 15 min of reaction time, but adding a small amount of sulfuric acid (0.5%) dramatically increased the decomposition rate and led to the formation of four undesireable products: formic acid, 5-HMF, acetic acid, and furfural. In both hydrolysis and fermentation reactions formic acid, acetic acid, and 5-HMF severely inhibited ethanol fermentation, while furfural had less of an inhibition effect.  相似文献   

14.
Fang Z 《Bioresource technology》2011,102(3):3587-3590
Willow without any pretreatment, and water were studied in an optical micro-reactor, diamond anvil cell by rapid heating (7-10°C/s) to high temperatures and high pressures (up to 403°C and 416 MPa), most of willow (89-99%) dissolved and hydrolyzed in water at 330-403°C within 22 s. It was found that low-density water (e.g., 571 kg/m(3)) solubilized almost all willow with particle size less than 200 μm, and subsequently hydrolyzed to hydrolysates in subcritical water at 354°C and 19 MPa within 9 s. These results were further used to propose a flow process to fast hydrolyze wood in seconds to valuable sugars.  相似文献   

15.
Termite feeding deterrent from Japanese larch wood   总被引:1,自引:0,他引:1  
Extraction of flavonoids from Japanese larch (Larix leptolepis) wood with water was carried out to prepare a termite feeding deterrent. A two-stage procedure for the extraction was adopted. The first extraction step was performed at ambient temperature (22 degrees C) and the second at elevated temperatures ranging 50-100 degrees C. The first step mainly gave a mixture of polysaccharides together with small amount of flavonoids. At the second step, the yield of extract and its chemical composition were greatly affected by the temperature. The yield of solubilised carbohydrates steadily increased with a rise in the temperature, while the overall yield of flavonoids reached its optimum at 70 degrees C. An additional increase in the temperature resulted in a decrease in the yield. Model experiments using dihydroflavonols confirmed the occurrence of oxidative dehydrogenation and/or intramolecular rearrangement during the hydrothermal treatment at higher temperatures. The crude water extracts showed strong feeding deterrent activities against the subterranean termite, Coptotermes formosanus, in a choice paper disc assay. The extracts containing flavonoids in large quantities exhibited potent termite feeding deterrent activities.  相似文献   

16.
Ground spruce wood was extracted with water at 170 °C at four different pH levels (3.8, 4.0, 4.2 and 4.4) achieved by using phthalate buffers. Static batch extractions were carried out in an accelerated solvent extractor (ASE-300). The extracted non-cellulosic carbohydrates, predominantly galactoglucomannans (GGMs), were characterised mainly by sugar unit analysis and molar mass determination. Compared to extraction with plain water, extractions with phthalate buffer solutions gave similar yields of non-cellulosic carbohydrates, but gave up to 70% less monosaccharides, and consequently higher molar masses of extracted GGMs. Moreover, at these pH levels, the hydrolysis of acetyl groups were decreased by 40% compared to extraction with plain water, thus maintaining the water solubility of GGMs. It is concluded that hot water extraction of hemicelluloses in high-molar-mass form (average Mw about 10 kDa) from wood in good yields (8% of wood) demands appropriate control of pH, to a level of about 4.  相似文献   

17.
In this work, the subcritical water extraction technology was used to extract alkaloids from Macleaya cordata, and the effects of extraction temperature and time on its yield were investigated to find the best extraction conditions. Moreover, the antioxidant capacity and antibacterial activity of Macleaya cordata extract were studied. Furthermore, through the single-factor method, it was found that properly increasing the extraction temperature and prolonging the extraction time was conducive to increasing alkaloid yield. Still, a considerable amount of alkaloids might be decomposed by heat, resulting in a decrease in their yield. The results showed that the optimal extraction temperature of alkaloids from Macleaya cordata with subcritical water is 190 °C, the time is 45 min, and the corresponding maximum yield is 35.19±0.12 mg/g (sanguinarine equivalent in raw materials). In addition, the antioxidation and bacteriostasis abilities of subcritical water extract are better than those of traditional hot water extract, indicating that it is a feasible method to extract alkaloids from Macleaya cordata with subcritical water.  相似文献   

18.
In this work, a novel laboratory-scale direct steam-injection apparatus (DSIA) was developed to overcome the main drawback of the conventional batch-driven lab rigs, namely the long time needed to heat fiber slurry from room to reaction temperatures greater than 150 °C. The novel apparatus mainly consisted of three units: (i) a mechanically-stirred bioreactor where saturated steam at 5-30 bar can be injected; (ii) an automatic on-off valve to flash suddenly the reaction medium after a prefixed reaction time; (iii) a cyclone separator to recover the reacted slurry. This system was tested using 0.75 dm3 of an aqueous solution of H?SO? (0.5%, v/v) enriched with 50 kg m?3 of either commercial particles of Avicel? and Larch xylan or 0.5 mm sieved particles of Tamarix jordanis. Each slurry was heated to about 200 °C by injecting steam at 28 bar for 90 s. The process efficiency was assessed by comparing the dissolution degree of suspended solid (Y(S)), as well as xylose (Y(X)), glucose (Y(G)), and furfural (Y(F)) yields, with those obtained in a conventional steam autoclave at 130 °C for 30 or 60 min. Treatment of T. jordanis particles in DSIA resulted in Y(S) and Y(G) values quite similar to those obtained in the steam autoclave at 130 °C for 60 min, but in a less efficient hemicellulose solubilization. A limited occurrence of pentose degradation products was observed in both equipments, suggesting that hydrolysis predominated over degradation reactions. The susceptibility of the residual solid fractions from DSIA treatment to a conventional 120 h long cellulolytic treatment using an enzyme loading of 5.4 FPU g?1 was markedly higher than that of samples hydrolysed in the steam autoclave, their corresponding glucose yields being equal to 0.94 and 0.22 g per gram of initial cellulose, respectively. Thus, T. jordanis resulted to be a valuable source of sugars for bioethanol production as proved by preliminary tests in the novel lab rig developed here.  相似文献   

19.
Developmental parameters of protogyne Calepitrimerus vitis (Nalepa) (Acari: Eriophyidae) were determined at 12, 15, 17, 22, 25, 28, 31, and 34 °C to better understand seasonal activity, population growth, and ultimately more effectively manage pest mites in wine grapes. Net reproductive rate (R(o)) was greater than zero at all temperatures with the maximum R(o) (9.72) at 25 °C. The lowest estimated R(o) (0.001) occurred at 34 °C. There was a gradual decrease in mean generation time (T) as temperatures increased from 17 to 31 °C. The shortest and longest generation time was recorded at 31 °C (T = 5.5 d) and 17 °C (T = 17.5 d). Rates of natural increase were lowest at 17°C (0.035) and increased with increasing temperatures, respectively. The peak rate of natural increase value (0.141) was at 25 °C. Estimations for minimum and maximum developmental thresholds were 10.51 and 39.19 °C, respectively, while the optimum developmental temperature was 26.9 °C. The thermal constant for egg to adult development was estimated at 87.7DD. The highest fecundity was observed at 25 °C. These parameters indicated that mites begin feeding at the onset of shoot growth when tissue is most susceptible in spring. Historical weather data showed that vines are in this susceptible growth stage for longer periods in the cool Willamette Valley compared with warmer Umpqua and Applegate/Rogue Valley regions. Estimation of degree-days indicated when deutogyne mites move to overwintering refuge sites. Degree-day accumulations indicated up to 14 generations per growing season.  相似文献   

20.
Sugar degradation occurs during acid-catalyzed pretreatment of lignocellulosic biomass at elevated temperatures, resulting in degradation products that inhibit microbial fermentation in the ethanol production process. Arabinose, the second most abundant pentose in grasses like corn stover and wheat straw, degrades into furfural. This paper focuses on the first-order rate constants of arabinose (5 g/L) degradation to furfural at 150 and 170 °C in the presence of sulfuric, fumaric, and maleic acid and water alone. The calculated degradation rate constants (kd) showed a correlation with the acid dissociation constant (pKa), meaning that the stronger the acid, the higher the arabinose degradation rate. However, de-ionized water alone showed a catalytic power exceeding that of 50 mM fumaric acid and equaling that of 50 mM maleic acid. This cannot be explained by specific acid catalysis and the shift in pKw of water at elevated temperatures. These results suggest application of maleic and fumaric acid in the pretreatment of lignocellulosic plant biomass may be preferred over sulfuric acid. Lastly, the degradation rate constants found in this study suggest that arabinose is somewhat more stable than its stereoisomer xylose under the tested conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号