首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geldanamycin is an antitumor drug that binds HSP90 and induces a wide range of heat shock proteins, including HSP70s. In this study we report that the induction of HSP70s is dose-dependent in geldanamycin-treated human non-small cell lung cancer H460 cells. Analysis of the induction of HSP70s specific isoform using LC-ESI-MS/MS analysis and Northern blotting showed that HSP70-1/2 are the major inducible forms under geldanamycin treatment. Transactivation of hsp70-1/2 was determined by electrophoretic mobility-shift assay using heat shock element (HSE) as a probe. The signaling pathway mediators involved in hsp70-1/2 transactivation were screened by the kinase inhibitor scanning technique. Pretreatment with serine/threonine protein kinase inhibitors H7 or H8 blocked geldanamycin-induced HSP70-1/2, whereas protein kinase A inhibitor HA1004, protein kinase G inhibitor KT5823, and myosin light chain kinase inhibitor ML-7 had no effect. Furthermore, the protein kinase C (PKC)-specific inhibitor Ro-31-8425 and the Ca2+-dependent PKC inhibitor G?-6976 diminished geldanamycin-induced HSP70-1/2, suggesting an involvement of the PKC in the process. In addition, geldanamycin treatment causes a transient increase of intracellular Ca2+. Chelating intracellular Ca2+ with BAPTA-AM or depletion of intracellular Ca2+ store with A23187 or thapsigargin significantly decreased geldanamycin-transactivated HSP70-1/2 expression. Taken together, our results demonstrate that geldanamycin-induced specific HSP70-1/2 isoforms expression in H460 cells through signaling pathway mediated by Ca2+ and PKC.  相似文献   

2.
3.
4.
Glutamine (GLN) has been shown to protect cells, tissues, and whole organisms from stress and injury. Enhanced expression of heat shock protein (HSP) has been hypothesized to be responsible for this protection. To date, there are no clear mechanistic data confirming this relationship. This study tested the hypothesis that GLN-mediated activation of the HSP pathway via heat shock factor-1 (HSF-1) is responsible for cellular protection. Wild-type HSF-1 (HSF-1+/+) and knockout (HSF-1–/–) mouse fibroblasts were used in all experiments. Cells were treated with GLN concentrations ranging from 0 to 16 mM and exposed to heat stress injury in a concurrent treatment model. Cell viability was assayed with phenazine methosulfate plus tetrazolium salt, HSP-70, HSP-25, and nuclear HSF-1 expression via Western blot analysis, and HSF-1/heat shock element (HSE) binding via EMSA. GLN significantly attenuated heat-stress induced cell death in HSF-1+/+ cells in a dose-dependent manner; however, the survival benefit of GLN was lost in HSF-1–/– cells. GLN led to a dose-dependent increase in HSP-70 and HSP-25 expression after heat stress. No inducible HSP expression was observed in HSF-1–/– cells. GLN increased unphosphorylated HSF-1 in the nucleus before heat stress. This was accompanied by a GLN-mediated increase in HSF-1/HSE binding and nuclear content of phosphorylated HSF-1 after heat stress. This is the first demonstration that GLN-mediated cellular protection after heat-stress injury is related to HSF-1 expression and cellular capacity to activate an HSP response. Furthermore, the mechanism of GLN-mediated protection against injury appears to involve an increase in nuclear HSF-1 content before stress and increased HSF-1 promoter binding and phosphorylation. knockout cells; amino acid; heat stress mechanism  相似文献   

5.
6.
7.
8.
9.
Heat shock protein (HSP) 27 has long been known to be a component of the p38 mitogen-activated protein kinase (MAPK) signaling pathway. p38 MAPK has important functions in the inflammatory response, but the role of HSP27 in inflammation has remained unknown. We have used small interfering RNAs to suppress HSP27 expression in HeLa cells and fibroblasts and found that it is required for pro-inflammatory cell signaling and the expression of pro-inflammatory genes. HSP27 is needed for the activation by interleukin (IL)-1 of TAK1 and downstream signaling by p38 MAPK, JNK, and their activators (MKK-3, -4, -6, -7) and IKKbeta. IL-1-induced ERK activation appears to be independent of HSP27. HSP27 is required for both IL-1 and TNF-induced signaling pathways for which the most upstream common signaling protein is TAK1. HSP27 is also required for IL-1-induced expression of the pro-inflammatory mediators, cyclooxygenase-2, IL-6, and IL-8. HSP27 functions to drive cyclooxygenase-2 and IL-6 expression by augmenting the activation of the kinase downstream of p38 MAPK, MK2, resulting in stabilization of cyclooxygenase-2 and IL-6 mRNAs. The mechanism may not occur in cells of myeloid lineage because HSP27 protein was undetectable in human monocytes and murine macrophages.  相似文献   

10.
11.
Phenylarsine oxide (PAO)forms a stable ring complex with vicinal dithiols that can be reversedwith 2,3-dimercaptopropanol (DMP) but not by dithiothreitol (DTT) or2-mercaptoethanol (2-ME). PAO at 2 µM or higher inhibited heat shockprotein 70 (HSP70) induction within minutes in cultured guinea piggastric mucosal cells exposed to heat (43°C) for 30 min. PAO did notaffect the nuclear translocation and phosphorylation of heat shockfactor 1 (HSF1) induced by heat stress, but it completely blocked the binding activity of HSF1 to the heat shock element (HSE), leading tothe block of expression of HSP70 mRNA and accumulation of HSP70 in thecells. These inhibitions were completely reversed with 2 µM DMP butnot with 0.1 mM DTT or 1 mM 2-ME, suggesting specific interactionsbetween PAO and vicinal dithiol-containing molecules. Thioredoxin (Trx)reversed the inhibition of the binding activity of HSF1 in whole cellextracts prepared from PAO-treated, heat-stressed cells. Our resultssuggest that PAO may react with vicinal-containing molecules includingTrx and specifically block the interaction between HSF1 and HSE.

  相似文献   

12.
Heat shock proteins (HSPs) require no adjuvant to confer immunogenicity to bound peptides, as if they possessed an intrinsic "danger" signature. To understand the proinflammatory nature of HSP, we analyzed signaling induced by human and chlamydial HSP60. We show that both HSP60s activate the stress-activated protein kinases p38 and JNK1/2, the mitogen-activated protein kinases ERK1/2, and the I-kappaB kinase (IKK). Activation of JNK and IKK proceeds via the Toll/IL-1 receptor signaling pathway involving MyD88 and TRAF6. Human fibroblasts transfected with TLR2 or TLR4 plus MD-2 gain responsiveness to HSP60, while TLR2- or TLR4-defective cells display impaired responses. Initiation of signaling requires endocytosis of HSP60 that is effectively inhibited by serum component(s). The results revealed that adjuvanticity of HSP60 operates similar to that of classical pathogen-derived ligands.  相似文献   

13.
14.
15.
We recently reported that soluble 60-kDa heat shock protein (HSP60) can directly activate T cells via TLR2 signaling to enhance their Th2 response. In this study we investigated whether HSP60 might also activate B cells by an innate signaling pathway. We found that human HSP60 (but not the Escherichia coli GroEL or the Mycobacterial HSP65 molecules) induced naive mouse B cells to proliferate and to secrete IL-10 and IL-6. In addition, the HSP60-treated B cells up-regulated their expression of MHC class II and accessory molecules CD69, CD40, and B7-2. We tested the functional ability of HSP60-treated B cells to activate an allogeneic T cell response and found enhanced secretion of both IL-10 and IFN-gamma by the responding T cells. The effects of HSP60 were found to be largely dependent on TLR4 and MyD88 signaling; B cells from TLR4-mutant mice or from MyD88 knockout mice showed decreased responses to HSP60. Care was taken to rule out contamination of the HSP60 with LPS as a causative factor. These findings add B cells to the complex web of interactions by which HSP60 can regulate immune responses.  相似文献   

16.
We have studied mechanisms of HSP70 gene regulation at 37 degrees C by the cellular factors NF-IL6 and Ku70. As both factors repress HSF1, we first examined whether phosphorylation on serine 303 and 307 of HSF1 by MAPK and GSK3, which has known to inhibit HSF1, was involved in the repression. However, repression by NF-IL6 was found using HSF1 mutants S303G and S307G refractory to the effects of MAPK and GSK3. We then examined whether NF-IL6 repressed HSP70B by a mechanism resembling Ku proteins. However, in Ku-deficient cells, NF-IL6 was still able to displace HSF1 from heat shock element (HSE) and repressed HSF1 activation. In addition, activation of the HSP 70B promoter by wild type, S303G, or S307G HSF1 was observed to be much more pronounced in Ku-deficient cells. In vitro translated Ku70 interacted with HSF1 by binding to and displacing it from HSE. These data indicate that the repression of the HSP70B promoter by NF-IL6, Ku70, and MAPK occurs independently of each other and involves three complementary mechanisms.  相似文献   

17.
The innate immune system recognizes influenza A virus via TLR 7 or retinoic acid-inducible gene I in a cell-type specific manner in vitro, however, physiological function(s) of the MyD88- or interferon-beta promoter stimulator 1 (IPS-1)-dependent signaling pathways in antiviral responses in vivo remain unclear. In this study, we show that although either MyD88- or IPS-1-signaling pathway was sufficient to control initial antiviral responses to intranasal influenza A virus infection, mice lacking both pathways failed to show antiviral responses, resulting in increased viral load in the lung. By contrast, induction of B cells or CD4 T cells specific to the dominant hemagglutinin or nuclear protein Ags respectively, was strictly dependent on MyD88 signaling, but not IPS-1 signaling, whereas induction of nuclear protein Ag-specific CD8 T cells was not impaired in the absence of either MyD88 or IPS-1. Moreover, vaccination of TLR7- and MyD88-deficient mice with inactivated virus failed to confer protection against a lethal live virus challenge. These results strongly suggest that either the MyD88 or IPS-1 signaling pathway is sufficient for initial antiviral responses, whereas the protective adaptive immune responses to influenza A virus are governed by the TLR7-MyD88 pathway.  相似文献   

18.
Clusterin (CLU), whose role is still debated, is differentially regulated in several patho-physiological processes and invariably induced during apoptosis. In heat shock response, CLU is considered a stress-inducible, pro-survival/cyto-protective factor via an HSE element present in his promoter. In both human prostate PNT1A and PC-3 epithelial cells we found that apoptotic stimuli induced nuclear localization of CLU (nCLU), and that overexpression of nCLU is pro-apoptotic. We show here that CLU time-course accumulation kinetic is different from that of HSP70 in these cells, thus other factor(s) might mediate HSF-1 activation and CLU expression. Sub-lethal heat shock inhibited the secretion of CLU (sCLU), leading to increased cytoplasm accumulation of CLU (cCLU) in association to cell survival. At difference, lethal heat stress caused massive accumulation of pro-apoptotic nCLU in cells dying by caspase-3-dependent apoptosis. Double heat stress (sub-lethal heat shock followed by recovery and lethal stress) induced HSP70 and thermo-tolerance in PNT1A cells, but not in PC-3 cells. In PNT1A cells, CLU secretion was inhibited and cCLU was accumulated, suggesting that cCLU might be pro-survival, while in PC-3 cells accumulation of nCLU was concomitant to caspase-3 induction and PARP activation instead. Thus, CLU expression/sub-cellular localization is strictly related to cell fate. In particular, nCLU and physiological levels of HSP70 affected cell survival in an antagonistic fashion. Prevalence of heat-induced nCLU, not allowing PC-3 cells to cope with heat shock, could be the rational explaining why malignant cells are more sensitive to heat when delivered by minimally invasive procedures for ablation of localized prostate cancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号