首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autotrophic nitrite removal in the cathode of microbial fuel cells   总被引:3,自引:0,他引:3  
Nitrification to nitrite (nitritation process) followed by reduction to dinitrogen gas decreases the energy demand and the carbon requirements of the overall process of nitrogen removal. This work studies autotrophic nitrite removal in the cathode of microbial fuel cells (MFCs). Special attention was paid to determining whether nitrite is used as the electron acceptor by exoelectrogenic bacteria (biologic reaction) or by graphite electrodes (abiotic reaction). The results demonstrated that, after a nitrate pulse at the cathode, nitrite was initially accumulated; subsequently, nitrite was removed. Nitrite and nitrate can be used interchangeably as an electron acceptor by exoelectrogenic bacteria for nitrogen reduction from wastewater while producing bioelectricity. However, if oxygen is present in the cathode chamber, nitrite is oxidised via biological or electrochemical processes. The identification of a dominant bacterial member similar to Oligotropha carboxidovorans confirms that autotrophic denitrification is the main metabolism mechanism in the cathode of an MFC.  相似文献   

2.
产电菌群及电子受体对微生物燃料电池性能的影响   总被引:3,自引:0,他引:3  
采用2种类型的微生物燃料电池--常规微生物燃料电池(S-MFCs,以生活污水作为产电菌群接种源、以硝酸盐作为电子受体)和改进后的微生物燃料电池(A-MFCs,以厌氧发酵液作为产电菌群接种源、以铁氰化物作为电子受体),分析了产电菌群和电子受体的改进对微生物燃料电池产电性能的影响.结果表明:产电菌群和电子受体对MFCs驯化周期和运行周期具有显著影响,使驯化周期由S-MFCs的500 h缩短到A-MFCs的430 h,运行周期由S-MFCs的100 h增加到A-MFCs的350 h;改进后的微生物燃料电池使COD去除率提升了25%,使电压输出提高了约300%.选择合适的产电菌菌种和电子受体标准电极电势是微生物燃料电池性能提升的基础.  相似文献   

3.
Instead of the utilization of artificial redox mediators or other catalysts, a biocathode has been applied in a two-chamber microbial fuel cell in this study, and the cell performance and microbial community were analyzed. After a 2-month startup, the microorganisms of each compartment in microbial fuel cell were well developed, and the output of microbial fuel cell increased and became stable gradually, in terms of electricity generation. At 20 ml/min flow rate of the cathodic influent, the maximum power density reached 19.53 W/m3, while the corresponding current and cell voltage were 15.36 mA and 223 mV at an external resistor of 14.9 Omega, respectively. With the development of microorganisms in both compartments, the internal resistance decreased from initial 40.2 to 14.0 Omega, too. Microbial community analysis demonstrated that five major groups of the clones were categorized among those 26 clone types derived from the cathode microorganisms. Betaproteobacteria was the most abundant division with 50.0% (37 of 74) of the sequenced clones in the cathode compartment, followed by 21.6% (16 of 74) Bacteroidetes, 9.5% (7 of 74) Alphaproteobacteria, 8.1% (6 of 74) Chlorobi, 4.1% (3 of 74) Deltaproteobacteria, 4.1% (3 of 74) Actinobacteria, and 2.6% (2 of 74) Gammaproteobacteria.  相似文献   

4.
Broad application of microbial fuel cells (MFCs) requires low cost and high operational sustainability. Microbial-cathode MFCs, or cathodes using only bacterial catalysts (biocathodes), can satisfy these demands and have gained considerable attention in recent years. Achievements with biocathodes over the past 3-4 years have been particularly impressive not only with respect to the biological aspects but also the system-wide considerations related to electrode materials and solution chemistry. The versatility of biocathodes enables us to use not only oxygen but also contaminants as possible electron acceptors, allowing nutrient removal and bioremediation in conjunction with electricity generation. Moreover, biocathodes create opportunities to convert electrical current into microbially generated reduced products. While many new experimental results with biocathodes have been reported, we are still in the infancy of their engineering development. This review highlights the opportunities, limits, and challenges of biocathodes.  相似文献   

5.
Aims: To investigate the effects of inoculation strategy and cultivation approach on the performance of microbial fuel cell (MFC). Methods and Results: A dual‐chamber sediment fuel cell was set up fed with glucose under batch condition. At day 30, the supernatant consortium was partly transferred and used as inoculum for the evaluation of cultivation approach. Power output gradually increased to 9·9 mW m?2 over 180 days, corresponding to coulombic efficiency (CE) of 29·6%. Separated biofilms attached anode enabled power output and CE dramatically up to 100·9 mW m?2 and over 50%, respectively, whereas the residual sediment catalysed MFC gave a poor performance. MFC catalysed by in situ supernatant consortium demonstrated more than twice higher power than MFC catalysed by the supernatant consortium after Fe(OH)3 cultivation. However, the re‐generation of biofilms from the latter largely enhanced the cell performance. Conclusions: MFC exhibited a more efficient inducement of electroactive consortium than Fe(OH)3 cultivation. MFC performance varied depending on different inoculation strategies. Significance and Impact of the Study: This is the first time to study cultivation approach affecting electricity generation. In addition, anodic limitations of mass and electron transfer were discussed through MFC catalysed by sediment‐based bio‐matrix.  相似文献   

6.
In a two-electrode system, freshwater sediment was used as a fuel to examine the relationship between current generation and organic matter consumption with different types of electrode. Sediment microbial fuel cells using porous electrodes showed a superior performance in terms of generating current when compared with the use of non-porous electrodes. The maximum current densities with thicker and thin porous electrodes were 45.4 and 37.6 mA m−2, respectively, whereas the value with non-porous electrodes was 13.9 mA m−2. The amount of organic matter removed correlated with the current produced. The redox potential in the anode area under closed-circuit conditions was +246.3 ± 67.7 mV, while that under open-circuit conditions only reached −143.0 ± 7.18 mV. This suggests that an application of this system in organic-rich sediment could provide environmental benefits such as decreasing organic matter and prohibiting methane emission in conjunction with electricity production via an anaerobic oxidation process.  相似文献   

7.
A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode was required for application of the sensor for microbial activity measurement, while biofilm‐colonized anode was needed for utilizing the sensor for BOD content measurement. The current density of SUMFC sensor equipped with a biofilm‐colonized anode showed linear relationship with BOD content, to up to 250 mg/L (~233 ± 1 mA/m2), with a response time of <0.67 h. This sensor could, however, not measure microbial activity, as indicated by the indifferent current produced at varying active microorganisms concentration, which was expressed as microbial adenosine‐triphosphate (ATP) concentration. On the contrary, the current density (0.6 ± 0.1 to 12.4 ± 0.1 mA/m2) of the SUMFC sensor equipped with a fresh anode showed linear relationship, with active microorganism concentrations from 0 to 6.52 nmol‐ATP/L, while no correlation between the current and BOD was observed. It was found that temperature, pH, conductivity, and inorganic solid content were significantly affecting the sensitivity of the sensor. Lastly, the sensor was tested with real contaminated groundwater, where the microbial activity and BOD content could be detected in <3.1 h. The microbial activity and BOD concentration measured by SUMFC sensor fitted well with the one measured by the standard methods, with deviations ranging from 15% to 22% and 6% to 16%, respectively. The SUMFC sensor provides a new way for in situ and quantitative monitoring contaminants content and biological activity during bioremediation process in variety of anoxic aquifers. Biotechnol. Bioeng. 2011;108: 2339–2347. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
微生物燃料电池(Microbial fuel cell,MFC)利用微生物整体作为催化剂催化底物将化学能直接转化为电能,是一种极具应用前景的生物电化学技术。微生物在阳极氧化还原有机物产生电子并传递给阳极,电子通过外电路传递至阴极后将电子释放给阴极中的氧化剂,从而产生电流。当有毒物质进入MFC,微生物活性降低,电子传递量变少,电流降低,而电流的产生与微生物活性呈线性关系,据此可检测样品的毒性。本文主要介绍了微生物燃料电池在毒性物质抗生素、重金属离子、有机污染物、酸等方面的研究,并分析了微生物燃料电池存在的问题及未来研究方向,以期不久的将来微生物燃料电池能付之使用。  相似文献   

9.
The waste hydrolysate after dilute acid pretreatment (DAP) of lignocellulosic biomass was utilized to generate electricity using an enzymatic fuel cell (EFC) system. During DAP, the components of biomass containing hemicellulose and other compounds are hydrolyzed, and glucose is solubilized into the dilute acid solution, called as the hydrolysate liquid. Glucose oxidase (GOD) and laccase (Lac) were assembled on the electrode of the anode and cathode, respectively. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were measured, and the maximum power density was found to be 1.254 × 103 μW/cm2. The results indicate that the hydrolysate from DAP is a reliable electrolyte containing the fuel of EFC. Moreover, the impurities in the hydrolysate such as phenols and furans slightly affected the charge transfer on the surface of the electrode, but did not affect the power generation of the EFC system in principal.  相似文献   

10.
A coupled microbial fuel cell (MFC) system comprising of an oxic-biocathode MFC (O-MFC) and an anoxic-biocathode MFC (A-MFC) was implemented for simultaneous removal of carbon and nitrogen from a synthetic wastewater. The chemical oxygen demand (COD) of the influent was mainly reduced at the anodes of the two MFCs; ammonium was oxidized to nitrate in the O-MFC’s cathode, and nitrate was electrochemically denitrified in the A-MFC’s cathode. The coupled MFC system reached power densities of 14 W/m3 net cathodic compartment (NCC) and 7.2 W/m3 NCC for the O-MFC and the A-MFC, respectively. In addition, the MFC system obtained a maximum COD, NH4+-N and TN removal rate of 98.8%, 97.4% and 97.3%, respectively, at an A-MFC external resistance of 5 Ω, a recirculation ratio (recirculated flow to total influent flow) of 2:1, and an influent flow ratio (O-MFC anode flow to A-MFC anode flow) of 1:1.  相似文献   

11.
In this work, the long‐term effects of transient chemical oxygen demands (COD) concentrations over the performance of a microbial fuel cell were studied. From the obtained results, it was observed that the repetitive change in the COD loading rate during 12 h conditioned the behavior of the system during periods of up to 7 days. The main modifications were the enhancement of the COD consumption rate and the exerted current. These enhancements yielded increasing Coulombic efficiencies (CEs) when working with COD concentrations of 300 mg/L, but constant CEs when working with COD concentrations from 900 to 1800 mg/L. This effect could be explained by the higher affinity for the substrate of Geobacter than that of the nonelectrogenic organisms such as Clostridia. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:883–890, 2016  相似文献   

12.
A compact, three‐in‐one, flow‐through, porous, electrode design with minimal electrode spacing and minimal dead volume was implemented to develop a microbial fuel cell (MFC) with improved anode performance. A biofilm‐dominated anode consortium enriched under a multimode, continuous‐flow regime was used. The increase in the power density of the MFC was investigated by changing the cathode (type, as well as catholyte strength) to determine whether anode was limiting. The power density obtained with an air‐breathing cathode was 56 W/m3 of net anode volume (590 mW/m2) and 203 W/m3 (2160 mW/m2) with a 50‐mM ferricyanide‐based cathode. Increasing the ferricyanide concentration and ionic strength further increased the power density, reaching 304 W/m3 (3220 mW/m2, with 200 mM ferricyanide and 200 mM buffer concentration). The increasing trend in the power density indicated that the anode was not limiting and that higher power densities could be obtained using cathodes capable of higher rates of oxidation. The internal solution resistance for the MFC was 5–6 Ω, which supported the improved performance of the anode design. A new parameter defined as the ratio of projected surface area to total anode volume is suggested as a design parameter to relate volumetric and area‐based power densities and to enable comparison of various MFC configurations. Published 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

13.
Bioelectricity production from a phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73 ± 1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single‐ and multiple‐cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. Biotechnol. Bioeng. 2009;103: 1068–1076. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
The effect of the oxygen availability over the performance of an air‐breathing microbial fuel cell (MFC) was studied by limiting the oxygen supply to the cathode. It was found that anodic reaction was the limiting stage in the performance of the MFC while oxygen was fully available at cathode. As the cathode was depleted of oxygen, the current density becomes limited by oxygen transport to the electrode surface. The exerted current density was maintained when oxygen mole fraction was higher than 10% due to the very good performance of the cathodic catalysts. However, the current density drastically falls when working at lower concentrations because of mass transfer limitations. In this sense it must be highlighted that the maximum exerted power, when oxygen mole fraction was higher than 10%, was almost three times higher than that obtained when oxygen mole fraction was 5%. Regarding to the wastewater treatment, a significant decrease in the COD removal was obtained when the MFC performance was reduced due to the limited availability of oxygen, which indicates the significant role of the electrogenic microorganisms in the COD removal in MFC. In addition, the low availability of oxygen at the cathode leads to a lower presence of oxygen at the anode, resulting in an increase in the coulombic efficiency. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:900–907, 2015  相似文献   

15.
Microbial fuel cells (MFCs) fed with wastewater are currently considered a feasible strategy for production of renewable electricity.  相似文献   

16.
A microbial fuel cell using aerobic microorganisms as the cathodic catalysts is described. By using anaerobic sludge in the anode and aerobic sludge in the cathode as inocula, the microbial fuel cell could be started up after a short lag time of 9 days, generating a stable voltage of 0.324 V (R (ex) = 500 Omega). At an aeration rate of 300 ml min(-1) in the cathode, a maximum volumetric power density of up to 24.7 W m(-3) (117.2 A m(-3)) was reached. This research demonstrates an economic system for recovering electrical energy from organic compounds.  相似文献   

17.
The performance of a microbial fuel cell (MFC) was investigated at different temperatures and anodic media. A lag phase of 30 h occurred at 30 degrees C which was half that at room temperature (22 degrees C). The maximum power density at 30 degrees C was 70 mW/m(2) and at 22 degrees C was 43 mW/m(2). At 15 degrees C, no successful operation was observed even after several loadings for a long period of operation. Maximum power density of 320 mW/m(2) was obtained with wastewater medium containing phosphate buffer (conductivity: 11.8 mS/cm), which was approx. 4 times higher than the value without phosphate additions (2.89 mS/cm).  相似文献   

18.
微生物燃料电池生物质能利用现状与展望   总被引:3,自引:0,他引:3  
作为一种新概念的废物处理与能源化技术,微生物燃料电池研究在过去10年里取得了长足的进步和技术突破。本文在简要介绍微生物燃料电池研究现状基础上,系统综述了该技术及与其他技术耦合在生物质能利用方面的最新研究进展,重点分析了其中存在的问题,并展望了该技术在生物质能转化和利用方面的研究前景。  相似文献   

19.
The aim of this study was to evaluate limiting factors affecting electricity output from sediment microbial fuel cells (sediment MFCs). In laboratory tests, various factors likely to be encountered in field application were divided into controllable and uncontrollable ones. Based on the findings, it could be suggested that the sediment MFCs can be operated with an anode to cathode area ratio of at least 5:1 and at high external loads (1000 Ω) when the cathode is closely placed to the anode, though DO concentration at the cathode must be kept above 3 mg/l. Furthermore, no significant effect on current production over a prolonged period was observed within the sediment temperature range of 20–35 °C, but was negatively affected by lower temperatures (10 °C). These observations provide important factors with respect to the construction and operation of sediment MFCs at field sites, which will aid in maximizing electricity output.  相似文献   

20.
【背景】甲烷厌氧氧化(anaerobic oxidation of methane, AOM)包含反硝化型甲烷厌氧氧化和硫酸盐还原型甲烷厌氧氧化。目前,人们向水体中排放过量的含氮及含硫污染物,引起了严重的环境污染和生态破坏。【目的】利用甲烷厌氧氧化微生物燃料电池(microbial fuel cell, MFC)研究同步脱氮除硫耦合反应机理及反应过程中微生物的多样性信息。【方法】构建了3个微生物燃料电池(N-S-MFC、N-MFC、S-MFC),以甲烷作为唯一碳源,探究其同步脱氮除硫性能,并采用16S rRNA基因高通量测序技术对微生物群落结构进行分析。【结果】N-S-MFC中硝酸盐和硫酸盐的去除率分别为90.91%和18.46%。阳极室中微生物的相对丰度提高,与反硝化及硫酸盐还原菌相关的微生物大量富集,如门水平上拟杆菌门(Bacteroidota)、厚壁菌门(Firmicutes)和脱硫杆菌门(Desulfobacterota),同时属水平上Methylobacterium_Methylorubrum、Methylocaldum、Methylomonas等常见的甲烷氧化菌增多。【结论...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号