首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用α-型酿酒酵母(Saccharomyces cerevisiae)表面展示系统的载体,将来源于嗜热细菌Thermus thermophilus的木糖异构酶基因xylA,插入到酿酒酵母蔗糖酶信号肽序列与α-凝集素的C端编码序列之间,形成融合表达框,构建重组质粒pSY-xy222,转化酿酒酵母H158。含重组质粒的菌株H158-SXI木糖异构酶活性测定表明,细胞壁上酶活测定值为1.53 U,木糖异构酶在酿酒酵母细胞壁上得到活性表达。木糖葡萄糖共发酵结果显示,重组菌株木糖利用率较出发菌株提高了17.8%。  相似文献   

2.
Transformation of Saccharomyces cerevisiae by yeast expression plasmids bearing the Escherichia coli xylose isomerase gene leads to production of the protein. Western blotting (immunoblotting) experiments show that immunoreactive protein chains which comigrate with the E. coli enzyme are made in the transformant strains and that the amount produced parallels the copy number of the plasmid. When comparable amounts of immunologically cross-reactive xylose isomerase protein made in E. coli or S. cerevisiae were assayed for enzymatic activity, however, the yeast protein was at least 10(3)-fold less active.  相似文献   

3.
Transformation of Saccharomyces cerevisiae by yeast expression plasmids bearing the Escherichia coli xylose isomerase gene leads to production of the protein. Western blotting (immunoblotting) experiments show that immunoreactive protein chains which comigrate with the E. coli enzyme are made in the transformant strains and that the amount produced parallels the copy number of the plasmid. When comparable amounts of immunologically cross-reactive xylose isomerase protein made in E. coli or S. cerevisiae were assayed for enzymatic activity, however, the yeast protein was at least 10(3)-fold less active.  相似文献   

4.
The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consumption rates, and poor cell growth compared with an oxidoreductase pathway and, additionally, often require adaptive strain evolution. Here, we report on the directed evolution of the Piromyces sp. xylose isomerase (encoded by xylA) for use in yeast. After three rounds of mutagenesis and growth-based screening, we isolated a variant containing six mutations (E15D, E114G, E129D, T142S, A177T, and V433I) that exhibited a 77% increase in enzymatic activity. When expressed in a minimally engineered yeast host containing a gre3 knockout and tal1 and XKS1 overexpression, the strain expressing this mutant enzyme improved its aerobic growth rate by 61-fold and both ethanol production and xylose consumption rates by nearly 8-fold. Moreover, the mutant enzyme enabled ethanol production by these yeasts under oxygen-limited fermentation conditions, unlike the wild-type enzyme. Under microaerobic conditions, the ethanol production rates of the strain expressing the mutant xylose isomerase were considerably higher than previously reported values for yeast harboring a xylose isomerase pathway and were also comparable to those of the strains harboring an oxidoreductase pathway. Consequently, this study shows the potential to evolve a xylose isomerase pathway for more efficient xylose utilization.  相似文献   

5.

Background

Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose.

Results

The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase/xylitol dehydrogenase strain and the xylose isomerase strain, respectively.

Conclusion

The combination of the xylose reductase/xylitol dehydrogenase pathway and the bacterial arabinose isomerase pathway resulted in both higher pentose sugar uptake and higher overall ethanol production than the combination of the xylose isomerase pathway and the bacterial arabinose isomerase pathway. Moreover, the flux through the bacterial arabinose pathway did not increase when combined with the xylose isomerase pathway. This suggests that the low activity of the bacterial arabinose pathway cannot be ascribed to arabitol formation via the xylose reductase enzyme.  相似文献   

6.
We constructed recombinant Saccharomyces cerevisiae harboring the xylose isomerase (XI) gene isolated from Clostridium phytofermentans to metabolize xylose and use it as a carbon and energy source. In this study, the effect of supplementation using co-substrate such as glucose or galactose on xylose utilization was studied in recombinant S. cerevisiae. Glucose, which is transported with high affinity by the same transport system as is xylose, was not affected by the heterologous expression of XI, thus xylose utilization was not observed in recombinant S. cerevisiae. However, supplemental galactose added to the recombinant S. cerevisiae stimulated xylose utilization as well as the expression of XI protein. Recombinant S. cerevisiae consumed up to 23.48 g/L of xylose when grown in media containing 40 g/L of xylose and supplemented with 20 g/L of galactose. These cells also produced 15.89 g/L of ethanol. Therefore, expression of the bacterial XI in recombinant S. cerevisiae was highly induced by the addition of supplemental galactose as a co-substrate with xylose, and supplemented galactose enabled the yeast strain to grow on xylose and ferment xylose to ethanol.  相似文献   

7.
The current climate crisis demands replacement of fossil energy sources with sustainable alternatives. In this scenario, second-generation bioethanol, a product of lignocellulosic biomass fermentation, represents a more sustainable alternative. However, Saccharomyces cerevisiae cannot metabolize pentoses, such as xylose, present as a major component of lignocellulosic biomass. Xylose isomerase (XI) is an enzyme that allows xylose consumption by yeasts, because it converts xylose into xylulose, which is further converted to ethanol by the pentose-phosphate pathway. Only a few XI were successfully expressed in S. cerevisiae strains. This work presents a new bacterial XI, named GR-XI 1, obtained from a Brazilian goat rumen metagenomic library. Phylogenetic analysis confirmed the bacterial origin of the gene, which is related to Firmicutes XIs. After codon optimization, this enzyme, renamed XySC1, was functionally expressed in S. cerevisiae, allowing growth in media with xylose as sole carbon source. Overexpression of XySC1 in S. cerevisiae allowed the recombinant strain to efficiently consume and metabolize xylose under aerobic conditions.  相似文献   

8.
Simultaneous isomerisation and fermentation (SIF) of xylose and simultaneous isomerisation and cofermentation (SICF) of a glucose/xylose mixture was carried out by Saccharomyces cerevisiae in the presence of xylose isomerase. The SIF of 50 g l−1 xylose gave an ethanol concentration and metabolic yield of 7.5 g l−1 and 0.36 g (g xylose consumed)−1. These parameters improved to 13.4 g l−1 and 0.40 respectively, when borate was added to the medium. The SICF of a mixture of 50 g l−1 glucose and 50 g l−1 xylose gave an ethanol concentration and metabolic yield of 29.8 g l−1 and 0.42 respectively, in the presence of borate. Temperature modulation from 30 °C to 35 °C during fermentation further enhanced the above parameters to 39 g l−1 and 0.45 respectively. The approach was extended to the bioconversion of sugars present in a real lignocellulose hydrolysate (peanut-shell hydrolysate) to ethanol, with a fairly good yield. Received: 14 May 1999 / Received revision: 27 September 1999 / Accepted: 2 October 1999  相似文献   

9.
Summary A promoterles DNA fragment containing theE. coli xylose isomerase gene and its ribosome binding site was ligated into a plasmid downstream from the strong PL promoter. The plasmid was then used to transformE. coli strains containing a temperature-sensitive repressor (cI857). The transformants overproduced xylose isomerase when the repressor was thermally inactivated.  相似文献   

10.
The Thermus thermophilus xylA gene encoding xylose (glucose) isomerase was cloned and expressed in Saccharomyces cerevisiae under the control of the yeast PGK1 promoter. The recombinant xylose isomerase showed the highest activity at 85 degrees C with a specific activity of 1.0 U mg-1. A new functional metabolic pathway in S. cerevisiae with ethanol formation during oxygen-limited xylose fermentation was demonstrated. Xylitol and acetic acid were also formed during the fermentation.  相似文献   

11.
Xylose isomerase (XI) is a key enzyme in the conversion of d ‐xylose, which is a major component of lignocellulosic biomass, to d ‐xylulose. Genomic analysis of the bacterium Clostridium cellulovorans revealed the presence of XI‐related genes. In this study, XI derived from C. cellulovorans was produced and displayed using the yeast cell‐surface display system, and the xylose assimilation and fermentation properties of this XI‐displaying yeast were examined. XI‐displaying yeast grew well in medium containing xylose as the sole carbon source and directly produced ethanol from xylose under anaerobic conditions. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 346–351, 2013  相似文献   

12.
Efficient conversion of xylose to ethanol is an essential factor for commercialization of lignocellulosic ethanol. To minimize production of xylitol, a major by-product in xylose metabolism and concomitantly improve ethanol production, Saccharomyces cerevisiae D452-2 was engineered to overexpress NADH-preferable xylose reductase mutant (XR(MUT)) and NAD?-dependent xylitol dehydrogenase (XDH) from Pichia stipitis and endogenous xylulokinase (XK). In vitro enzyme assay confirmed the functional expression of XR(MUT), XDH and XK in recombinant S. cerevisiae strains. The change of wild type XR to XR(MUT) along with XK overexpression led to reduction of xylitol accumulation in microaerobic culture. More modulation of the xylose metabolism including overexpression of XR(MUT) and transaldolase, and disruption of the chromosomal ALD6 gene encoding aldehyde dehydrogenase (SX6(MUT)) improved the performance of ethanol production from xylose remarkably. Finally, oxygen-limited fermentation of S. cerevisiae SX6(MUT) resulted in 0.64 g l?1 h?1 xylose consumption rate, 0.25 g l?1 h?1 ethanol productivity and 39% ethanol yield based on the xylose consumed, which were 1.8, 4.2 and 2.2 times higher than the corresponding values of recombinant S. cerevisiae expressing XR(MUT), XDH and XK only.  相似文献   

13.
Summary Xylose isomerase was purified from a transformedE. coli strain (LE392-pRK248/pTXI-1) (Lastick et al., 1986) that overproduces the enzyme by induction of the strong lambda PL promotor. Kinetic data, N-terminal sequence analysis, SDS polyacrylamide gel electrophoresis, size exclusion chromatography and immunodiffusion were used to compare the overproduced enzyme with xylose isomerase purified from xylose induced, non-transformedE. coli LE392 cells; no differences between these purified enzyme preparations were found.  相似文献   

14.
Summary Ethanol was produced from xylose, using the enzyme glucose isomerase (xylose isomerase) and Saccharomyces cerevisiae. The influence of aeration, pH, enzyme concentration, cell mass and the concentration of the respiratory inhibitor sodium azide on the production of ethanol and the formation of by-products was investigated. Anaerobic conditions at pH 6.0, 10 g/l enzyme, 75 g/l dry weight cell mass and 4.6 mM sodium azide were found to be optimal. Under these conditions theoretical yields of ethanol were obtained from 42 g/l xylose within 24 hours.In a fed-batch culture, 62 g/l ethanol was produced from 127 g/l xylose with a yield of 0.49 and a productivity of 1.35 g/l·h.  相似文献   

15.
Summary The xyclose isomerase gene inEscherichia coli was cloned complementarily into a Leu2-negativeSchizosaccharomyces pombe mutant (ATCC 38399). The subsequent integration of the plasmid into the chromosomal DNA of the host yeast was verified by using the dot blot and southern blot techniques. The expressed xylose isomerase showed activity on a nondenaturing polyacrylamide gel. The expression of xylose isomerase gene was influenced by the concentration of nutrients in the fermentation broth. The yeast possessed a xylose isomerase activity of 20 nmol/min/mg by growing in an enriched medium containing yeast extract-malt extract-peptone (YMP) andd-xylose. The conversion ofd-xylose tod-xylulose catalyzed by xylose isomerase in the transformed yeast cells makes it possible to fermentd-xylose with ethanol as a major product. When the fermentation broth contained YMP and 5% (w/v)d-xylose, the maximal ethanol yield and productivity reached 0.42 g/g and 0.19 g/l/h, respectively.  相似文献   

16.
17.
Summary TheEscherichia coli xylose isomerase (EC 5.3.1.5) has been expressed under the control of a thermal inverting promotor system (att-nutL-p-att-N block) and its performance in a hollow fiber bioreactor measured. The conversion of xylose to xylulose was inversely proportional to the flow rate and the system operated up to 60°C. The maximum conversion efficiency observed was 19.05% at 55°C.  相似文献   

18.
19.
20.
Saccharomyces cerevisiae TMB3001 has previously been engineered to utilize xylose by integrating the genes coding for xylose reductase (XR) and xylitol dehydrogenase (XDH) and overexpressing the native xylulokinase (XK) gene. The resulting strain is able to metabolize xylose, but its xylose utilization rate is low compared to that of natural xylose utilizing yeasts, like Pichia stipitis or Candida shehatae. One difference between S. cerevisiae and the latter species is that these possess specific xylose transporters, while S. cerevisiae takes up xylose via the high-affinity hexose transporters. For this reason, in part, it has been suggested that xylose transport in S. cerevisiae may limit the xylose utilization.We investigated the control exercised by the transport over the specific xylose utilization rate in two recombinant S. cerevisiae strains, one with low XR activity, TMB3001, and one with high XR activity, TMB3260. The strains were grown in aerobic sugar-limited chemostat and the specific xylose uptake rate was modulated by changing the xylose concentration in the feed, which allowed determination of the flux response coefficients. Separate measurements of xylose transport kinetics allowed determination of the elasticity coefficients of transport with respect to extracellular xylose concentration. The flux control coefficient, C(J) (transp), for the xylose transport was calculated from the response and elasticity coefficients. The value of C(J) (transp) for both strains was found to be < 0.1 at extracellular xylose concentrations > 7.5 g L(-1). However, for strain TMB3260 the flux control coefficient was higher than 0.5 at xylose concentrations < 0.6 g L(-1), while C(J) (transp) stayed below 0.2 for strain TMB3001 irrespective of xylose concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号