首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Androgen administration has been widely used for masculinization in fish. The mechanism of the sex change in sexual fate regulation is not clear. Oral administration or pellet implantation was applied. We orally applied an aromatase inhibitor (AI, to decrease estrogen levels) and 17α-methyltestosterone (MT, to increase androgen levels) to induce masculinization to clarify the mechanism of the sex change in the protogynous orange-spotted grouper. After 3 mo of AI/MT administration, male characteristics were observed in the female-to-male sex change fish. These male characteristics included increased plasma 11-ketotestosterone (11-KT), decreased estradiol (E2) levels, increased male-related gene (dmrt1, sox9, and cyp11b2) expression, and decreased female-related gene (figla, foxl2, and cyp19a1a) expression. However, the reduced male characteristics and male-to-female sex change occurred after AI/MT-termination in the AI- and MT-induced maleness. Furthermore, the MT-induced oocyte-depleted follicle cells (from MT-implantation) had increased proliferating activity, and the sexual fate in a portion of female gonadal soma cells was altered to male function during the female-to-male sex change. In contrast, the gonadal soma cells were not proliferative during the early process of the male-to-female sex change. Additionally, the male gonadal soma cells did not alter to female function during the male-to-female sex change in the AI/MT-terminated fish. After MT termination in the male-to-female sex-changed fish, the differentiated male germ cells showed increased proliferating activities together with dormancy and did not show characteristics of both sexes in the early germ cells. In conclusion, these findings indicate for the first time in a single species that the mechanism involved in the replacement of soma cells is different between the female-to-male and male-to-female sex change processes in grouper. These results also demonstrate that sexual fate determination (secondary sex determination) is regulated by endogenous sex steroid levels.  相似文献   

2.
The mammalian nuclear hormone receptors LRH1 (NR5A2) and SF1 (NR5A1) are close paralogs that can bind the same DNA motif and play crucial roles in gonadal development and function. Lrh1 is essential for follicle development in the ovary and has been proposed to regulate steroidogenesis in the testis. Lrh1 expression in the testis is highly elevated by loss of the sex regulator Dmrt1, which triggers male-to-female transdifferentiation of Sertoli cells. While Sf1 has a well-defined and crucial role in testis development, no function for Lrh1 in the male gonad has been reported. Here we use conditional genetics to examine Lrh1 requirements both in gonadal cell fate reprogramming and in normal development of the three major cell lineages of the mouse testis. We find that loss of Lrh1 suppresses sexual transdifferentiation, confirming that Lrh1 can act as a key driver in reprogramming sexual cell fate. In otherwise wild-type testes, we find that Lrh1 is dispensable in Leydig cells but is required in Sertoli cells for their proliferation, for seminiferous tubule morphogenesis, for maintenance of the blood-testis barrier, for feedback regulation of androgen production, and for support of spermatogenesis. Expression profiling identified misexpressed genes likely underlying most aspects of the Sertoli cell phenotype. In the germ line we found that Lrh1 is required for maintenance of functional spermatogonia, and hence mutants progressively lose spermatogenesis. Reduced expression of the RNA binding factor Nxf2 likely contributes to the SSC defect. Unexpectedly, however, over time the Lrh1 mutant germ line recovered abundant spermatogenesis and fertility. This finding indicates that severe germ line depletion triggers a response allowing mutant spermatogonia to recover the ability to undergo complete spermatogenesis. Our results demonstrate that Lrh1, like Sf1, is an essential regulator of testis development and function but has a very distinct repertoire of functions.  相似文献   

3.
4.

Background  

Dmrt1 is a highly conserved gene involved in the determination and early differentiation phase of the primordial gonad in vertebrates. In the fish medaka dmrt1bY, a functional duplicate of the autosomal dmrt1a gene on the Y-chromosome, has been shown to be the master regulator of male gonadal development, comparable to Sry in mammals. In males mRNA and protein expression was observed before morphological sex differentiation in the somatic cells surrounding primordial germ cells (PGCs) of the gonadal anlage and later on exclusively in Sertoli cells. This suggested a role for dmrt1bY during male gonad and germ cell development.  相似文献   

5.
6.
The fetal gonad is composed of a mixture of somatic cell lineages and germ cells. The fate of the gonad, male or female, is determined by a population of somatic cells that differentiate into Sertoli or granulosa cells and direct testis or ovary development. It is well established that germ cells are not required for the establishment or maintenance of Sertoli cells or testis cords in the male gonad. However, in the agametic ovary, follicles do not form suggesting that germ cells may influence granulosa cell development. Prior investigations of ovaries in which pre-meiotic germ cells were ablated during fetal life reported no histological changes during stages prior to birth. However, whether granulosa cells underwent normal molecular differentiation was not investigated. In cases where germ cell loss occurred secondary to other mutations, transdifferentiation of granulosa cells towards a Sertoli cell fate was observed, raising questions about whether germ cells play an active role in establishing or maintaining the fate of granulosa cells. We developed a group of molecular markers associated with ovarian development, and show here that the loss of pre-meiotic germ cells does not disrupt the somatic ovarian differentiation program during fetal life, or cause transdifferentiation as defined by expression of Sertoli markers. Since we do not find defects in the ovarian somatic program, the subsequent failure to form follicles at perinatal stages is likely attributable to the absence of germ cells rather than to defects in the somatic cells.  相似文献   

7.
In vertebrates, there is accumulating evidence that environmental factors as triggers for sex determination and genetic sex determination are not two opposing alternatives but that a continuum of mechanisms bridge those extremes. One prominent example is the model fish species Oryzias latipes which has a stable XX/XY genetic sex determination system, but still responds to environmental cues, where high temperatures lead to female‐to‐male sex reversal. However, the mechanisms behind are still unknown. We show that high temperatures increase primordial germ cells (PGC) numbers before they reach the genital ridge, which, in turn, regulates the germ cell proliferation. Complete ablation of PGCs led to XX males with germ cell less testis, whereas experimentally increased PGC numbers did not reverse XY genotypes to female. For the underlying molecular mechanism, we provide support for the explanation that activation of the dmrt1a gene by cortisol during early development of XX embryos enables this autosomal gene to take over the role of the male determining Y‐chromosomal dmrt1bY.  相似文献   

8.
9.
10.
We have established an enhanced green fluorescent protein (EGFP) transgenic medaka line that mimics the expression of sox9b/sox9a2 to analyze the morphological reorganization of the gonads and characterize the sox9b-expressing cells during gonadal formation in this fish. After the germ cells have migrated into the gonadal areas, a cluster of EGFP-expressing cells in the single gonadal primordium was found to be separated by the somatic cells along the rostrocaudal axis and form the bilateral lobes. We observed in these transgenic fish that EGFP expression persists only in the somatic cells directly surrounding the germ cells. As sex differentiation proceeds, dmrt1 and foxl2 begin to be expressed in the EGFP-expressing cells in the XY and the XX gonads, respectively. This indicates that the sox9b-expressing cells reorganize into two lobes of the gonad and then differentiate into Sertoli or granulosa cells, as common precursors of the supporting cells. Hence, our sox9b-EGFP medaka system will be useful in future studies of gonadal development.  相似文献   

11.
Fish have diverse sex determination and differentiation. DMRT1 and aromatase are conserved in the phyla and play pivotal roles in sex development. Gobiocypris rarus is a small fish used as a model in aquatic toxicology in China and has been used to study the effects of environmental endocrine disruptors on gene expression, but its sexual development remains elusive. Here, we report the full-length cDNA of G. rarus dmrt1 and its expression along with the expression of cyp19a1a and cyp19a1b, two genes encoding gonad and brain type aromatases, in adults and during ontogenesis. Both cyp19a1a and dmrt1 are expressed in the ovary and testis but show sexual dimorphism. Expression of cyp19a1a in the ovary is higher than in testes and dmrt1 follows the opposite pattern. Juvenile gonad histology changes at 15 days after hatching. The dimorphic expression of dmrt1 and cyp19a1a appears from 5 days after hatching, which is earlier than histological change. cyp19a1b is expressed coordinately with cyp19a1a until 15 days after hatching. These results show that dmrt1 and cyp19a1a play important roles in sex determination and sex differentiation in G. rarus.  相似文献   

12.
Sex-determining mechanisms are highly variable between phyla. Only one example has been found in which structurally and functionally related genes control sex determination in different phyla: the sexual regulators mab-3 of Caenorhabditis elegans and doublesex of Drosophila both encode proteins containing the DM domain, a novel DNA-binding motif. These two genes control similar aspects of sexual development, and the male isoform of DSX can substitute for MAB-3 in vivo, suggesting that the two proteins are functionally related. DM domain proteins may also play a role in sexual development of vertebrates. A human gene encoding a DM domain protein, DMRT1, is expressed only in the testis in adults and maps to distal 9p24.3, a short interval that is required for testis development. Earlier in development we find that murine Dmrt1 mRNA is expressed exclusively in the genital ridge of early XX and XY embryos. Thus Dmrt1 and Sry are the only regulatory genes known to be expressed exclusively in the mammalian genital ridge prior to sexual differentiation. Expression becomes XY-specific and restricted to the seminiferous tubules of the testis as gonadogenesis proceeds, and both Sertoli cells and germ cells express Dmrt1. Dmrt1 may also play a role in avian sexual development. In birds the heterogametic sex is female (ZW), and the homogametic sex is male (ZZ). Dmrt1 is Z-linked in the chicken. We find that chicken Dmrt1 is expressed in the genital ridge and Wolffian duct prior to sexual differentiation and is expressed at higher levels in ZZ than in ZW embryos. Based on sequence, map position, and expression patterns, we suggest that Dmrt1 is likely to play a role in vertebrate sexual development and therefore that DM domain genes may play a role in sexual development in a wide range of phyla.  相似文献   

13.
Germ line control of female sex determination in zebrafish   总被引:2,自引:0,他引:2  
A major transition during development of the gonad is commitment from an undifferentiated “bi-potential” state to ovary or testis fate. In mammals, the oogonia of the developing ovary are known to be important for folliculogenesis. An additional role in promoting ovary fate or female sex determination has been suggested, however it remains unclear how the germ line might regulate this process. Here we show that the germ line is required for the ovary versus testis fate choice in zebrafish. When the germ line is absent, the gonad adopts testis fate. These germ line deficient testes have normal somatic structures indicating that the germ line influences fate determination of surrounding somatic tissues. In germ line deficient animals the expression of the ovary specific gene cyp19a1a fails to be maintained whereas the testis genes sox9a and amh remain expressed. Furthermore, we observed decreased levels of the ovary specific genes cyp19a1a and foxL2 in germ line deficient animals prior to morphological sex differentiation of the gonad. We propose that the germ line has a common role in female sex determination in fish and mammals. Additionally, we show that testis specification is sufficient for masculinization of the fish pointing to a direct role of hormone signaling from the gonad in directing sex differentiation of non-gonadal tissues.  相似文献   

14.
The presence of germ cells in the early gonad is important for sexual fate determination and gonadal development in vertebrates. Recent studies in zebrafish and medaka have shown that a lack of germ cells in the early gonad induces sex reversal in favor of a male phenotype. However, it is uncertain whether the gonadal somatic cells or the germ cells are predominant in determining gonadal fate in other vertebrate. Here, we investigated the role of germ cells in gonadal differentiation in goldfish, a gonochoristic species that possesses an XX-XY genetic sex determination system. The primordial germ cells (PGCs) of the fish were eliminated during embryogenesis by injection of a morpholino oligonucleotide against the dead end gene. Fish without germ cells showed two types of gonadal morphology: one with an ovarian cavity; the other with seminiferous tubules. Next, we tested whether function could be restored to these empty gonads by transplantation of a single PGC into each embryo, and also determined the gonadal sex of the resulting germline chimeras. Transplantation of a single GFP-labeled PGC successfully produced a germline chimera in 42.7% of the embryos. Some of the adult germline chimeras had a developed gonad on one side that contained donor derived germ cells, while the contralateral gonad lacked any early germ cell stages. Female germline chimeras possessed a normal ovary and a germ-cell free ovary-like structure on the contralateral side; this structure was similar to those seen in female morphants. Male germline chimeras possessed a testis and a contralateral empty testis that contained some sperm in the tubular lumens. Analysis of aromatase, foxl2 and amh expression in gonads of morphants and germline chimeras suggested that somatic transdifferentiation did not occur. The offspring of fertile germline chimeras all had the donor-derived phenotype, indicating that germline replacement had occurred and that the transplanted PGC had rescued both female and male gonadal function. These findings suggest that the absence of germ cells did not affect the pathway for ovary or testis development and that phenotypic sex in goldfish is determined by somatic cells under genetic sex control rather than an interaction between the germ cells and somatic cells.  相似文献   

15.
In addition to its role in somatic cell development in the testis, our data have revealed a role for Fgf9 in XY germ cell survival. In Fgf9-null mice, germ cells in the XY gonad decline in numbers after 11.5 days post coitum (dpc), while germ cell numbers in XX gonads are unaffected. We present evidence that germ cells resident in the XY gonad become dependent on FGF9 signaling between 10.5 dpc and 11.5 dpc, and that FGF9 directly promotes XY gonocyte survival after 11.5 dpc, independently from Sertoli cell differentiation. Furthermore, XY Fgf9-null gonads undergo true male-to-female sex reversal as they initiate but fail to maintain the male pathway and subsequently express markers of ovarian differentiation (Fst and Bmp2). By 14.5 dpc, these gonads contain germ cells that enter meiosis synchronously with ovarian gonocytes. FGF9 is necessary for 11.5 dpc XY gonocyte survival and is the earliest reported factor with a sex-specific role in regulating germ cell survival.  相似文献   

16.
Mammalian sex determination is controlled by antagonistic pathways that are initially co-expressed in the bipotential gonad and subsequently become male- or female-specific. In XY gonads, testis development is initiated by upregulation of Sox9 by SRY in pre-Sertoli cells. Disruption of either gene leads to complete male-to-female sex reversal. Ovarian development is dependent on canonical Wnt signaling through Wnt4, Rspo1 and β-catenin. However, only a partial female-to-male sex reversal results from disruption of these ovary-promoting genes. In Wnt4 and Rspo1 mutants, there is evidence of pregranulosa cell-to-Sertoli cell transdifferentiation near birth, following a severe decline in germ cells. It is currently unclear why primary sex reversal does not occur at the sex-determining stage, but instead occurs near birth in these mutants. Here we show that Wnt4-null and Rspo1-null pregranulosa cells transition through a differentiated granulosa cell state prior to transdifferentiating towards a Sertoli cell fate. This transition is preceded by a wave of germ cell death that is closely associated with the disruption of pregranulosa cell quiescence. Our results suggest that maintenance of mitotic arrest in pregranulosa cells may preclude upregulation of Sox9 in cases where female sex-determining genes are disrupted. This may explain the lack of complete sex reversal in such mutants at the sex-determining stage.  相似文献   

17.
18.
In mammals, the supporting cell lineage in an embryonic gonad communicates the sex-determining decision to various sexually dimorphic cell types in the developing embryo, including the germ cells. However, the molecular nature of the sex-determining signals that pass from the supporting cells to the germ cells is not well understood. We have identified a conserved transmembrane protein, Sdmg1, owing to its male-specific expression in mouse embryonic gonads. Sdmg1 is expressed in the Sertoli cells of embryonic testes from 12.5 dpc, and in granulosa cells of growing follicles in adult ovaries. In Sertoli cells, Sdmg1 is localised to endosomes, and knock-down of Sdmg1 in Sertoli cell lines causes mis-localisation of the secretory SNARE Stx2 and defects in membrane trafficking. Upregulation of Sdmg1 appears to be part of a larger programme of changes to membrane trafficking pathways in embryonic Sertoli cells, and perturbing secretion in male embryonic gonads in organ culture causes male-to-female germ cell sex reversal. These data suggest that changes that occur in the cell biology of embryonic Sertoli cells may facilitate the communication of male sex-determining decisions to the germ cells during embryonic development.  相似文献   

19.
In mammals, germ cells within the developing gonad follow a sexually dimorphic pathway. Germ cells in the murine ovary enter meiotic prophase during embryogenesis, whereas germ cells in the embryonic testis arrest in G0 of mitotic cell cycle and do not enter meiosis until after birth. In mice, retinoic acid (RA) signaling has been implicated in controlling entry into meiosis in germ cells, as meiosis in male embryonic germ cells is blocked by the activity of a RA-catabolizing enzyme, CYP26B1. However, the mechanisms regulating mitotic arrest in male germ cells are not well understood. Cyp26b1 expression in the testes begins in somatic cells at embryonic day (E) 11.5, prior to mitotic arrest, and persists throughout fetal development. Here, we show that Sertoli cell-specific loss of CYP26B1 activity between E15.5 and E16.5, several days after germ cell sex determination, causes male germ cells to exit from G0, re-enter the mitotic cell cycle and initiate meiotic prophase. These results suggest that male germ cells retain the developmental potential to differentiate in meiosis until at least at E15.5. CYP26B1 in Sertoli cells acts as a masculinizing factor to arrest male germ cells in the G0 phase of the cell cycle and prevents them from entering meiosis, and thus is essential for the maintenance of the undifferentiated state of male germ cells during embryonic development.  相似文献   

20.
In this study, the cDNA of dmrt1 gene from the Chinese sturgeon Acipenser sinensis was isolated and its expression pattern was characterized in different tissues of immature A. sinensis. By real‐time quantitative PCR (qrtPCR) analysis, the A. sinensis dmrt1 mRNA was detected mainly in gonad and with a higher level in the testis than the ovary, especially in 3 and 4 year‐old samples. This indicated that the dmrt1 expression exhibited gradual testis specificity with development. The subcellular localization analysis indicated that the Dmrt1 protein exists only in germ cells and not in somatic cells. These results suggest that A. sinensis dmrt1 might be a highly specific sex differentiation gene for testis development and spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号