首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant human interleukin-6 (hIL-6), a pleiotropic cytokine containing two intramolecular disulfide bonds, was expressed in Escherichia coli as an insoluble inclusion body, before being refolded and purified in high yield providing sufficient qualities for clinical use. Quantitative reconstitution of the native disulfide bonds of hIL-6 from the fully denatured E. coli extracts could be performed by glutathione-assisted oxidation in a completely denaturating condition (6M guanidinium chloride) at protein concentrations higher than 1 mg/mL, preventing aggregation of reduced hIL-6. Oxidation in 6M guanidinium chloride (GdnHCl) required remarkably low concentrations of glutathione (reduced form, 0.01 mM; oxidized form, 0.002 mM) to be added to the solubilized hIL-6 before the incubation at pH 8.5, and 22 degrees C for 16 h. After completion of refolding by rapid transfer of oxidized hIL-6 into acetate buffer by gel filtration chromatography, residual contaminants including endotoxin and E. coli proteins were efficiently removed by successive steps of chromatography. The amount of dimeric hIL-6s, thought to be purification artifacts, was decreased by optimizing the salt concentrations of the loading materials in the ion-exchange chromatography, and gradually removing organic solvents from the collected fractions of the preparative reverse-phase HPLC. These refolding and purification processes, which give an overall yield as high as 17%, seem to be appropriate for the commercial scale production of hIL-6 for therapeutic use.  相似文献   

2.
Availability of highly purified native beta-glucosidase Zm-p60.1 in milligram quantities was a basic requirement for analysis of structure-function relationships of the protein. Therefore, Zm-p60.1 was overexpressed to high levels as a fusion protein with a hexahistidine tag, (His)(6)Zm-p60.r, in Escherichia coli, resulting, however, in accumulation of most of the protein in insoluble inclusion bodies. Native (His)(6)Zm-p60.r was then purified either from the bacterial lysate soluble fraction or from inclusion bodies. In the first case, a single-step purification under native conditions based on immobilized metal affinity chromatography (IMAC) was developed. In the second case, a single-step purification protocol under denaturing conditions followed by IMAC-based matrix-assisted refolding was elaborated. The efficiency of the native protein purification from soluble fraction of bacterial homogenate was compared to the feasibility of purification and renaturation of the protein from inclusion bodies. Gain of authentic biological activity and quaternary structure after the refolding process was confirmed by K(m) determination and electrophoretic mobility under native conditions. The yield of properly refolded protein was assessed based on the specific activity of the refolded product.  相似文献   

3.
The recombinant prepro-form of human matrix metalloproteinase 7 (matrilysin or MMP-7) was overexpressed in Escherichia coli as insoluble inclusion bodies. The recombinant protein was refolded by 100-fold dilution after solubilization with 6 M guanidine HCl. The refolding was monitored by the recovery of matrilysin activity. The addition of either 1.0 M arginine or 0.1% Brij-35 promoted remarkably the refolding. The refolding was dependent on pH and temperature, with lower temperature (<10 degrees C) and pH 6-8 preferable. Glutathione had no effect on refolding, and it was excluded from the refolding conditions. Starting with inclusion bodies (2.0 g, wet) containing 360 mg protein, 29.5 mg of pro-matrilysin (30 kDa) was obtained after refolding with 1.0% Brij-35 at pH 7.5 and 4 degrees C for 12 h. Pro-matrilysin (24.0 mg) was purified to homogeneity by cation-exchange HPLC with a 15-fold increase in purity and an activity yield of 81.3%. Pro-matrilysin was converted entirely to matrilysin (19.0 kDa; 15.2 mg) by activation with a mercuric reagent. The activity (k(cat)/K(m)) of matrilysin was 1.7 x 10(5) M(-1) x s(-1).  相似文献   

4.
Full-length recombinant transposase Tc1A from Caenorhabditis elegans (343 amino acids) expressed in Escherichia coli BL21 in inclusion bodies has been purified in a high yield in a soluble form. The procedure includes denaturation of the inclusion bodies followed by refolding of the Tc1A protein by gel filtration. This last step is absolutely crucial to give a high yield of soluble and active protein since it allows the physical separation of the aggregates from intermediates that give rise to correctly refolded protein. This step is very sensitive to the concentration of protein. Good yields of refolded protein are obtained by refolding 2 to 12 mg of denatured protein. The other purification steps involve the initial use of gel filtration under denaturing conditions and a final step of ion-exchange chromatography. Biological activity of the purified protein was confirmed in an in vitro transposon excision assay and its DNA-binding capacity by UV crosslinking. This new Tc1A purification procedure gives a yield of 12-16 mg/liter E. coli culture, in a form suitable for crystallization studies.  相似文献   

5.
Recombinant bovine angiogenin (rbAng) was expressed in E. coli at up to 30% of total cell proteins but was produced as inclusion bodies. By investigating the effect of various factors on the refolding yield, we obtained about 60% refolding. After chromatographic purification, about 60 mg purified angiogenin was obtained from 1 l culture. The purified recombinant bovine angiogenin was identical to native bovine angiogenin (nbAng) obtained from cow's milk. Our approach is highly efficient and can be generally used for the production of various types of angiogenin for functional and structural studies as well as therapeutic purposes.  相似文献   

6.
A recombinant form of human rhIL-7 was overexpressed in Escherichia coli HMS174 (DE3) pLysS under the control of a T7 promoter. The resulting insoluble inclusion bodies were separated from cellular debris by cross-flow filtration and solubilized by homogenization with 6 M guanidine HCl. Attempts at refolding rhIL-7 from solubilized inclusion bodies without prior purification of monomeric, denatured rhIL-7 were not successful. Denatured, monomeric rhIL-7 was therefore initially purified by size-exclusion chromatography using Prep-Grade Pharmacia Superdex 200. Correctly folded rhIL-7 monomer was generated by statically refolding the denatured protein at a final protein concentration of 80-100 microg/ml in 100 mM Tris, 2mM EDTA, 500 mM L-arginine, pH 9.0, buffer with 0.55 g/l oxidized glutathione at 2-8 degrees C for at least 48 h. The refolded rhIL-7 was subsequently purified by low-pressure liquid chromatography, using a combination of hydrophobic interaction, cation-exchange, and size-exclusion chromatography. The purified final product was >95% pure by SDS-PAGE stained with Coomassie brilliant blue, high-pressure size-exclusion chromatography (SEC-HPLC), and reverse-phase HPLC. The endotoxin level was <0.05 EU/mg. The final purified product was biologically active in a validated IL-7 dependent pre-B-cell bioassay. In anticipation of human clinical trials, this material is currently being evaluated for safety and efficacy in non-human primate toxicology studies.  相似文献   

7.
A human-derived single-chain Fv (scFv) antibody fragment specific against human CTLA4 (CD152) was produced at high level in Escherichia coli. The scFv gene was cloned from a phagemid to the expression vector pQE30 with a N-terminal 6His tag fused in-frame, and expressed as a 29 kDa protein in E. coli as inclusion bodies. The inclusion body of scFv was isolated from E. coli lysate, solubilized in 8M urea with 10mM dithiothreitol, and purified by ion-exchange chromatography. Method for in vitro refolding of the scFv was established. The effects of refolding buffer composition, protein concentration and temperature on the refolding yield were investigated. The protein was renatured finally by dialyzing against 3mM GSH, 1mM GSSG, 150 mM NaCl, 1M urea, and 50 mM Tris-Cl (pH 8.0) for 48 h at 4 degrees C, and then dialyzed against phosphate-buffered saline (pH 7.4) to remove remaining denaturant. This refolding protocol generated up to a 70% yield of soluble protein. Soluble scFv was characterized for its specific antigen-binding activity by indirect cellular ELISA. The refolded scFv was functionally active and was able to bind specifically to CTLA4 (CD152). The epitopes recognized by refolded anti-CTLA4 scFv do not coincide with those epitopes recognized by CD80/CD86.  相似文献   

8.
重组N-乙酰鸟氨酸脱乙酰基酶的表达、纯化和复性研究   总被引:5,自引:0,他引:5  
报道重组N-乙酰鸟氨酸脱乙酰基酶(NAOase)的研究进展。重组NAOase由大肠杆菌argE基因编码,在重组菌BL21(DE3)-pET22b-argE中的表达量为32.5%,大多以无活性的包涵体存在。低温诱导可增大有活性的可溶表达部分的比例。可溶性NAOase经Ni-NTA凝胶亲和纯化后得到SDS-PAGE电泳纯的酶,比酶活为1193.2u/mg蛋白。诱导条件影响整菌蛋白的成分及比例。37℃诱导生成的包涵体经尿素梯度洗涤后纯度较22℃高。低的蛋白浓度和合适的氧化还原体系是影响复性的关键因素。稀释法和透析法皆可使包涵体部分复性。在合适的条件下以稀释法复性时,约有17.78%包涵体可顺利复活。包涵体经尿素洗涤、溶解、Ni-NTA凝胶柱亲和纯化后,获得了高纯度的NAOase。  相似文献   

9.
LIGHT is a membrane-bound protein that belongs to the tumor necrosis factor (TNF) superfamily ligands. In this study, we established an effective strategy for producing a bioactive soluble form of LIGHT (sLIGHT), an extracellular region (Ile??-Val2??) of human LIGHT. Because sLIGHT was expressed as inclusion bodies in Escherichia coli, we investigated reagents that enhance the renaturation of sLIGHT from the inclusion bodies. Interestingly, L-cysteine in the denaturation buffer containing 3.5 M guanidine hydrochloride significantly improved the renaturation efficiency of sLIGHT. The effect of L-cysteine was synergistically enhanced by L-arginine in the refolding buffer. The optimal concentrations of L-cysteine and L-arginine in the denaturation and refolding buffers were 8 mM and 0.8 M, respectively. With these buffers, approximately 90 mg of sLIGHT was purified from 200 g of frozen E. coli cells. sLIGHT thus obtained significantly induced apoptosis in the WiDr human colon adenocarcinoma cell line at nanomolar concentrations, the same amount of sLIGHT that was produced by Sf9 insect cells. These results suggest that L-cysteine in the denaturation buffer enhances the renaturation of recombinant proteins from inclusion bodies in E. coli.  相似文献   

10.
Protein folding liquid chromatography (PFLC) is a powerful tool for simultaneous refolding and purification of recombinant proteins in inclusion bodies. Urea gradient size exclusion chromatography (SEC) is a recently developed protein refolding method based on the SEC refolding principle. In the presented work, recombinant human granulocyte colony-stimulating factor (rhG-CSF) expressed in Escheriachia coli (E. coli) in the form of inclusion bodies was refolded with high yields by this method. Denatured/reduced rhG-CSF in 8.0 mol.L(-1) urea was directly injected into a Superdex 75 column, and with the running of the linear urea concentration program, urea concentration in the mobile phase and around the denatured rhG-CSF molecules was decreased linearly, and the denatured rhG-CSF was gradually refolded into its native state. Aggregates were greatly suppressed and rhG-CSF was also partially purified during the refolding process. Effects of the length and the final urea concentration of the urea gradient on the refolding yield of rhG-CSF by using urea gradient SEC were investigated respectively. Compared with dilution refolding and normal SEC with a fixed urea concentration in the mobile phase, urea gradient SEC was more efficient for rhG-CSF refolding--in terms of specific bioactivity and mass recovery, the denatured rhG-CSF could be refolded at a larger loading volume, and the aggregates could be suppressed more efficiently. When 500 microL of solubilized and denatured rhG-CSF in 8.0 mol.L(-1) urea solution with a total protein concentration of 2.3 mg.mL(-1) was loaded onto the SEC column, rhG-CSF with a specific bioactivity of 1.0 x 10(8) IU.mg(-1) was obtained, and the mass recovery was 46.1%.  相似文献   

11.
The presence of inclusion body impurities can affect the refolding yield of recombinant proteins, thus there is a need to purify inclusion bodies prior to refolding. We have compared centrifugation and membrane filtration for the washing and recovery of inclusion bodies of recombinant hen egg white lysozyme (rHEWL). It was found that the most significant purification occurred during the removal of cell debris. Moderate improvements in purity were subsequently obtained by washing using EDTA, moderate urea solutions and Triton X-100. Centrifugation between each wash step gave a purer product with a higher rHEWL yield. With microfiltration, use of a 0.45 micron membrane gave higher solvent fluxes, purer inclusion bodies and greater protein yield as compared with a 0.1 micron membrane. Significant flux decline was observed for both membranes. Second, we studied the refolding of rHEWL. Refolding from an initial concentration of 1.5 mg ml-1, by 100-fold batch dilution gave a 43% recovery of specific activity. Purified inclusion bodies gave rise to higher refolding yields, and negligible activity was observed after refolding partially purified material. Refolding rHEWL with a size exclusion chromatography based process gave rise to a refolding yield of 35% that corresponded to a 20-fold dilution.  相似文献   

12.
The genes encoding carboxypeptidase Y (CPY) and CPY propeptide (CPYPR) from Saccharomyces cerevisiae were cloned and expressed in Escherichia coli. Six consecutive histidine residues were fused to the C-terminus of the CPYPR for facilitated purification. High-level expression of CPY and CPYPR-His(6) was achieved but most of the expressed proteins were present in the form of inclusion bodies in the bacterial cytoplasm. The CPY and CPYPR-His(6) produced as inclusion bodies were separated from the cells and solubilized in 6 and 3 M guanidinium chloride, respectively. The denatured CPYPR-His(6) was refolded by dilution 1:30 into the renaturation buffer (50 mM Tris-HCl containing 0.5 M NaCl and 3 mM EDTA, pH 8.0), and the refolded CPYPR-His(6) was further purified to 90% purity by single-step immobilized metal ion affinity chromatography. The denatured CPY was refolded by dilution 1:60 into the renaturation buffer containing CPYPR-His(6) at various concentrations. Increasing the molar ratio of CPYPR-His(6) to CPY resulted in an increase in the CPY refolding yield, indicating that the CPYPR-His(6) plays a chaperone-like role in in vitro folding of CPY. The refolded CPY was purified to 92% purity by single-step p-aminobenzylsuccinic acid affinity chromatography. When refolding was carried out in the presence of 10 molar eq CPYPR-His(6), the specific activity, N-(2-furanacryloyl)-l-phenylalanyl-l-phenylalanine hydrolysis activity per milligram of protein, of purified recombinant CPY was found to be about 63% of that of native S. cerevisiae CPY.  相似文献   

13.
High hydrostatic pressure (HHP)-mediated solubilization and refolding of five inclusion bodies (IBs) produced from bacteria, three gram-negative binding proteins (GNBP1, GNBP2, and GNBP3) from Drosophila, and two phosphatases from human were investigated in combination of a redox-shuffling agent (2 mM DTT and 6 mM GSSG) and various additives. HHP (200 MPa) combined with the redox-shuffling agent resulted in solubilization yields of approximately 42%-58% from 1 mg/mL of IBs. Addition of urea (1 and 2 M), 2.5 M glycerol, L-arginine (0.5 M), Tween 20 (0.1 mM), or Triton X-100 (0.5 mM) significantly enhanced the solubilization yield for all proteins. However, urea, glycerol, and nonionic surfactants populated more soluble oligomeric species than monomeric species, whereas arginine dominantly induced functional monomeric species (approximately 70%-100%) to achieve refolding yields of approximately 55%-78% from IBs (1 mg/mL). Our results suggest that the combination of HHP with arginine is most effective in enhancing the refolding yield by preventing aggregation of partially folded intermediates populated during the refolding. Using the refolded proteins, the binding specificity of GNBP2 and GNBP3 was newly identified the same as with that of GNBP1, and the enzymatic activities of the two phosphatases facilitates their further characterization.  相似文献   

14.
Human recombinant prethrombin-2 was produced in Escherichia coli. The expressed prethrombin-2 formed intracellular inclusion bodies from which the protein was refolded by a simple one-step dilution process in buffer consisting of 50 mM Tris-HCl, containing 20 mM CaCl(2), 500 mM NaCl, 1 mM EDTA, 600 mM arginine, 1 mM cysteine, 0.1 mM cystine, 10% (v/v) glycerol, and 0.2% (w/v) Brij-58 at pH 8.5. After refolding, prethrombin-2 was purified by hirudin-based COOH-terminal peptide affinity chromatography, and then activated with Echis carinatus snake venom prothrombin activator (ecarin). The activated protein, alpha-thrombin, was then tested for several activities including activity toward chromogenic substrate, release of fibrinopeptide A from fibrinogen, activation of protein C, and thrombin-activatable fibrinolysis inhibitor, reactivity with antithrombin, clotting activity, and platelet aggregation. The kinetic data showed no differences in activity between our recombinant alpha-thrombin and plasma-derived alpha-thrombin. The yield of refolded recombinant human prethrombin-2 was about 4-7% of the starting amount of solubilized protein. In addition, the final yield of purified refolded protein was 0.5-1%, and about 1 mg of recombinant prethrombin-2 could be isolated from 1 liter of E. coli cell culture.  相似文献   

15.
The human gene encoding the mature form of bone morphogenetic protein-2 (hBMP-2), a dimeric disulfide-bonded protein of the cystine knot growth factor family, was expressed in recombinant Escherichia coli using a temperature-inducible expression system. The recombinant protein was produced in the form of cytoplasmic inclusion bodies and the effect of different variables on the renaturation of rhBMP-2 was investigated. In particular, variables such as pH, redox conditions, protein concentration, temperature, the presence of different types of aggregation suppressors, and host cell contaminants were studied with respect to their effect on aggregation during refolding and on the final renaturation yield of rhBMP-2. It is shown that the renaturation yield is particularly sensitive to pH, temperature, protein concentration, and the presence of aggregation suppressors. In contrast, little effect of the redox conditions and the ionic strength on the renaturation yield was observed, as equal yields were obtained in a broad range of reduced to oxidized glutathione ratios and concentrations of NaCl, respectively. The aggregation suppressor 2-(cyclohexylamino)ethanesulfonic acid (CHES) proved to be superior with respect to the final renaturation yield, although, in comparison to the more common arginine, it was less efficient in preventing aggregation of rhBMP-2 during refolding. Detergent washing of inclusion bodies was sufficient, as further purification of rhBMP-2 prior to refolding was without effect on the final renaturation yield. An increase in the concentration of renatured rhBMP-2 was achieved by a pulsed refolding procedure by which up to a total amount of 2.1 mg mL(-1) rhBMP-2 could be transferred in seven pulses into the renaturation buffer with an overall refolding yield of 38%, corresponding to 0.8 mg mL(-1) renatured dimeric rhBMP-2. Furthermore, a simplified purification procedure is presented that also includes freeze-drying for long-term storage of biologically active rhBMP-2. Finally, it is shown that the appearance of rhBMP-2 variants could be avoided by using a host strain overexpressing rare codon tRNAs.  相似文献   

16.
目的:表达并纯化mLST8蛋白。方法:PCR扩增mLST8的编码cDNA,克隆到pET-28a(+)表达载体,将重组质粒pET-28a-mLST8转化大肠杆菌BL21(DE3)感受态细胞,在IPTG诱导下表达目的蛋白;提取包涵体,用Ni2+亲和层析纯化目的蛋白,稀释和透析相结合进行复性,对复性蛋白进行阴离子交换层析、分子筛层析,将纯的复性mLST8进行肽指纹质谱鉴定和圆二色谱分析。结果:酶切和DNA测序证明pET-28a-mLST8表达质粒构建无误,并在大肠杆菌中得到高效表达;通过Ni2+亲和层析、复性、离子交换层析和分子筛层析获得了较高纯度的复性蛋白,肽指纹质谱鉴定为mLST8;mLST8蛋白的二级结构[α螺旋为18.2%,β折叠为52.3%(其中平行结构为12.1%,反向平行结构为40.2%),β转角为20.7%,无规则卷曲为39.9%]表明其为典型的β折叠结构。结论:在大肠杆菌中表达了重组mLST8蛋白,复性获得了二级结构准确的mLST8,为进一步研究mLST8的晶体结构与功能奠定了基础。  相似文献   

17.
We have cloned and constructed plasmid vectors, pETB23H and pETB23L, for bacterial expression of heavy (H) and light (L) chain cDNAs of Fab' of mAbB23 a monoclonal antibody specific to human plasma apolipoprotein (apo) B-100. The H- and L-chains were expressed as insoluble inclusion bodies in the cytoplasm of Escherichia coli. The inclusion bodies of both chains were isolated from the cell lysate, solubilized in 6 M guanidium-HCl, and mixed in equal molar amounts. Refolding was performed in three stages of dialysis: first, dialysis against 3 M guanidium buffer, next, continuous decrement of guanidium in the dialysis buffer through slow addition of 1 M guanidium buffer, and finally, dialysis against a buffer without guanidium. After the refolding, active Fab' (rFab') was purified through an apo B-100-coupled affinity column. When compared by ELISA, the rFab' had a slightly decreased antigen-binding activity (about 0.7-fold) compared with native Fab. The refolding yield was maximum (75%) when performed at the protein concentrations not more than 0.4 mg ml(-1), whereas the yield decreased exponentially at higher concentrations. The maximum recovery was obtained at the refolding concentration of 1.8 mg ml(-1), where the yield was about 45%. Overall, 2.4-3.0 mg of active rFab' specific to apo B-100 was successfully obtained from 1 l cultivation of E. coli cells.  相似文献   

18.
huGM-CSF(9-127)-IL-6(29-184)融合蛋白的复性及纯化研究   总被引:1,自引:0,他引:1  
利用Q Sepharose H.P.离子交换柱层析在8mol/L尿素变性条件下对huGM-CSF(9-127)-IL-6(29-184)融合蛋白进行初步纯化,然后再利用Sephacryl S-200分子筛柱层析复性及纯化后获得目的蛋白,其纯度达到95%以上。该纯化方案成功地解决了稀释复性或透析复性产物在进行Q Sepharose H.P.离子交换柱层析时目的蛋白不稳定而沉积于柱上的问题,获得了较好的复性效果,复性率达到80%以上。使用该纯化方案,1天内便可基本完成重组蛋白的复性及纯化过程,而且也便于扩大。  相似文献   

19.
Recombinant human macrophage colony-stimulating factor (rhM-CSF), a homodimeric, disulfide bonded protein, was expressed in Escherichia coli in the form of inclusion bodies. Reduced and denatured rhM-CSF monomers were refolded in the presence of a thiol mixture (reduced and oxidized glutathione) and a low concentration of denaturing agent (urea or guanidinium chloride). Refolding was monitored by nonreducing gel electrophoresis and recovery of bioactivity. The effects of denaturant type and concentration, protein concentration, concentration of thiol/disulfide reagents, temperature, and presence of impurities on the kinetics of rhM-CSF renaturation were investigated. Low denaturant concentrations (<0.5 M urea) and high protein concentrations (>0.4 mg/ml) in the refolding mixture resulted in increased formation of aggregates, although aggregation was never significant even when refolding was carried out at room temperature. Higher protein concentration resulted in higher rates but did not lead to increased yields, due to the formation of unwanted aggregates. Experiments conducted at room temperature resulted in slightly higher rates than those conducted at 4 degrees C. Although the initial renaturation rate for solubilized inclusion body protein without purification was higher than that of the reversed-phase purified reduced denatured rhM-CSF, the final renaturation yield was much higher for the purified material. A maximum refolding yield of 95% was obtained for the purified material at the following refolding conditions: 0.5 M urea, 50 mM Tris, 1.25 mM DTT, 2 mM GSH, 2 mM GSSG, 22 degrees C, pH 8, [protein] = 0.13 mg/ml.  相似文献   

20.
Bacterially-produced recombinant prion protein (rPrP) is a frequently used model system for the study of the properties of wild-type and mutant prion proteins by biochemical and biophysical approaches. A range of approaches have been developed for the purification and refolding of untagged rPrP expressed as inclusion bodies in Escherichia coli, including refolding by dialysis and simultaneous on-column purification and refolding. In order to perform a higher-throughput analysis of different rPrP proteins, an approach that produces highly pure rPrP with a minimum of purification steps and a high yield per liter of induced bacterial culture is desired. Here, we directly compare purification approaches for untagged bovine rPrP as adapted to rapid, small-scale formats useful for higher-throughput studies. An analysis of protein yield, purity, oxidation, and refolding revealed significant differences between preparative methods as adapted to the small-scale format, and based on these findings we provide recommendations for future purifications. We also describe the utility of a sensitive commercial kit for thiol analysis of these preparations, the pH dependence of dimer formation during refolding of bovine rPrP, and bovine rPrP binding to cobalt affinity resin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号