首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recordings of [Ca2+]i in single AR42J cells loaded with Fura 2 were used to study regulation of [Ca2+]i oscillation. Continuous stimulation with the cholecystokinin analogue, (t-butyloxycarbonyl-Tyr-(SO3)-norleucine-Gly-Trp-Nle-Asp-2-phenylethyl ester) or carbachol evoked long lasting oscillation in [Ca2+]i. Removal of CCK-JMV-180 after brief stimulation did not abruptly stop the oscillation. Rather, removal of CCK-JMV-180 resulted in time-dependent reduction in amplitude with little change in frequency of oscillation. The patterns of [Ca2+]i oscillation were affected by activation of protein kinase C and protein kinase A. However, down-regulation of protein kinase C activity did not prevent stimulation of [Ca2+]i oscillation. Hence, we conclude that an active protein kinase C pathway is not crucial for [Ca2+]i oscillation in this cell line. Variation in extracellular Ca2+ concentration (Ca2+out) was used to further characterize the oscillation. Reducing Ca2+out to approximately 10 microM resulted in a time dependent inhibition of [Ca2+]i oscillation. Subsequent step increases in Ca2+out up to 2-3 mM resulted in increased amplitude and frequency of oscillation. Further increase in Ca2+out or an increase in plasma membrane permeability to Ca2+, brought about by an increase in pHo, resulted in increased amplitude, decreased frequency, and modified shape of the [Ca2+]i spikes. These observations point to the existence of regulatory mechanisms controlling the duration of Ca2+ release and entry during [Ca2+]i oscillation.  相似文献   

2.
3.
Oscillation in [Ca2+]i induced by agonists has been described in many cell types and is thought to reflect Ca2+ release from and uptake into internal stores. We measured [Ca2+]i and Mn2+ entry in single cells of the pancreatic acinar cell line AR42J loaded with Fura 2 to examine the behavior of Ca2+ influx across the plasma membrane (Ca2+ entry) during agonist-evoked [Ca2+]i oscillation. Addition of extracellular Ca2+ (Ca2+out) to agonist-stimulated cells bathed in Ca2(+)-free medium resulted in a marked [Ca2+]i increase blocked by La3+. The use of Mn2+ as a congener of Ca2+ to follow unidirectional Ca2+ movement reveals an oscillatory activation of Ca2+ entry by Ca2(+)-mobilizing agonists. The frequency at which Ca2+ entry oscillated matched the frequency of Ca2+ release from intracellular stores. Ca2+ entry is activated after completion of Ca2+ release and is inactivated within the time span of each [Ca2+]i spike. These studies reveal a new aspect of [Ca2+]i oscillation in agonist-stimulated cells, that is the oscillatory activation of [Ca2+]i entry during [Ca2+]i oscillation.  相似文献   

4.
In the present study, we evaluated proapoptotic protein Bax on mitochondria and Ca2+ homeostasis in primary cultured astrocytes. We found that recombinant Bax (rBax, 10 and 100 ng/ml) induces a loss in mitochondrial membrane potential (Delta Psi m). This effect might be related to the inhibition of respiratory rates and a partial release of cytochrome c, which may change mitochondrial morphology. The loss of Delta Psi m and a selective permeabilization of mitochondrial membranes contribute to the release of Ca2+ from the mitochondria. This was inhibited by cyclosporin A (5 microM) and Ruthenium Red (1 microg/ml), indicating the involvement of mitochondrial Ca2+ transport mechanisms. Bax-induced mitochondrial Ca2+ release evokes Ca2+ waves and wave propagation between cells. Our results show that Bax induces mitochondrial alteration that affects Ca2+ homeostasis and signaling. These changes show that Ca2+ signals might be correlated with the proapoptotic activities of Bax.  相似文献   

5.
We report the first Fourier transform infrared analysis of prion protein (PrP) repeats and the first study of PrP repeats of marsupial origin. Large changes in the secondary structure and an increase in hydrogen bonding within the peptide groups were evident from a red shift of the amide I band by >7 cm(-1) and an approximately five-fold reduction in amide hydrogen-deuterium exchange for peptide interacting with Cu(2+) ions. Changes in the tertiary structure upon copper binding were also evident from the appearance of a new band at 1564 cm(-1), which arises from the ring vibration of histidine. The copper-induced conformational change is pH dependent, and occurs at pH >7.  相似文献   

6.
Changes in [Ca2+]i are essential in modulating a variety of cellular functions. In no other cell type does the regulation of [Ca2+]i reach the level of sophistication observed in cells of neuronal origin. Because of its physicochemical characteristics, the fluorescent Ca2+ indicator Fura-2 has become extremely popular among neuroscientists. The use of this probe, however, has generated a number of problems, in particular, extracytosolic trapping and leakage from intact cells. In the first part of this contribution we briefly discuss the practical application of Fura-2 to the study of [Ca2+]i in primary cultures of neurons and astrocytes. In the second part, we review some recent data (mainly from our laboratories) obtained in neurons and neuroendocrine cells, concerning the regulation of different types of Ca2+ channels and the role and mechanism of intracellular Ca2+ mobilization. The experimental evidence supporting the existence of a previously unrecognised organelle, the calciosome, that we hypothesize represents the functional equivalent in non-muscle cells of sarcoplasmic reticulum, will also briefly be discussed.  相似文献   

7.
A possible role in secretory processes is proposed for inositol 1,4,5-triphosphate (IP3), based upon investigations of the Ca2+ steady state maintained by "leaky', insulin-secreting RINm5F cells. These cells had been treated with digitonin to permeabilize their plasma membranes and thereby ensure that only intracellular Ca2+ buffering mechanisms were active. When placed in a medium with a cation composition resembling that of the cytosol, cells rapidly took up Ca2+ as measured by a Ca2+-specific minielectrode. Two Ca2+ steady states were observed. A lower level of around 120nM required ATP-dependent Ca2+ uptake and was probably determined by the endoplasmic reticulum. The higher steady state (approx. 800 nM), seen only in the absence of ATP, was shown to be due to mitochondrial activity. IP3 specifically released Ca2+ accumulated in the ATP-dependent pool, but not from mitochondria, since Ca2+ release was demonstrated in the presence of the respiratory poison antimycin. The IP3-induced Ca2+ release was rapid, with 50% of the response being seen within 15s. The apparent Km was 0.5 microM and maximal concentrations of IP3 (2.5 microM) produced a peak Ca2+ release of 10 nmol/mg of cell protein, which was followed by re-uptake. A full Ca2+ response was seen if sequential pulses of 2.5 microM-IP3 were added at 20 min intervals, although there was a slight (less than 20%) attenuation if the intervening period was decreased to 10 min. These observations could be related to the rate of IP3 degradation which, in this system, corresponded to a 25% loss of added 32P label within 2 min, and a 75% loss within 20 min. The results suggest that IP3 might act as a link between metabolic, cationic and secretory events during the stimulation of insulin release.  相似文献   

8.
Endothelin-1 is a powerful inotropic peptide for the rat atrium. Its action can develop in the absence of L-type Ca2+ channel activity provided that the external Ca2(+)-concentration has been raised to supraphysiological concentrations. Endothelin stimulates phosphatidylinositol hydrolysis in new born rat atrial cells via a mechanism that is insensitive to pertussis toxin. The diacylglycerol/protein kinase C signaling pathway cannot account for the contractile action of endothelin but its activation by phorbol esters induces a partial desensitization of phospholipase C activity. Endothelin-1 and the related peptides, endothelin-2, endothelin-3, and sarafotoxin S6b, raise intracellular Ca2+ levels in rat atrial cells. The actions of endothelin-1, endothelin-2, and sarafotoxin on [Ca2+]i are mutually exclusive, suggesting that they act at the same receptor site. The rise in [Ca2+]i induced by endothelins results both from the mobilization of intracellular stores and from Ca2+ entry through the sarcolemma via a pathway that is not voltage-dependent L-type Ca2+ channels. The Ca2+ store that is mobilized in response to endothelin retains its Ca2+ content when cells were incubated for long periods of time in a 50 nM Ca2+ solution. It is insensitive to caffeine and ryanodine. These two properties distinguish it from the sarcoplasmic reticulum. Contraction experiments in which the pacing rate has been altered to favor Ca2+ accumulation into terminal cisternae of the sarcoplasmic reticulum also suggest that the Ca2+ load of the sarcoplasmic reticulum is increased in endothelin treated rat atria.  相似文献   

9.
10.
Human erythroleukemia cells are a model system for studies of alpha 2-adrenergic receptors and their coupling to inhibition of adenylate cyclase (McKernan, R. M., Howard, M. J., Motulsky, H. J., and Insel, P. A. (1987) Mol. Pharmacol. 32, 258-265). Using Fura-2, we show that alpha 2-adrenergic receptor stimulation also increases intracellular Ca2+ in these cells by 80-250 nM. Although epinephrine only inhibited forskolin-stimulated cAMP generation when beta-adrenergic receptors were blocked, the Ca2+ increase was not affected by beta-adrenergic receptor blockade. The Ca2+ increase was not affected by forskolin or 8-bromo-cAMP. Thus, alpha 2-adrenergic receptors independently couple to elevation of intracellular Ca2+ and adenylate cyclase inhibition. Chelating all extracellular Ca2+ did not reduce the response, demonstrating mobilization of intracellular, rather than influx of extracellular Ca2+. The epinephrine-stimulated Ca2+ mobilization occurred prior to any detectable increase in inositol-(1,4,5)-trisphosphate. It was abolished by pretreatment with pertussis toxin (which blocks some G protein-mediated processes), but not by aspirin and indomethacin (which inhibit cyclooxygenase), nordihydroguaiaretic acid (which inhibits lipoxygenase), or Na+-free buffer (to block any Na+H+ exchange). We conclude, therefore, that alpha 2-adrenergic receptors on human erythroleukemia cells couple to mobilization of intracellular Ca2+ via a (pertussis toxin-sensitive) G protein-mediated mechanism that is independent of inhibition of adenylate cyclase.  相似文献   

11.
The relationship between the depletion of IP3-releasable intracellular Ca2+ stores and the activation of Ca(2+)-selective membrane current was determined during the stimulation of M1 muscarinic receptors in N1E-115 neuroblastoma cells. External Ca2+ is required for refilling Ca2+ stores and the voltage-independent, receptor-regulated Ca2+ current represents a significant Ca2+ source for refilling. The time course of Ca2+ store depletion was measured with fura-2 fluorescence imaging, and it was compared with the time course of Ca2+ current activation measured with nystatin patch voltage clamp. At the time of maximum current density (0.18 + .03 pA/pF; n = 48), the Ca2+ content of the IP3- releasable Ca2+ pool is reduced to 39 + 3% (n = 10) of its resting value. Calcium stores deplete rapidly, reaching a minimum Ca2+ content in 15-30 s. The activation of Ca2+ current is delayed by 10-15 s after the beginning of Ca2+ release and continues to gradually increase for nearly 60 s, long after Ca2+ release has peaked and subsided. The delay in the appearance of the current is consistent with the idea that the production and accumulation of a second messenger is the rate-limiting step in current activation. The time course of Ca2+ store depletion was also measured after adding thapsigargin to block intracellular Ca2+ ATPase. After 15 min in thapsigargin, IP3-releasable Ca2+ stores are depleted by > 90% and the Ca2+ current is maximal (0.19 + 0.05 pA/pF; n = 6). Intracellular loading with the Ca2+ buffer EGTA/AM (10 microM; 30 min) depletes IP3-releasable Ca2+ stores by between 25 and 50%, and it activates a voltage-independent inward current with properties similar to the current activated by agonist or thapsigargin. The current density after EGTA/AM loading (0.61 + 0.32 pA/pF; n = 4) is three times greater than the current density in response to agonist or thapsigargin. This could result from partial removal of Ca(2+)- dependent inactivation.  相似文献   

12.
We found previously that the cytoplasmic drop isolated from internodal cells of Nitella flexilis releases Ca2+ in response to hypotonic treatment and named the phenomenon hydration-induced Ca2+ release (HICR). The HICR is assumed to be a result of activation of Ca2+ permeable channels in the membrane of Ca2+ stores in a stretch-activated manner. To prove this idea, mechanical stimulus was applied to the drop by means of shooting isotonic/hypnotic medium or silicon oil into the drop, or compressing the drop. All these mechanical stimuli induced a rapid increase in the Ca2+ concentration of the drop. The chloroplast fraction isolated from the cytoplasmic drop released Ca2+ on compression, while the chloroplast-free cytoplasm did not. In Chara corallina, the cytoplasmic drop, which shows a very weak HICR, also responded weakly to the mechanical stimulus, but the chloroplast fraction was inert. When chloroplasts from Chara were added to the chloroplast-free cytoplasm of N. flexilis, the cytoplasm recovered the mechanoresponse. Starch grains were as effective as chloroplasts. The data indicate that Ca2+ permeable channels in the membrane of Ca2+ stores in N. flexilis are really mechano-sensitive.  相似文献   

13.
In Helicobacter pylori-induced gastritis, oxidants are generated through the interactions of bacteria in the lumen, activated granulocytes, and cells of the gastric mucosa. In this study we explored the ability of one such class of oxidants, represented by monochloramine (NH(2)Cl), to serve as agonists of Ca(2+) accumulation within the parietal cell of the gastric gland. Individual gastric glands isolated from rabbit mucosa were loaded with fluorescent reporters for Ca(2+) in the cytoplasm (fura-2 AM) or intracellular stores (mag-fura-2 AM). Conditions were adjusted to screen out contributions from metal cations such as Zn(2+), for which these reporters have affinity. Exposure to NH(2)Cl (up to 200 microM) led to dose-dependent increases in intracellular Ca(2+) concentration ([Ca(2+)](i)), in the range of 200-400 nM above baseline levels. These alterations were prevented by pretreatment with the oxidant scavenger vitamin C or a thiol-reducing agent, dithiothreitol (DTT), which shields intracellular thiol groups from oxidation by chlorinated oxidants. Introduction of vitamin C during ongoing exposure to NH(2)Cl arrested but did not reverse accumulation of Ca(2+) in the cytoplasm. In contrast, introduction of DTT or N-acetylcysteine permitted arrest and partial reversal of the effects of NH(2)Cl. Accumulation of Ca(2+) in the cytoplasm induced by NH(2)Cl is due to release from intracellular stores, entry from the extracellular fluid, and impaired extrusion. Ca(2+)-handling proteins are susceptible to oxidation by chloramines, leading to sustained increases in [Ca(2+)](i). Under certain conditions, NH(2)Cl may act not as an irritant but as an agent that activates intracellular signaling pathways. Anti-NH(2)Cl strategies should take into account different effects of oxidant scavengers and thiol-reducing agents.  相似文献   

14.
Effects of Ca2+ ions on the mobilization of Ca2+ from intracellular stores of intact and permeabilized (15 microM digitonin) Ehrlich ascites tumour cells (EATC) have been compared. For permeabilized cells, the dependences of the initial rate and amplitude of Ca2+ mobilization evoked by the addition of 100 nM inositol 1,4,5-trisphosphate (IP3) on preexisting [Ca2+] were bell-shaped within a [Ca2+] range 10(-7)-10(-6) M with the maxima at [Ca2+] = 166 nM. In intact cells, different concentrations of free cytosolic Ca2+ ([Ca2+]i) were produced using low (up to 0.005%) concentrations of digitonin which selectively increased the permeability of the plasma membrane. Stimulation of cells by exogenous ATP at [Ca2+]i = 10(-8)-10(-6) M resulted in Ca2+ mobilization the rate and amplitude of which were maximal at 102-115 nM Ca2+. The experimental Ca2+ dependences were fit by a model which includes channel opening upon Ca2+ binding and transition to the inactive states upon Ca2+ binding to the closed and open channel forms. Three inactivation types (including two particular cases) demonstrate a slight priority of inhibitory binding of Ca2+ only to the open channel, but predict markedly different parameter values. We conclude that an increase in [Ca2+] can stimulate IP3-induced mobilization, but in intact EATC, deviations of [Ca2+]i from the resting level (about 100 nM) attenuate responses to the agonist stimulation.  相似文献   

15.
Endometriosis is a common inflammatory gynecological disease characterized by the presence of endometrial tissue outside of the uterine cavity. The c-Jun N-terminal kinase (JNK) is a subfamily of the mitogen-activated protein kinases (MAPKs) involved in cellular processes ranging from cytokine expression to apoptosis, and is activated in response to inflammation and cellular stress. We hypothesized that inflammatory cytokines in the peritoneal microenvironment increase JNK MAPK activity in endometriotic endothelial cells, and that human endometrial endothelial cells (HEECs) may be involved in inflammatory pathogenesis of endometriosis. Thus, we evaluated the expression of the total- and phosphorylated-(phospho)-JNK in endometrial and endometriotic endothelial cells in vivo, and in HEECs treated with normal peritoneal fluid (NPF), endometriotic peritoneal fluid (EPF), and the inflammatory cytokines interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) in vitro. Phospho-JNK immunoreactivity in HEECs in normal endometrium was significantly higher in the early proliferative and late secretory phases compared to other phases. Both eutopic and ectopic HEECs from the early secretory phase also revealed higher phospho-JNK immunoreactivity, compared to their respective cycle-matched normal HEECs. Moreover, HEECs treated with EPF showed significantly higher phospho-JNK levels compared to that in HEECs treated with NPF. In conclusion, our in vivo and in vitro findings suggest that increased phosphorylation of JNK in HEECs from women with endometriosis is likely due to high level of IL-1β and TNF-α in peritoneal fluid; this in turn may up-regulate inflammatory cytokine expression and thus play a role in the pathogenesis of endometriosis.  相似文献   

16.
The cationic antimicrobial immunomodulatory peptide, KLK (KLKL5KLK), exerts profound membrane interacting properties, impacting on ultrastructure and fluidity. KLK–membrane interactions that lead to these alterations require the ability of the peptide to move into an α‐helical conformation. We show that KLK induces an increase of the intracellular Ca2+ concentration in human T24 cells. The effect of KLK is buffer‐sensitive, as it is detected when HBSS buffer is used, but not with PBS. This, together with the lack of effect of the middle leucine‐to‐proline‐substituted peptide derivative [KPK (KLKLLPLLKLK)], indicates that it is the conformational propensity rather than the net positive charge that contributes to the effect of KLK on intracellular Ca2+ level of T24 cells. We show that, although KLK slightly stimulates Ca2+ influx into the cell, the bulk increase of Ca2+ levels is due to KLK‐induced depletion of intracellular Ca2+ stores. Finally, we demonstrate a KLK‐induced switch of PS (phosphatidylserine) from the inner to the outer plasma membrane leaflet that contributes to the onset of early apoptotic changes in these cells.  相似文献   

17.
The effects of osmotically-induced cell swelling on cytoplasmic free Ca2+ concentration ([Ca2+]i) were studied in acinar cells from rat submandibular gland using microspectrofluorimetry. Video-imaging techniques were also used to measure cell volume. Hypotonic stress (78% control tonicity) caused rapid cell swelling reaching a maximum relative volume of 1.78 +/- 0.05 (n = 5) compared to control. This swelling was followed by regulatory volume decrease, since relative cell volume decreased significantly to 1.61 +/- 0.08 (n = 5) after 10 min exposure to hypotonic medium. Osmotically induced cell swelling evoked by medium of either 78% or 66% tonicity caused a biphasic increase of [Ca2+]i. The rapid phase of this increase in [Ca2+]i was due to release of Ca2 + from intracellular stores, since it was also observed in cells bathed in Ca2+-free solution. The peak increase of [Ca2+]i induced by cell swelling was 3.40 +/- 0.49 (Fura-2 F340/F380 fluorescence ratio, n = 11) and 3.17 +/- 0.43 (n = 17) in the presence and the absence of extracellular Ca2+, respectively, corresponding to an absolute [Ca2+]i of around 1 microm. We found that around two-thirds of cells tested still showed some swelling-induced Ca2+ release (SICR) even after maximal concentrations (10(-5) M - 10(-4) M) of carbachol had been applied to empty agonist-sensitive intracellular Ca2+ stores. This result was confirmed and extended using thapsigargin to deplete intracellular Ca2+ pools. Hypotonic shock still raised [Ca2+]i in cells pretreated with thapsigargin, confirming that at least some SICR occurred from agonist-insensitive stores. Furthermore, SICR was largely inhibited by pretreatment of cells with carbonyl cyanide m-cholorophenyl hydrazone (CCCP) or ruthenium red, inhibitors of mitochondrial Ca2+ uptake. Our results suggest that the increase in [Ca2+]i, which underlies regulatory volume decrease in submandibular acinar cells, results from release of Ca2+ from both agonist-sensitive and mitochondrial Ca2+ stores.  相似文献   

18.
Polycystin-2, a member of the TRP family of calcium channels, is encoded by the human PKD2 gene. Mutations in that gene can lead to swelling of nephrons into the fluid-filled cysts of polycystic kidney disease. In addition to expression in tubular epithelial cells, human polycystin-2 is found in muscle and neuronal cells, but its cell biological function has been unclear. A homologue in Caenorhabditis elegans is necessary for male mating behavior. We compared the behavior, calcium signaling mechanisms, and electrophysiology of wild-type and pkd-2 knockout C. elegans. In addition to characterizing PKD-2-mediated aggregation and mating behaviors, we found that polycystin-2 is an intracellular Ca(2+) release channel that is required for the normal pattern of Ca(2+) responses involving IP(3) and ryanodine receptor-mediated Ca(2+) release from intracellular stores. Activity of polycystin-2 creates brief cytosolic Ca(2+) transients with increased amplitude and decreased duration. Polycystin-2, along with the IP(3) and ryanodine receptors, acts as a major calcium-release channel in the endoplasmic reticulum in cells where rapid calcium signaling is required, and polycystin-2 activity is essential in those excitable cells for rapid responses to stimuli.  相似文献   

19.
In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP(3)R), a ligand-gated Ca(2+) channel, plays an important role in the control of intracellular Ca(2+). There are three subtypes of IP(3)R that are differentially distributed among cell types. AR4-2J cells express almost exclusively the IP(3)R-2 subtype. The purpose of this study was to investigate the effect of cAMP-dependent protein kinase (PKA) on the activity of IP(3)R-2 in AR4-2J cells. We showed that immunoprecipitated IP(3)R-2 is a good substrate for PKA. Using a back-phosphorylation approach, we showed that endogenous PKA phosphorylates IP(3)R-2 in intact AR4-2J cells. Pretreatment with PKA enhanced IP(3)-induced Ca(2+) release in permeabilized AR4-2J cells. Pretreatment with the cAMP generating agent's forskolin and vasoactive intestinal peptide (VIP) enhanced carbachol (Cch)-induced and epidermal growth factor (EGF)-induced Ca(2+) responses in intact AR4-2J cells. Our results are consistent with an enhancing effect of PKA on IP(3)R-2 activity. This conclusion supports the emerging concept of crosstalk between Ca(2+) signaling and cAMP pathways and thus provides another way by which Ca(2+) signals are finely encoded within non-excitable cells.  相似文献   

20.
The stress-activated protein kinase, c-Jun N-terminal kinase (JNK), has been implicated in the process of cardiac hypertrophy and apoptosis, yet the specific roles of JNK in heart failure are unclear. To determine the effects of JNK activation in intact heart, we established transgenic animals using a Cre/loxP-mediated gene switch approach to achieve targeted expression of an upstream activator, mitogen-activated protein kinase kinase 7 (D) (MKK7D), in ventricular myocytes. MKK7D expression led to significant JNK activation, robust induction of the fetal gene program, and contractile dysfunction. The animals died approximately 7 weeks after birth with signs of congestive heart failure. Doppler mode echocardiography revealed a marked stiffening of JNK-activated hearts that was associated with the remodeling of specific extracellular matrix components. Gene expression analysis of MKK7D hearts revealed up-regulation of transforming growth factor beta signaling, offering a potential molecular mechanism underlying changes in extracellular matrix composition. In addition, we demonstrated that JNK activation led to specific loss of connexin 43 protein and gap junctions without affecting the expression or localization of other key intercalated disc proteins. This specific and localized gap junction remodeling resulted in significant slowing of ventricular electrical conduction in JNK-activated hearts. These results represent the first characterization of JNK-mediated cardiac pathology in vivo and support an important role for JNK signaling in specific aspects of cardiac remodeling in the pathogenesis of cardiac disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号