首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
E Cayanis  O Greengard  C Iliescu 《Enzyme》1980,25(6):382-386
The isozyme pattern and total activity of adenylate kinase were studied in normal adult and fetal human and rat tissues using starch gel electrophoresis. Three adenylate kinase isoenzymes were identified in human tissues. Although normal adult lung exhibited higher adenylate kinase activity than did its fetal or neoplastic variant, isozyme patterns in the three types of tissues were indistinguishable from each other and from that in fetal human liver. The pattern of these three isozymes in rat lung (as in spleen) also did not change between fetal and adult life. However, adult kidney and heart of this species did appear to contain isozymes not present in fetal life. Brain (both adult and fetal) was striking different from all the other tissues in that it contained only one adenylate kinase isozyme. The total adenylate kinase activity per gram of adult rat liver, kidney and lung was significantly higher than in the cognate fetal organs, whereas that in brain or spleen did not change with age. The activity in adult heart (similar to the fetal one) was higher than in any other tissue examined.  相似文献   

2.
3.
4.
Tissues of fetal and adult chickens were examined for pyruvate kinase activity. Two electrophoretically distinguishable and noninterconvertible isozymes were found. One of these, designated as type K (for kidney), is the sole pyruvate kinase in the early fetus and is found in appreciable quantities in all adult tissues except striated muscle. The second isozyme, type M, appears shortly before hatching in striated muscle and brain. These two isozymes correspond in their developmental pattern, tissue distribution, electrophoretic, immunological, and kinetic propertiesto similarly designated mammalian pyruvate kinases. However, no kinetic, immunological, or electrophoretic evidence could be found for a chicken isozyme corresponding to the mammalian type L pyruvate kinase. As the latter isozyme seems to be limited in its distribution mostly to highly differentiated gluconeogenic tissues (notable liver, kidney, and small intestine), our results support the proposition that the mammalian type L pyruvate kinase is a specilized isozyme that is present in mammals but not in birds.  相似文献   

5.
6.
The rat contains at least three homologous cytosolic proteins that bind long chain fatty acids, termed liver (L-), intestinal (I-), and heart (H-) fatty acid binding protein (FABP). I-FABP mRNA is confined to the gastrointestinal tract while L-FABP mRNA is abundantly represented in hepatocytes as well as enterocytes. We have isolated a rat heart FABP cDNA clone and determined the pattern of H-FABP mRNA accumulation in a wide variety of tissues harvested from late fetal, suckling, weaning, and adult rats. RNA blot hybridizations and primer extension analysis disclosed that the distribution of H-FABP mRNA in adult rat tissues is different from that of I- or L-FABP mRNA. H-FABP mRNA is most abundant in adult heart. This mRNA was also present in an adult slow twitch (type I) skeletal muscle (soleus, 63% of the concentration in heart), testes (28%), a fast twitch skeletal muscle (psoas, 17%), brain (10%), kidney (5%), and adrenal gland (5%). H-FABP mRNA was not detected in adult small intestine, colon, spleen, lung, or liver RNA. Distinct patterns of developmental change in H-FABP mRNA accumulation were documented in heart, placenta, brain, kidney, and testes. Myocardial H-FABP mRNA levels rise rapidly during the 48 h prior to and after birth, reaching peak levels by the early weaning period. The postnatal increase in myocardial H-FABP mRNA concentration and its relative distribution in adult fast and slow twitch skeletal muscle are consistent with its previously proposed function in facilitating mitochondrial beta-oxidation of fatty acids. However, the presence of H-FABP mRNA in brain, a tissue which does not normally significantly oxidize fatty acids in late postnatal life, suggests that H-FABP may play a wider role in fatty acid metabolism than previously realized. Mouse-hamster somatic cell hybrids were utilized to map H-FABP. Using stringencies which did not produce cross-hybridization between L-, I-, and H-FABP DNA sequences, we found at least three loci in the mouse genome, each located on different chromosomes, which reacted with our cloned H-FABP cDNA. None of these H-FABP-related loci were linked to the gene which specifies a highly homologous adipocyte-specific protein termed aP2 or to genes encoding two other members of this protein family, cellular retinol binding protein and cellular retinol binding protein II.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Adenylate cyclase activities have been assayed in the human fetal adrenal, heart ventricle, brain, liver, testis, kidney, skeletal muscle and lung during the first trimester of pregnancy. The requirements for adenylate cyclases are similar to those reported in all adult tissues. Of all tissues studied, heart ventricle had the highest level of enzymatic activity, and this tissue was most responsive to hormonal stimulation. Although adenylate cyclases from all of these tissues were stimulated by F?in vitro, hormonal stimulation was observed only in the liver, adrenal and heart ventricle. The presence of hormone-responsive adenylate cyclase in human fetal tissues suggests that cyclic AMP may be involved in gene expression.  相似文献   

8.
The human X chromosome-encoded protein kinase X (PrKX) belongs to the family of cAMP-dependent protein kinases. The catalytically active recombinant enzyme expressed in COS cells phosphorylates the heptapeptide Kemptide (LRRASLG) with a specific activity of 1.5 micromol/(min.mg). Using surface plasmon resonance, high affinity interactions were demonstrated with the regulatory subunit type I (RIalpha) of cAMP-dependent protein kinase (KD = 10 nM) and the heat-stable protein kinase inhibitor (KD = 15 nM), but not with the type II regulatory subunit (RIIalpha, KD = 2.3 microM) under physiological conditions. Kemptide and autophosphorylation activities of PrKX are strongly inhibited by the RIalpha subunit and by protein kinase inhibitor in vitro, but only weakly by the RIIalpha subunit. The inhibition by the RIalpha subunit is reversed by addition of nanomolar concentrations of cAMP (Ka = 40 nM), thus demonstrating that PrKX is a novel, type I cAMP-dependent protein kinase that is activated at lower cAMP concentrations than the holoenzyme with the Calpha subunit of cAMP-dependent protein kinase. Microinjection data clearly indicate that the type I R subunit but not type II binds to PrKX in vivo, preventing the translocation of PrKX to the nucleus in the absence of cAMP. The RIIalpha subunit is an excellent substrate for PrKX and is phosphorylated in vitro in a cAMP-independent manner. We discuss how PrKX can modulate the cAMP-mediated signal transduction pathway by preferential binding to the RIalpha subunit and by phosphorylating the RIIalpha subunit in the absence of cAMP.  相似文献   

9.
10.
Caspase-6 is an effector caspase that has not been investigated thoroughly despite the fact that Caspase-6 is strongly activated in Alzheimer disease brains. To understand the full physiological impact of Caspase-6 in humans, we investigated Caspase-6 expression. We performed western blot analyses to detect the pro-Caspase-6 and its active p20 subunit in fetal and adult lung, kidney, brain, spleen, muscle, stomach, colon, heart, liver, skin, and adrenals tissues. The levels were semi-quantitated by densitometry. The results show a ubiquitous expression of Caspase-6 in most fetal tissues with the lowest levels in the brain and the highest levels in the gastrointestinal system. Caspase-6 active p20 subunits were only detected in fetal stomach. Immunohistochemical analysis of a human fetal embryo showed active Caspase-6 positive apoptotic cells in the dorsal root ganglion, liver, lung, kidney, ovary, skeletal muscle and the intestine. In the adult tissues, the levels of Caspase-6 were lower than in fetal tissues but remained high in the colon, stomach, lung, kidney and liver. Immunohistological analyses revealed that active Caspase-6 was abundant in goblet cells and epithelial cells sloughing off the intestinal lining of the adult colon. These results suggest that Caspase-6 is likely important in most tissues during early development but is less involved in adult tissues. The low levels of Caspase-6 in fetal and adult brain indicate that increased expression as observed in Alzheimer Disease is a pathological condition. Lastly, the high levels of Caspase-6 in the gastrointestinal system indicate a potential specific function of Caspase-6 in these tissues.  相似文献   

11.
Lipoprotein lipase (LPL) and hepatic lipase (HL) enzyme activities were previously reported to be regulated during development, but the underlying molecular events are unknown. In addition, little is known about LPL evolution. We cloned and sequenced a complete mouse LPL cDNA. Comparison of sequences from mouse, human, bovine, and guinea pig cDNAs indicated that the rates of evolution of mouse, human, and bovine LPL are quite low, but guinea pig LPL has evolved several times faster than the others. 32P-Labeled mouse LPL and rat HL cDNAs were used to study lipase mRNA tissue distribution and developmental regulation in the rat. Northern gel analysis revealed the presence of a single 1.87 kb HL mRNA species in liver, but not in other tissues including adrenal and ovary. A single 4.0 kb LPL mRNA species was detected in epididymal fat, heart, psoas muscle, lactating mammary gland, adrenal, lung, and ovary, but not in adult kidney, liver, intestine, or brain. Quantitative slot-blot hybridization analysis demonstrated the following relative amounts of LPL mRNA in rat tissues: adipose, 100%; heart, 94%; adrenal, 6.6%; muscle, 3.8%; lung, 3.0%; kidney, 0%; adult liver, 0%. The same quantitative analysis was used to study lipase mRNA levels during development. There was little postnatal variation in LPL mRNA in adipose tissue; maximal levels were detected at the earliest time points studied for both inguinal and epididymal fat. In heart, however, LPL mRNA was detected at low levels 6 days before birth and increased 278-fold as the animals grew to adulthood.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
14.
15.
Production of somatomedin-C, a growth hormone-dependent peptide believed to mediate the growth-promoting actions of growth hormone, has been assessed using explants of fetal mouse tissues. Quantitation of this peptide in media of explants cultured for 3 days has been accomplished with a membrane receptor assay for somatomedin and a specific radioimmunoassay for somatomedin-C. Somatomedin-C is produced by the 11-day-gestation fetal mouse liver, increases exponentially in parallel with liver growth until the 16th day of gestation, and falls postnatally. Media somatomedin is believed to be derived by de novo synthesis since saline extracts of liver and most other fetal tissues contain only a small fraction of the activity in culture media. The immunoreactive material secreted into media appears to be closely related to human somatomedin-C since it produces dilution curves which are parallel to those of pure hormone, migrates on Sephacryl 200 at a size similar to that of one of the components of human serum somatomedin-C, dissociates into small molecular weight material with acid treatment, and isofocuses in a range comparable with that of somatomedin-C purified from human serum. Eleven-day limb bud mesenchymal micromass cultures and 17-day-gestation intestine, heart, brain, kidney, and lung also synthesize immunoreactive somatomedin-C in serum-free medium. For these tissues, the media activity was far in excess of the tissue extractable activity. Somatomedin activity in excess of the tissue extractable activity, however, was not found in media from 17-day-gestation placenta. The finding that multiple tissues synthesize somatomedin-C raises the possibility that the primary biological actions of this hormone are exerted locally at its sites of origin. Although a function of this type by a peptide has not been widely suspected, it seems plausible that the cells of fetal tissues are capable of producing local mitogens in much the same manner as the postulated inducers of tissue differentiation.  相似文献   

16.
Changes in tissue levels of the low Km phosphodiesterase for adenosine 3':5'-monophosphate (cyclic AMP) and guanosine 3':5'-monophosphate (cyclc GMP) in the lung, liver, heart and brain from developing guinea pigs were studied. It was found that the contents of the soluble (cytosol) phosphodiesterase for both cyclic AMP and cyclic GMP were higher in the lung from the fetus than from the neonate and adult. The ontogenetic changes seen in the liver were qualitatively similar to thos in the lung with respect to cyclic GMP hydrolysis, while a reversed pattern of change was noted in the brain. The level of cyclic AMP phosphodiesterase was highest in the fetal heart. Throughout the fetal stage, the levels of the enzyme for cyclic GMP hydrolysis were higher than those for cyclic AMP in the lung. At or around birth, a reversal in the relative levels of the two enzymes took place; two days after birth, the level of the enzyme for cyclic AMP was 2-3times higher than thos for cyclic GMP. Kinetic analysis showed that phohphodiesterases from extracts of the lung from all developmental stages of guinea pigs had the same Km (2.6 muM) for cyclic AMP and the same Km (6.6 muM) for cyclic GMP. The relative values of V, based on assays using the same amount of enzyme protein, in decreasing order, were fetus greater than neonate greater than adult. The present findings suggest that metabolism of the two cyclic nucleotides may be closely related to developmental processes of the tissues. Moreover, the actions involving cyclic GMP may be more predominent in the fetal lung and adult brain.  相似文献   

17.
18.
High expression levels ofras p21 protein in normal mouse heart tissues   总被引:1,自引:0,他引:1  
We have investigated the levels of protein encoded by the ras oncogene in normal mouse tissues using an immunoblotting technique. We have found that heart from young or adult NIH or Balb C strains of mice contain high levels of ras protein as compared to lung, liver, spleen, kidney, brain and skeletal muscle tissues from the same animal. Our results indicate that cellular ras expression does not in every case correlate with cell proliferation.  相似文献   

19.
Insulin-like growth factor II (IGF-II) is present at high levels in fetal and early neonatal rat plasma, and decreases profoundly following birth. In the present study, the levels of IGF-II RNA in different rat tissues at different ages were determined by hybridization to a rat IGF-II cDNA probe. IGF-II RNA was present in 11 of 13 fetal or neonatal tissues examined: at higher levels in muscle, skin, lung, liver, intestine, and thymus; at lower levels in brain stem, heart, cerebral cortex, kidney, and hypothalamus; and undetectable in spleen and pancreas (although the latter RNA was partially degraded). In each tissue, Northern blot hybridization revealed the presence of six IGF-II RNAs: 6, 4, 3.8, 2.2, 1.7, and 1.2 kilobase pairs, consistent with results previously observed in the BRL-3A rat liver cell line and attributed to alternative RNA processing. Although differences in the relative abundance of these RNAs were observed in different tissues, the same size species occurred in all tissues with the 4-kilobase pair RNA the most abundant species. RNAs from the different tissues were examined at six developmental ages (days 16 and 21 of gestation; days 2, 11, 22, and 75 after birth) by hybridization to slot blots and Northern blots. In lung, thymus, kidney, and brain stem, IGF-II RNA was expressed at higher levels in the fetus than after birth, whereas in muscle, skin, liver, heart, and intestine, the high fetal levels of IGF-II RNA continued through day 11 or day 22 after birth. IGF-II RNA persisted into adulthood in cerebral cortex and hypothalamus. Although the significance of these tissue-specific differences in the developmental regulation of the expression of IGF-II RNA remains to be established, they exhibit intriguing temporal correlations with major maturational events in some tissues such as lung and muscle.  相似文献   

20.
Aralar1 and citrin are members of the subfamily of calcium-binding mitochondrial carriers and correspond to two isoforms of the mitochondrial aspartate/glutamate carrier (AGC). These proteins are activated by Ca2+ acting on the external side of the inner mitochondrial membrane. Although it is known that aralar1 is expressed mainly in skeletal muscle, heart and brain, whereas citrin is present in liver, kidney and heart, the precise tissue distribution of the two proteins in embryonic and adult tissues is largely unknown. We investigated the pattern of expression of aralar1 and citrin in murine embryonic and adult tissues at the mRNA and protein levels. In situ hybridization analysis indicates that both isoforms are expressed strongly in the branchial arches, dermomyotome, limb and tail buds at early embryonic stages. However, citrin was more abundant in the ectodermal components of these structures whereas aralarl had a predominantly mesenchymal localization. The strong expression of citrin in the liver was acquired postnatally, whereas the characteristic expression of aralar1 in skeletal muscle was detected at E18 and that in the heart began early in development (E11) and was preferentially localized to auricular myocardium in late embryonic stages. Aralar1 was also expressed in bone marrow, T-lymphocytes and macrophages, including Kupffer cells in the liver, indicating that this is the major AGC isoform present in the hematopoietic system. Both aralar1 and citrin were expressed in fetal gut and adult stomach, ovary, testis, and pancreas, but only aralar1 is enriched in lung and insulin-secreting beta cells. These results show that aralar1 is expressed in many more tissues than originally believed and is absent from hepatocytes, where citrin is the only AGC isoform present. This explains why citrin deficiency in humans (type II citrullinemia) only affects the liver and suggests that aralar1 may compensate for the lack of citrin in other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号