首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the base of two overlapping cDNA-clones of tick-borne encephalitis virus (TBEV) genome and synthetic DNA fragments full DNA-copy of the TBEV NS3 protein gene was constructed and expressed in the E. coli cells. It was demonstrated that the relatively low biosynthesis level of full-length NS3 protein in the bacteria was due to the toxicity of the N-terminal region of the protein, consisting of it's first 180 amino acid residues. A form of the gene with deletion of nucleotides coding for the toxic region (called NS3*) was constructed and effective bacterial product of NS3* protein was obtained. The panel of monoclonal antibodies to TBEV NS1 and NS3 proteins was generated. According to the results of experiments of the binding of the monoclonal antibodies 18B2 to the bacterial products of NS3 and NS3* genes it was concluded, that the antigenic determinant recognized by these antibodies was located between 174 and 236 amino acids of TBEV NS3 protein.  相似文献   

2.
Tick-borne encephalitis virus (TBEV) NS5 protein is a multifunctional RNA-dependent RNA polymerase that is indispensable for viral replication. TBEV is considered to be highly neurovirulent and can cause lethal encephalitis. In this study, we demonstrate a novel interaction between TBEV NS5 and the PDZ protein scribble (hScrib) affecting interferon (IFN) type I and II mediated JAK-STAT signalling. The sequence of TBEV NS5 interacting with hScrib was identified using extensive site-directed mutagenesis analysis. Two consecutive mutations in the methyltransferase (MTase) domain of NS5 were found to disrupt binding to hScrib. Colocalization studies with hScrib demonstrated that TBEV NS5 was present at the plasma membrane of mammalian cells. To address the role of viral interference with the IFN response, NS5 proteins were expressed in IFN-stimulated cells. While TBEV NS5 substantially blocked phosphorylation of STAT1, a mutated NS5 protein defective in hScrib binding failed to inhibit JAK-STAT signalling correctly. Furthermore, hScrib knock-down resulted in re-localization of NS5 to intracellular locations and abrogated the impaired STAT1 phosphorylation. These results define the TBEV NS5 protein in concert with hScrib as an antagonist of the IFN response, by demonstrating a correlation between the association and JAK-STAT interference.  相似文献   

3.
Ehrlichia chaffeensis and Ehrlichia canis are tick-transmitted rickettsial pathogens that cause human and canine monocytic ehrlichiosis respectively. We tested the hypothesis that these pathogens express unique proteins in response to their growth in vertebrate and tick host cells and that this differential expression is similar in closely related Ehrlichia species. Evaluation of nine E. chaffeensis isolates and one E. canis isolate demonstrated that protein expression was host cell-dependent. The differentially expressed proteins included those from the p28/30-Omp multigene locus. E. chaffeensis and E. canis proteins expressed in infected macrophages were primarily the products of the p28-Omp 19 and 20 genes or their orthologues. In cultured tick cells, E. canis expressed only the p30-10 protein, an orthologue of the E. chaffeensis p28-Omp 14 protein which is the only protein expressed by E. chaffeensis propagated in cultured tick cells. The expressed Omp proteins were post-translationally modified to generate multiple molecular forms. E. chaffeensis gene expression from the p28/30-Omp locus was similar in tick cell lines derived from both vector (Amblyomma americanum) and non-vector (Ixodes scapularis) ticks. Differential expression of proteins within the p28/p30-Omp locus may therefore be vital for adaptation of Ehrlichia species to their dual host life cycle.  相似文献   

4.
Antibody-mediated neutralization of viruses has been extensively studied in vitro, but the precise mechanisms that account for antibody-mediated protection against viral infection in vivo still remain largely uncharacterized. The two points under discussion are antibodies conferring sterilizing immunity by neutralizing the virus inoculum or protection against the development of disease without complete inhibition of virus replication. For tick-borne encephalitis virus (TBEV), a flavivirus, transfer of neutralizing antibodies specific for envelope glycoprotein E protected mice from subsequent TBEV challenge. Nevertheless, short-term, low-level virus replication was detected in these mice. Furthermore, mice that were exposed to replicating but not to inactivated virus while passively protected developed active immunity to TBEV rechallenge. Despite the priming of TBEV-specific cytotoxic T cells, adoptive transfer of serum but not of T cells conferred immunity upon naive recipient mice. These transferred sera were not neutralizing and were predominantly specific for NS1, a nonstructural TBEV protein which is expressed in and on infected cells and which is also secreted from these cells. Results of these experiments showed that despite passive protection by neutralizing antibodies, limited virus replication occurs, indicating protection from disease rather than sterilizing immunity. The protective immunity induced by replicating virus is surprisingly not T-cell mediated but is due to antibodies against a nonstructural virus protein absent from the virion.  相似文献   

5.
The subcellular location of the nonstructural proteins NS1, NS2B, and NS3 in Vero cells infected with the flavivirus Kunjin was investigated using indirect immunofluorescence and cryoimmunoelectron microscopy with monospecific antibodies. Comparisons were also made by dual immunolabelling using antibodies to double-stranded RNA (dsRNA), the putative template in the flavivirus replication complex. At 8 h postinfection, the immunofluorescent patterns showed NS1, NS2B, NS3, and dsRNA located in a perinuclear rim with extensions into the peripheral cytoplasm. By 16 h, at the end of the latent period, all patterns had changed to some discrete perinuclear foci associated with a thick cytoplasmic reticulum. By 24 h, this localization in perinuclear foci was more apparent and some foci were dual labelled with antibodies to dsRNA. In immuno-gold-labelled cryosections of infected cells at 24 h, all antibodies were associated with clusters of induced membrane structures in the perinuclear region. Two important and novel observations were made. First, one set of induced membranes comprised vesicle packets of smooth membranes dual labelled with anti-dsRNA and anti-NS1 or anti-NS3 antibodies. Second, adjacent masses of paracrystalline arrays or of convoluted smooth membranes, which appeared to be structurally related, were strongly labelled only with anti-NS2B and anti-NS3 antibodies. Paired membranes similar in appearance to the rough endoplasmic reticulum were also labelled, but less strongly, with antibodies to the three nonstructural proteins. Other paired membranes adjacent to the structures discussed above enclosed accumulated virus particles but were not labelled with any of the four antibodies. The collection of induced membranes may represent virus factories in which translation, RNA synthesis, and virus assembly occur.  相似文献   

6.
This study focused on the antigenic cross‐reactivity between tick‐borne encephalitis virus (TBEV) and Omsk hemorrhagic fever virus (OHFV) to assess the efficacy of the commercial TBE vaccine against OHFV infection. Neutralization tests performed on sera from OHFV‐ and TBEV‐infected mice showed that neutralizing antibodies are cross‐protective. The geometric mean titers of antibodies against TBEV and OHFV from TBEV‐infected mice were similar. However, the titers of anti‐TBEV antibodies in OHFV‐infected mice were significantly lower than those of anti‐OHFV antibodies in the same animals. In mouse vaccination and challenge tests, the TBE vaccine provided 100% protection against OHFV infection. Eighty‐six percent of vaccinees seroconverted against OHFV following complete vaccination, and the geometric mean titers of neutralizing antibodies against OHFV were comparable to those against TBEV. These data suggest that the TBE vaccine can prevent OHFV infection.  相似文献   

7.
The purpose of this paper is to describe the immunocytochemical-localization of N and NS nucleocapsid proteins of vesicular stomatitis virus in the cells throughout the infectious cycle. N protein was detected in the cytoplasm at 2 h after infection and formed small cytoplasmic clusters which progressively increased in size and number. At 5-6 h, it formed large cytoplasmic inclusions. NS protein was detected in the cytoplasm a little later than N protein and showed almost the same immunostaining pattern. However, diffuse background staining of NS protein was identified throughout the cytoplasm by double immunostaining methods. At electron microscopic level, N protein was mostly granular and occasionally organized in strands at 2-3 h. At 5-6 h, numerous immunostained reaction products were organized in strands. The reaction products of NS protein were almost the same as those of N protein with the exception that diffuse background staining was observed. Cos cells, transfected with SV40 vector containing N gene obtained by recombinant DNA technique, showed clusters of N protein, but virtually no strand at electron microscopic levels. The rapid-freezing and deep-etching replica method demonstrated that loosely coiled VSV genome coated with N protein was localized on cytoplasmic sides of cell membranes in the infected cells. These results showed that complete virus genome replication was needed for strand formation of N and NS proteins and suggested that they were bound to VSV genomes in the infected cells.  相似文献   

8.
9.
Celma CC  Roy P 《Journal of virology》2011,85(10):4783-4791
Bluetongue virus (BTV), a member of the Reoviridae family, is an insect-borne animal pathogen. Virus release from infected cells is predominantly by cell lysis, but some BTV particles are also released from the plasma membrane. The nonstructural protein NS3 has been implicated in this process. Using alternate initiator methionine residues, NS3 is expressed as a full-length protein and as a truncated variant that lacks the initial 13 residues, which, by yeast-two hybrid analyses, have been shown to interact with a cellular trafficking protein S100A10/p11. To understand the physiological significance of this interaction in virus-infected cells, we have used reverse genetics to investigate the roles of NS3 and NS3A in virus replication and localization in both mammalian and insect vector-derived cells. A virus expressing NS3 but not NS3A was able to propagate in and release from mammalian cells efficiently. However, growth of a mutant virus expressing only NS3A was severely attenuated, although protein expression, replication, double-stranded RNA (dsRNA) synthesis, and particle assembly in the cytoplasm were observed. Two of three single-amino-acid substitutions in the N-terminal 13 residues of NS3 showed phenotypically similar effects. Pulldown assay and confocal microscopy demonstrated a lack of interaction between NS3 and S100A10/p11 in mutants with poor replication. The role of NS3/NS3A was also assessed in insect cells where virus grew, albeit with a reduced titer. Notably, however, while wild-type particles were found within cytoplasmic vesicles in insect cells, mutant viruses were scattered throughout the cytoplasm and not confined to vesicles. These results provide support for a role for the extreme amino terminus of NS3 in the late stages of virus growth in mammalian cells, plausibly in egress. However, both NS3 and NS3A were required for efficient BTV growth in insect cells.  相似文献   

10.
Tick-borne encephalitis virus (TBEV) encodes an abundant, highly immunogenic nonstructural glycoprotein, NS1. The function of this protein has yet to be determined. We have cloned the NS1 gene from the Neudorfl strain of TBEV under the control of the powerful constitutive cytomegalovirus major immediate-early promoter into an adenovirus E1 deletion mutant. The novel combination of the cytomegalovirus immediate-early promoter and the adenovirus vector produced extremely high levels of NS1 expression in cells which do not support replication of the adenovirus deletion mutant. The recombinant protein was shown to be indistinguishable from authentic TBEV NS1 in its (i) apparent molecular weight by polyacrylamide gel electrophoresis, (ii) glycosylation pattern, (iii) ability to form high-molecular-weight complexes, and (iv) ability to be secreted from cells. Appropriate processing of NS1 expressed by the adenovirus recombinant occurred independently of any additional TBEV-encoded gene function. When directly inoculated into mice, the recombinant adenovirus RAd51 was shown to elicit an antibody response to the TBEV NS1 protein. Immunization with RAd51 conferred protection against challenge with TBEV.  相似文献   

11.
12.
Summary The purpose of this paper is to describe the immunocytochemical localization of N and NS nucleocapsid proteins of vesicular stomatitis virus in the cells throughout the infectious cycle. N protein was detected in the cytoplasm at 2h after infection and formed small cytoplasmic clusters which progressively increased in size and number. At 5–6 h, it formed large cytoplasmic inclusions. NS protein was detected in the cytoplasm a little later than N protein and showed almost the same immunostaining pattern. However, diffuse background staining of NS protein was identified throughout the cytoplasm by double immunostaining methods. At electron microscopic level, N protein was mostly granular and occasionally organized in strands at 2–3 h. At 5–6 h, numerous immunostained reaction products were organized in strands. The reaction products of NS protein were almost the same as those of N protein with the exception that diffuse background staining was observed. Cos cells, transfected with SV40 vector containing N gene obtained by recombinant DNA technique, showed clusters of N protein, but virtually no strand at electron microscopic levels. The rapid-freezing and deep-etching replica method demonstrated that loosely coiled VSV genome coated with N protein was localized on cytoplasmic sides of cell membranes in the infected cells. These results showed that complete virus genome replication was needed for strand formation of N and NS proteins and suggested that they were bound to VSV genomes in the infected cells.S. Ohno was a visiting fellow from the Fogarty International Center at the National Institutes of Health, while this work was in progress  相似文献   

13.
Dynamics and interactions of parvoviral NS1 protein in the nucleus   总被引:1,自引:0,他引:1  
Nuclear positioning and dynamic interactions of viral proteins with nuclear substructures play essential roles during infection with DNA viruses. Visualization of the intranuclear interactions and motility of the parvovirus replication protein (NS1) in living cells gives insight into specific parvovirus protein-cellular structure interactions. Confocal analysis of highly synchronized infected Norden Laboratory Feline Kidney cells showed accumulation of nuclear NS1 in discrete interchromosomal foci. NS1 fused with enhanced yellow fluorescence protein (NS1-EYFP) provided a marker in live cells for dynamics of NS1 traced by photobleaching techniques. Fluorescence Recovery after Photobleaching suggested that the NS1 protein is not freely diffusing but undergoes transient interactions with nuclear compartments. Fluorescence Loss in Photobleaching demonstrated for the first time the shuttling of a parvoviral protein between the nucleus and the cytoplasm as assayed with NS1-EYFP. Finally, time-lapse imaging of infected cells revealed that the intranuclear distribution of NS1-EYFP evolves dramatically starting from the formation of NS1 foci and proceeding to a homogenous distribution extending throughout the nucleus.  相似文献   

14.
A G Pletnev  M Bray    C J Lai 《Journal of virology》1993,67(8):4956-4963
Two new chimeric flaviviruses were constructed from full-length cDNAs that contained tick-borne encephalitis virus (TBEV) CME or ME structural protein genes and the remaining genes derived from dengue type 4 virus (DEN4). Studies involving mice inoculated intracerebrally with the ME chimeric virus indicated that it retained the neurovirulence of its TBEV parent from which its pre-M and E genes were derived. However, unlike parental TBEV, the chimeric virus did not produce encephalitis when mice were inoculated peripherally, indicating a loss of neuroinvasiveness. In the present study, the ME chimeric virus (vME) was subjected to mutational analysis in an attempt to reduce or ablate neurovirulence measured by direct inoculation of virus into the brain. We identified three distinct mutations that were each associated independently with a significant reduction of mouse neurovirulence of vME. These mutations ablated (i) the TBEV pre-M cleavage site, (ii) the TBEV E glycosylation site, or (iii) the first DEN4 NS1 glycosylation site. In contrast, ablation of the second DEN4 NS1 glycosylation site or the TBE pre-M glycosylation site or amino acid substitution at two positions in the TBEV E protein increased neurovirulence. The only conserved feature of the three attenuated mutants was restriction of virus yield in both simian and mosquito cells. Following parenteral inoculation, these attenuated mutants induced complete resistance in mice to fatal encephalitis caused by the highly neurovirulent vME.  相似文献   

15.
Bacteria were isolated from the nasopharynx of BALB/c mice and electroporated with pUR290(NS1)2 containing two copies of tick-borne encephalitis virus (TBEV) strain Sofjin NS1 under the control of the lac promoter. The plasmid persisted in transformants for at least ten passages. The NS1 gene expression was detected in Gram-negative enterobacteria via immunoblotting with monoclonal antibodies against TBEV nonstructural glycoprotein NS1. Recombinant NS1 was detected in bacterial cells and in the culture medium. Intranasal immunization with recombinant bacteria activated production of antibodies against NS1 in serum of BALB/c mice. The humoral immune response to NS1 failed to protect immunized mice from a TBEV challenge.  相似文献   

16.
Langat virus (LGT), the naturally attenuated member of the tick-borne encephalitis virus (TBEV) complex, was tested extensively in clinical trials as a live TBEV vaccine and was found to induce a protective, durable immune response; however, it retained a low residual neuroinvasiveness in mice and humans. In order to ablate or reduce this property, LGT mutants that produced a small plaque size or temperature-sensitive (ts) phenotype in Vero cells were generated using 5-fluorouracil. One of these ts mutants, clone E5-104, exhibited a more than 10(3)-fold reduction in replication at the permissive temperature in both mouse and human neuroblastoma cells and lacked detectable neuroinvasiveness for highly sensitive immunodeficient mice. The E5-104 mutant possessed five amino acid substitutions in the structural protein E and one change in each of the nonstructural proteins NS3 and NS5. Using reverse genetics, we demonstrated that a Lys(46)-->Glu substitution in NS3 as well as a single Lys(315)-->Glu change in E significantly impaired the growth of LGT in neuroblastoma cells and reduced its peripheral neurovirulence for SCID mice. This study and our previous experience with chimeric flaviviruses indicated that a decrease in viral replication in neuroblastoma cells might serve as a predictor of in vivo attenuation of the neurotropic flaviviruses. The combination of seven mutations identified in the nonneuroinvasive E5-104 mutant provided a useful foundation for further development of a live attenuated TBEV vaccine. An evaluation of the complete sequence of virus recovered from brain of SCID mice inoculated with LGT mutants identified sites in the LGT genome that promoted neurovirulence/neuroinvasiveness.  相似文献   

17.
The genus Orbivirus includes both insect and tick-borne viruses. The orbivirus genome, composed of 10 segments of dsRNA, encodes 7 structural proteins (VP1-VP7) and 3 non-structural proteins (NS1-NS3). An open reading frame (ORF) that spans almost the entire length of genome segment-9 (Seg-9) encodes VP6 (the viral helicase). However, bioinformatic analysis recently identified an overlapping ORF (ORFX) in Seg-9. We show that ORFX encodes a new non-structural protein, identified here as NS4. Western blotting and confocal fluorescence microscopy, using antibodies raised against recombinant NS4 from Bluetongue virus (BTV, which is insect-borne), or Great Island virus (GIV, which is tick-borne), demonstrate that these proteins are synthesised in BTV or GIV infected mammalian cells, respectively. BTV NS4 is also expressed in Culicoides insect cells. NS4 forms aggregates throughout the cytoplasm as well as in the nucleus, consistent with identification of nuclear localisation signals within the NS4 sequence. Bioinformatic analyses indicate that NS4 contains coiled-coils, is related to proteins that bind nucleic acids, or are associated with membranes and shows similarities to nucleolar protein UTP20 (a processome subunit). Recombinant NS4 of GIV protects dsRNA from degradation by endoribonucleases of the RNAse III family, indicating that it interacts with dsRNA. However, BTV NS4, which is only half the putative size of the GIV NS4, did not protect dsRNA from RNAse III cleavage. NS4 of both GIV and BTV protect DNA from degradation by DNAse. NS4 was found to associate with lipid droplets in cells infected with BTV or GIV or transfected with a plasmid expressing NS4.  相似文献   

18.
T Urakawa  P Roy 《Journal of virology》1988,62(11):3919-3927
Bluetongue virus (BTV) forms tubules in mammalian cells. These tubules appear to be composed of only one type of protein, NS1, a major nonstructural protein of the virus. To obtain direct evidence for the origin of the tubules, the complete M6 gene of BTV serotype 10 was inserted into the baculovirus transfer vector pAcYM1, so that it was under the control of the polyhedrin promoter of Autographa californica nuclear polyhedrosis virus. After cotransfection of Spodoptera frugiperda cells with wild-type A. californica nuclear polyhedrosis virus DNA in the presence of recombinant transfer vector DNA, polyhedrin-negative baculoviruses were recovered. When S. frugiperda cells were infected with one of the derived recombinant viruses, a protein similar in size and antigenic properties to the authentic BTV NS1 protein was made (representing ca. 50% of the stained cellular proteins). The protein reacted with BTV antibody and formed numerous tubular structures in the cytoplasm of S. frugiperda cells. The tubular structures have been purified to homogeneity from infected-cell extracts by gradient centrifugation. By enzyme-linked immunosorbent assay, the recombinant virus antigen has been used to identify antibodies to five United States BTV serotypes in infected sheep sera, indicating the potentiality of the expressed protein as a group-reactive antigen in the diagnosis of BTV infections.  相似文献   

19.
Vaccines that target blood-feeding disease vectors, such as mosquitoes and ticks, have the potential to protect against the many diseases caused by vector-borne pathogens. We tested the ability of an anti-tick vaccine derived from a tick cement protein (64TRP) of Rhipicephalus appendiculatus to protect mice against tick-borne encephalitis virus (TBEV) transmitted by infected Ixodes ricinus ticks. The vaccine has a "dual action" in immunized animals: when infested with ticks, the inflammatory and immune responses first disrupt the skin feeding site, resulting in impaired blood feeding, and then specific anti-64TRP antibodies cross-react with midgut antigenic epitopes, causing rupture of the tick midgut and death of engorged ticks. Three parameters were measured: "transmission," number of uninfected nymphal ticks that became infected when cofeeding with an infected adult female tick; "support," number of mice supporting virus transmission from the infected tick to cofeeding uninfected nymphs; and "survival," number of mice that survived infection by tick bite and subsequent challenge by intraperitoneal inoculation of a lethal dose of TBEV. We show that one dose of the 64TRP vaccine protects mice against lethal challenge by infected ticks; control animals developed a fatal viral encephalitis. The protective effect of the 64TRP vaccine was comparable to that of a single dose of a commercial TBEV vaccine, while the transmission-blocking effect of 64TRP was better than that of the antiviral vaccine in reducing the number of animals supporting virus transmission. By contrast, the commercial antitick vaccine (TickGARD) that targets only the tick's midgut showed transmission-blocking activity but was not protective. The 64TRP vaccine demonstrates the potential to control vector-borne disease by interfering with pathogen transmission, apparently by mediating a local cutaneous inflammatory immune response at the tick-feeding site.  相似文献   

20.
目的:构建登革2型病毒非结构蛋白NS4B及其突变体Δ2K-NS4B基因的真核载体,并观察二者在哺乳动物细胞内的定位情况。方法:从登革2型病毒43株的全长cDNA克隆载体上扩增获得编码NS4B及缺失2K片段的NS4B突变体Δ2K-NS4B的基因;通过基因重组的方法分别将2段基因克隆入真核表达载体pcDNA6/V5-HisA,获得重组真核表达载体pc/D2-NS4B和pc/D2-Δ2K-NS4B;经脂质体法转染BHK-21细胞后,用RT-PCR、间接免疫荧光和Western印迹鉴定表达的蛋白。结果:重组蛋白D2-NS4B和D2-Δ2K-NS4B可在BHK-21细胞中表达,二者均定位于细胞质中,并具有较好的抗原性,能够被抗登革2型病毒NS4B的多克隆抗体特异识别。结论:重组蛋白D2-NS4B和D2-Δ2K-NS4B在哺乳动物细胞胞质中的正确表达,为深入了解NS4B在登革病毒致病过程中的生物学功能奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号