首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated mechanical function and exogenous fatty acid oxidation in neonatal pig hearts subjected to ischemia, followed by reperfusion. Isolated, isovolumically-beating hearts, from pigs 12 h to 2 days of age, were perfused with an erythrocyte-enriched (hematocrit approximately 15%) solution (37 degrees C). All hearts were studied for 30 min. with a perfusion pressure of 60 mmHg (pre-ischemia). One group of hearts (low-flow ischemia, N = 12) was then perfused for 30 min. with a perfusion pressure of approximately 12 mmHg. In the other group (no-flow ischemic arrest, N = 9), the perfusion pressure was zero for 30 min. Following ischemia in both groups, the perfusion pressure was restored to 60 mmHg for 40 min. (reperfusion). Pre-ischemia parameters for all hearts averaged: left ventricular peak systolic pressure, 99.0 +/- 2.0 mmHg; end diastolic pressure, 1.9 +/- 0.2 mmHg; coronary flow, 3.4 +/- 0.1 ml/min per g; myocardial oxygen consumption, 56.6 +/- 1.6 microliter/min per g and fatty acid oxidation, 33.4 +/- 1.4 nmol/min per g. During low-flow ischemia, hearts released lactate, and the corresponding parameters decreased to: 30.7 +/- 0.9 mmHg; 1.2 +/- 0.3 mmHg; 0.8 +/- 0.1 ml/min per g; 26.6 +/- 2.3 microliters/min per g and 12.9 +/- 1.1 nmol/min per g, respectively. Early in reperfusion in both groups, all parameters, except for fatty acid oxidation, exceeded pre-ischemia values, before recovering to near pre-ischemia values. Late in reperfusion, however, rates of fatty acid oxidation exceeded pre-ischemia rates by approximately 60%. Thus, the neonatal pig heart demonstrated similar recovery following 30 min of low-flow ischemia or no-flow ischemic arrest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effect of endurance training on the resistance of the heart to left ventricular (LV) functional deficit and infarction after a transient regional ischemia and subsequent reperfusion was examined. Female Sprague-Dawley rats were randomly assigned to an endurance exercise training (Tr) group or a sedentary (Sed) control group. After 20 wk of training, hearts were excised, perfused, and instrumented for assessment of LV mechanical function, and the left anterior descending coronary artery was occluded to induce a transient regional ischemia (1 h) that was followed by 2 h of reperfusion. Throughout much of the regional ischemia-reperfusion protocol, coronary flow rates, diastolic function, and LV developed pressure were better preserved in hearts from Tr animals. During the regional ischemia, coronary flow to myocardium outside the ischemic zone at risk (ZAR) was maintained in Tr hearts, whereas it progressively fell in Sed hearts. On release of the coronary artery ligature, flow to the ZAR was greater in Tr than in Sed hearts. Infarct size, expressed as a percentage of the ischemic ZAR, was significantly smaller in hearts from Tr rats (24 +/- 3 vs. 32 +/- 2% of ZAR, P < 0.05). Mn- and CuZn-SOD protein expression were higher in the LV myocardium of Tr animals (P < 0.05 for both isoforms). Our data indicate that long-term exercise training leads to infarct sparing and better maintenance of coronary flow and mechanical function after ischemia-reperfusion.  相似文献   

3.
赵志青  刘冰 《生理学报》1989,41(4):346-353
本实验在18只麻醉开胸犬观察了急性心肌缺血早期血小板聚集功能和冠脉侧支循环功能的变化。实验结果如下:阻断冠脉后心肌缺血区血液中血小板聚集率(PAgR)增大,血小板计数(PC)减少。缺血50min时,PAgR增大58.7±5.6%,PC减少39.5±23.6%,与对照值有明显差异(均为P<0.01)。与此同时,在控制血压条件下,心肌缺血早期单位压力差下冠脉侧支血流量的变化与对照值无明显差异,而根据Wyatt等公式计算的流经缺血区末梢血管的有效侧支血流量明显降低,缺血50min时较对照值降低23.5±9.7%(P<0.05)。PAgR变化与有效侧支血流量改变呈明显负相关(r=-0.887,P<0.01);冠脉侧支指数与梗塞范围呈明显负相关(r=-0.847,P<0.01)。阻断冠脉前静脉注射血小板聚集功能抑制剂阿斯匹林,可明显减轻上述各项参数的异常变化。这些结果提示,心肌缺血早期血小板聚集功能的异常变化虽然对冠脉侧支血管的血流阻力影响较小,但却使流经缺血区末梢血管的有效侧支血流量明显减小,进而扩大梗塞范围。  相似文献   

4.
Two novel calpain inhibitors (A-705239 and A-705253) were studied in isolated perfused rabbit hearts subjected to 60-min occlusion of the ramus interventricularis of the left coronary artery (below the origin of the first diagonal branch), followed by 120 min of reperfusion. The inhibitors were added to the perfusion fluid in various final concentrations from the beginning of the experiments before the coronary artery was blocked. Hemodynamic monitoring and biochemical analysis of perfusion fluid from the coronary outflow were carried out. Myocardial infarct size and the area at risk (transiently non-perfused myocardium) were determined from left ventricular slices after a special staining procedure with Evans blue and 2,3,5-triphenyltetrazolium chloride. The infarcted area (dead myocardium) was 77.9+/-2.3% of the area at risk in untreated controls ( n =12). The infarct size was significantly reduced in the presence of both calpain inhibitors. The best effect was achieved with 10 -8 M A-705253 ( n =8), which reduced ( p <0.001) the infarcted area to 49.3+/-3.9% of the area at risk, corresponding to an infarct reduction of 61.8%. No statistical difference was observed between the experimental groups in coronary perfusion, left ventricular pressure, and in the release of lactate dehydrogenase and creatine kinase from heart muscle.  相似文献   

5.
Preconditioning of the heart can be achieved by an ischemia/reperfusion stimulus, but also by stretching of the heart by an acute volume overload. Since manipulations of the extracellular osmolality affects cell size, we hypothesized that hyperosmotic pretreatment of the isolated perfused rat heart could reduce infarct size following regional ischemia (RI). Langendorff perfused rat hearts were subjected to 30 min RI by ligature of the main branch of the left coronary artery followed by 120 min reperfusion (control group). Ischemic preconditioning (IP-5') was achieved by 5 min total global ischemia and 5 min reperfusion prior to RI. Hyperosmotic pretreatment was accomplished by perfusion with a hyperosmotic buffer (600 mOsm/kg H2O by adding mannitol) for 1 min, 2 min or 5 min. At the end of the experiments, the hearts were cut into 2 mm slices, incubated with triphenyltetrazoliumchloride before scanning and computerized for estimation of infarct size. The average infarct size (as percentage of area at risk) in the control group was 42% and was significantly reduced to 16% by ischemic preconditioning and to 17% by 2 min hyperosmotic pretreatment. Neither 1 min nor 5 min hyperosmotic pretreatment reduced infarct size as compared to the controls. The infarct reducing effect of 2 min hyperosmotic pretreatment was not blunted by inhibition of protein kinase C (chelerytrine chloride), the Na+/H+-exchanger (HOE 694) or stretch-activated anion channels (gadolinium chloride). The results indicate that short-lasting hyperosmotic perturbations of the extracellular environment may precondition the heart to a subsequent ischemic insult.  相似文献   

6.
Brief ischemia before normothermic ischemia protects hearts against reperfusion injury (ischemic preconditioning, IPC), but it is unclear whether it protects against long-term moderate hypothermic ischemia. We explored in isolated guinea pig hearts 1) the influence of two 2-min periods of normothermic ischemia before 4 h, 17 degrees C hypothermic ischemia on cardiac cytosolic [Ca(2+)], mechanical and metabolic function, and infarct size, and 2) the potential role of K(ATP) channels in eliciting cardioprotection. We found that IPC before 4 h moderate hypothermia improved myocardial perfusion, contractility, and relaxation during normothermic reperfusion. Protection was associated with markedly reduced diastolic [Ca(2+)] loading throughout both hypothermic storage and reperfusion. Global infarct size was markedly reduced from 36 +/- 2 (SE)% to 15 +/- 1% with IPC. Bracketing ischemic pulses with 200 microM 5-hydroxydecanoic acid or 10 microM glibenclamide increased infarct size to 28 +/- 3% and 26 +/- 4%, respectively. These results suggest that brief ischemia before long-term hypothermic storage adds to the cardioprotective effects of hypothermia and that this is associated with decreased cytosolic [Ca(2+)] loading and enhanced ATP-sensitive K channel opening.  相似文献   

7.
The calpain inhibitor A-705253 and the Na(+)/H(+)-exchange inhibitor Cariporide were studied in isolated perfused rabbit hearts subjected to 60 min occlusion of the ramus interventricularis of the left coronary artery (below the origin of the first diagonal branch), followed by 120 min of reperfusion. The inhibitors were added to the perfusion fluid solely or in combination at the beginning of reperfusion. Hemodynamic monitoring and biochemical analysis of perfusion fluid from the coronary outflow were performed. Myocardial infarct size and area at risk (transiently not perfused myocardium) were determined from left ventricular slices after a special staining procedure with Evans blue and 2,3,5-triphenyltetrazolium chloride. The infarcted area (dead myocardium) was 72.7+/-4.0% of the area at risk in untreated controls, but was significantly smaller in the presence of the inhibitors. The largest effect was seen with 10(-6) m A-705253, which reduced the infarcted area to 49.2+/-4.1% of the area at risk, corresponding to a reduction of 33.6%. Cariporide at 10(-6) m reduced the infarct size to the same extent. The combination of both inhibitors, however, did not further improve cardioprotection. No statistical difference was observed between the experimental groups in coronary perfusion, left ventricular pressure, heart rate, and in the release of lactate dehydrogenase and creatin kinase from heart muscle.  相似文献   

8.
Our laboratory showed previously that cardiac-specific overexpression of FGF-2 [FGF-2 transgenic (Tg)] results in increased recovery of contractile function and decreased infarct size after ischemia-reperfusion injury. MAPK signaling is downstream of FGF-2 and has been implicated in other models of cardioprotection. Treatment of FGF-2 Tg and wild-type hearts with U-0126, a MEK-ERK pathway inhibitor, significantly reduced recovery of contractile function after global low-flow ischemia-reperfusion injury in FGF-2 Tg (86 +/- 2% vehicle vs. 66 +/- 4% U-0126; P < 0.05) but not wild-type (61 +/- 7% vehicle vs. 67 +/- 7% U-0126) hearts. Similarly, MEK-ERK inhibition significantly increased myocardial infarct size in FGF-2 Tg (12 +/- 3% vehicle vs. 31 +/- 2% U-0126; P < 0.05) but not wild-type (30 +/- 4% vehicle vs. 36 +/- 7% U-0126) hearts. In contrast, treatment of FGF-2 Tg and wild-type hearts with SB-203580, a p38 inhibitor, did not abrogate FGF-2-induced cardioprotection from postischemic contractile dysfunction. Instead, inhibition of p38 resulted in decreased infarct size in wild-type hearts (30 +/- 4% vehicle vs. 11 +/- 2% SB-203580; P < 0.05) but did not alter infarct size in FGF-2 Tg hearts (12 +/- 3% vehicle vs. 14 +/- 1% SB-203580). Western blot analysis of ERK and p38 activation revealed signaling alterations in FGF-2 Tg and wild-type hearts during early ischemia or reperfusion injury. In addition, MEK-independent ERK inhibition by p38 was observed during early ischemic injury. Together these data suggest that activation of ERK and inhibition of p38 by FGF-2 is cardioprotective during ischemia-reperfusion injury.  相似文献   

9.
Adequate growth of coronary vasculature in the remaining left ventricular (LV) myocardium after myocardial infarction (post-MI) is a crucial factor for myocyte survival and performance. We previously demonstrated that post-MI coronary angiogenesis can be stimulated by bradycardia induced with the ATP-sensitive K(+) channel antagonist alinidine. In this study, we tested the hypothesis that heart rate reduction with beta-blockade may also induce coronary growth in the post-MI heart. Transmural MI was induced in 12-mo-old male Sprague-Dawley rats by occlusion of the left anterior descending coronary artery. Bradycardia was induced by administration of the beta-adrenoceptor blocker atenolol (AT) via drinking water (30 mg/day). Three groups of rats were compared: 1) control/sham (C/SH), 2) MI, and 3) MI + AT. In the MI + AT rats, heart rate was consistently reduced by 25-28% compared with C/SH rats. At 4 wk after left anterior descending coronary ligation, infarct size was similar in MI and MI + AT rats (67.1 and 61.5%, respectively), whereas a greater ventricular hypertrophy occurred in bradycardic rats, as indicated by a higher ventricular weight-to-body weight ratio (3.4 +/- 0.1 vs. 2.8 +/- 0.1 mg/g in MI rats). Analysis of LV function revealed a smaller drop in ejection fraction in the MI + AT than in the MI group ( approximately 24 vs. approximately 35%). Furthermore, in MI + AT rats, maximal coronary conductance and coronary perfusion reserve were significantly improved compared with the MI group. The better myocardial perfusion indexes in MI + AT rats were associated with a greater increase in arteriolar length density than in the MI group. Thus chronic reduction of heart rate induced with beta-selective blockade promotes growth of coronary arterioles and, thereby, facilitates regional myocardial perfusion in post-MI hearts.  相似文献   

10.
Interventions such as glycogen depletion, which limit myocardial anaerobic glycolysis and the associated proton production, can reduce myocardial ischemic injury; thus it follows that inhibition of glycogenolysis should also be cardioprotective. Therefore, we examined whether the novel glycogen phosphorylase inhibitor 5-Chloro-N-[(1S,2R)-3-[(3R,4S)-3,4-dihydroxy-1-pyrrolidinyl)]-2-hydroxy-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-carboxamide (ingliforib; CP-368,296) could reduce infarct size in both in vitro and in vivo rabbit models of ischemia-reperfusion injury (30 min of regional ischemia, followed by 120 min of reperfusion). In Langendorff-perfused hearts, constant perfusion of ingliforib started 30 min before regional ischemia and elicited a concentration-dependent reduction in infarct size; infarct size was reduced by 69% with 10 microM ingliforib. No significant drug-induced changes were observed in either cardiac function (heart rate, left ventricular developed pressure) or coronary flow. In open-chest anesthetized rabbits, a dose of ingliforib (15 mg/kg loading dose; 23 mg.kg(-1).h(-1) infusion) selected to achieve a free plasma concentration equivalent to an estimated EC(50) in the isolated hearts (1.2 microM, 0.55 microg/ml) significantly reduced infarct size by 52%, and reduced plasma glucose and lactate concentrations. Furthermore, myocardial glycogen phosphorylase a and total glycogen phosphorylase activity were reduced by 65% and 40%, respectively, and glycogen stores were preserved in ingliforib-treated hearts. No significant change was observed in mean arterial pressure or rate-pressure product in the ingliforib group, although heart rate was modestly decreased postischemia. In conclusion, glycogen phosphorylase inhibition with ingliforib markedly reduces myocardial ischemic injury in vitro and in vivo; this may represent a viable approach for both achieving clinical cardioprotection and treating diabetic patients at increased risk of cardiovascular disease.  相似文献   

11.
Transient episodes of ischemic preconditioning (PC) render myocardium protected against subsequent lethal injury after ischemia and reperfusion. Recent studies indicate that application of short, repetitive ischemia only during the onset of reperfusion after the lethal ischemic event may obtain equivalent protection. We assessed whether such ischemic postconditioning (Postcon) is cardioprotective in pigs by limiting lethal injury. Pentobarbital sodium-anesthetized, open-chest pigs underwent 30 min of complete occlusion of the left anterior descending coronary artery and 3-h reflow. PC was elicited by two cycles of 5-min occlusion plus 10-min reperfusion before the 30-min occlusion period. Postcon was elicited by three cycles of 30-s reperfusion, followed by 30-s reocclusion, after the 30-min occlusion period and before the 3-h reflow. Infarct size (%area-at-risk using triphenyltetrazolium chloride macrochemistry; means +/- SE) after 30 min of ischemia was 26.5 +/- 5.2% (n = 7 hearts/treatment group). PC markedly limited myocardial infarct size (2.8 +/- 1.2%, n = 7 hearts/treatment group, P < 0.05 vs. controls). However, Postcon had no effect on infarct size (37.8 +/- 5.1%, n = 7 hearts/treatment group). Within the subendocardium, Postcon increased phosphorylation of Akt (74 +/- 12%) and ERK1/2 (56 +/- 10%) compared with control hearts subjected only to 30-min occlusion and 15-min reperfusion (P < or = 0.05), and these changes were not different from the response triggered by PC (n = 5 hearts/treatment group). Phosphorylation of downstream p70S6K was also equivalent in PC and Postcon groups. These data do not support the hypothesis that application of 30-s cycles of repetitive ischemia during reperfusion exerts a protective effect on pig hearts subjected to lethal ischemia, but this is not due to a failure to phosphorylate ERK and Akt during early reperfusion.  相似文献   

12.
Considerable attention has focused on the role of protein kinase C (PKC) in triggering the profound infarct-sparing effect of ischemic preconditioning (PC). In contrast, the involvement of inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)], the second messenger generated in parallel with the diacylglycerol-PKC pathway, remains poorly understood. We hypothesized that, if Ins(1,4,5)P(3) signaling [i.e., release of Ins(1,4,5)P(3) and subsequent binding to Ins(1,4,5)P(3) receptors] contributes to PC-induced cardioprotection, then the reduction of infarct size achieved with PC would be attenuated in mice that are deficient in Ins(1,4,5)P(3) receptor protein. To test this concept, hearts were harvested from 1) B6C3Fe-a/a-Itpr-1(opt+/-)/J mutants displaying reduced expression of Ins(1,4,5)P(3) receptor-1 protein, 2) Itpr-1(opt+/+) wild types from the colony, and 3) C57BL/6J mice. All hearts were buffer-perfused and randomized to receive two 5-min episodes of PC ischemia, pretreatment with d-myo-Ins(1,4,5)P(3) [sodium salt of native Ins(1,4,5)P(3)], the mitochondrial ATP-sensitive K(+) channel opener diazoxide, or no intervention (controls). After the treatment phase, all hearts underwent 30-min global ischemia followed by 2 h of reperfusion, and infarct size was delineated by tetrazolium staining. In both wild-type and C57BL/6J cohorts, area of necrosis in hearts that received PC, d-myo-Ins(1,4,5)P(3), and diazoxide averaged 28-35% of the total left ventricle (LV), significantly smaller than the values of 52-53% seen in controls (P < 0.05). In contrast, in Itpr-1(opt+/-) mutants, protection was only seen with diazoxide: neither PC nor d-myo-Ins(1,4,5)P(3) limited infarct size (52-58% vs. 56% of the LV in mutant controls). These data provide novel evidence that Ins(1,4,5)P(3) signaling contributes to infarct size reduction with PC.  相似文献   

13.
Acetaminophen was administered acutely at the onset of reperfusion after 20 min of low-flow, global myocardial ischemia in isolated, perfused guinea pig hearts (Langendorff) to evaluate its influence in the postischemia, reperfused myocardium. Similarly prepared hearts were treated with vehicle or with uric acid (another phenol for comparison). Functionally, acetaminophen-treated hearts (0.35 mM) achieved significantly greater recovery during reperfusion. For example, left ventricular developed pressures at 40 min reperfusion were 38 +/- 3, 27 +/- 3, and 20 +/- 2 in the presence of acetaminophen (P < 0.05, relative to the other two groups), vehicle, and uric acid, respectively. Coronary perfusion pressures and calculated coronary vascular resistances, in the acetaminophen-treated hearts, were significantly lower at the same time (e.g., coronary perfusion pressures in the three groups, respectively, were 40 +/- 2 [P < 0.05], 51 +/- 3, and 65 +/- 12 mm Hg). Under baseline, control conditions, creatine kinase ranged from 12-15 units/liter in the three groups. It increased to 35-40 units/liter (P < 0.05) during ischemia but was significantly reduced by acetaminophen during reperfusion (e.g., 5.3 +/- 0.8 units/liter at 40 min). Oxidant-mediated chemiluminescence in all three treatment groups during baseline conditions and ischemia was similar (i.e., approximately 1.5-2.0 min for peak luminescence to reach its half maximal value). It took significantly more time during reperfusion for the oxidation of luminol in the presence of acetaminophen (>20 min, P < 0.05) than in its absence (3-8 min in uric acid- and vehicle-treated hearts). These results suggest that administration of acetaminophen (0.35 mM), at the onset of reperfusion, provides anti-oxidant-mediated cardioprotection in the postischemia, reperfused myocardium.  相似文献   

14.
During stress, patients with coronary artery disease frequently fail to increase coronary flow and myocardial oxygen consumption (MVO(2)) in response to a greater demand for oxygen, resulting in "demand-induced" ischemia. We tested the hypothesis that dobutamine infusion with flow restriction stimulates nonoxidative glycolysis without a change in MVO(2) or fatty acid uptake. Measurements were made in the anterior wall of anesthetized open-chest swine hearts (n = 7). The left anterior descending (LAD) coronary artery flow was controlled via an extracorporeal perfusion circuit, and substrate uptake and oxidation were measured with radiotracers. Demand-induced ischemia was produced with intravenous dobutamine (15 microg x kg(-1) x min(-1)) and 20% reduction in LAD flow for 20 min. Despite no change in MVO(2), there was a switch from lactate uptake (5.9 +/- 3.1) to production (74.5 +/- 16.3 micromol/min), glycogen depletion (66%), and increased glucose uptake (105%), but no change in anterior wall power or the index of anterior wall energy efficiency. There was no change in the rate of tracer-measured fatty acid uptake; however, exogenous fatty acid oxidation decreased by 71%. Thus demand-induced ischemia stimulated nonoxidative glycolysis and lactate production, but did not effect fatty acid uptake despite a fall in exogenous fatty acid oxidation.  相似文献   

15.
The intermediary metabolite pyruvate has been shown to exert significant beneficial effects in in vitro models of myocardial oxidative stress and ischemia-reperfusion injury. However, there have been few reports of the ability of pyruvate to attenuate myocardial stunning or reduce infarct size in vivo. This study tested whether supraphysiological levels of pyruvate protect against reversible and irreversible in vivo myocardial ischemia-reperfusion injury. Anesthetized, open-chest pigs (n = 7/group) underwent 15 min of left anterior descending coronary artery (LAD) occlusion and 3 h of reperfusion to induce stunning. Load-insensitive contractility measurements of regional preload recruitable stroke work (PRSW) and PRSW area (PRSWA) were generated. Vehicle or pyruvate (100 mg/kg i.v. bolus + 10 mg x kg(-1) x min(-1) intra-atrial infusion) was administered during ischemia and for the first hour of reperfusion. In infarct studies, pigs (n = 6/group) underwent 1 h of LAD ischemia and 3 h of reperfusion. Group I pigs received vehicle or pyruvate for 30 min before and throughout ischemia. In group II, the infusion was extended through 1 h of reperfusion. In the stunning protocol, pyruvate significantly improved the recovery of PRSWA at 1 h (50 +/- 4% vs. 23 +/- 3% in controls) and 3 h (69 +/- 5% vs. 39 +/- 3% in controls) reperfusion. Control pigs exhibited infarct sizes of 66 +/- 1% of the area at risk. The pyruvate I protocol was associated with an infarct size of 49 +/- 3% (P < 0.05), whereas the pyruvate II protocol was associated with an infarct size of 30 +/- 2% (P < 0.05 vs. control and pyruvate I). These findings suggest that pyruvate attenuates stunning and decreases myocardial infarction in vivo in part by reduction of reperfusion injury. Metabolic interventions such as pyruvate should be considered when designing the optimal therapeutic strategies for limiting myocardial ischemia-reperfusion injury.  相似文献   

16.
Experiments were performed to test whether the reduction in infarct size afforded by allopurinol following 24 h of permanent coronary artery occlusion is sustained over the subsequent 24 h. A dog's coronary artery was occluded with an embolus followed by injection of radiomicrospheres into the left ventricle to mark the ischemic region and to measure regional blood flow. Dogs were sacrificed either 24 h or 48 hours after embolization. The infarcts were delineated by failure to stain with triphenyl tetrazolium chloride and the ischemic zones were visualized by autoradiography of the heart slices. Dogs in the treatment groups received 600 mg of allopurinol PO 18 h before surgery, and a 10 mg/kg IV bolus 15 minutes before embolization followed by constant IV infusion of 55 mg/kg/24 h until sacrifice. A close correlation in the control animals between the percent of the ischemic zone which infarcted and collateral blood flow was used to predict a nonintervention infarct size in each treatment animal. Allopurinol treatment caused 17.9 +/- 3.3% less of the risk zone to be tetrazolium negative after 24 hours of ischemia than that seen in untreated animals. Less allopurinol induced salvage was observed in the 48 hour drug group with only a 11.1 +/- 3.3% limitation in infarct size. Furthermore, the effect was inconsistent at 48 h with only 2 dogs showing salvage. We conclude that allopurinol delays but does not prevent infarction in the permanent occlusion model.  相似文献   

17.
We sought to determine whether brain death-induced catecholamine release preconditions the heart, and if not, whether it precludes further protection by repetitive ischemia or isoflurane. Anesthetized rabbits underwent 30 min of coronary occlusion and 4 h of reperfusion. The effect on infarct size of either no intervention (controls), ischemic preconditioning (IPC), or isoflurane inhalation (Iso) was evaluated with or without previous brain death (BD) induced by subdural balloon inflation. Plasma catecholamine levels were measured at several time points. Although it dramatically increase plasma catecholamine levels, BD failed to reduce infarct size that averaged 0.49 +/- 0.34 without BD versus 0.45 +/- 0.27 g with BD. IPC and Iso, alone as well as after BD, significantly reduced infarct size that averaged 0.11 +/- 0.04, 0.21 +/- 0.15, 0.10 +/- 0.09, and 0.22 +/- 0.10 g in IPC, Iso, BD + IPC, and BD + Iso groups, respectively (means +/- SD, P < 0.05 vs. controls). BD-induced catecholamines "storm" does not precondition the rabbit heart that however retains the ability to be protected by repetition of brief ischemia or isoflurane inhalation.  相似文献   

18.
Preclinical and clinical studies have demonstrated that stem cell transplantation can improve the left ventricular (LV) contractile performance, yet the underlying mechanisms remain unknown. We examined whether mesenchymal stem cell (MSC) transplantation-induced beneficial effects are secondary to paracrine-associated improvements in LV contractile performance, wall stress, and myocardial bioenergetics in hearts with postinfarction LV remodeling. Myocardial contractile function and bioenergetics were compared 4 wk after acute myocardial infarction in normal pigs (n = 6), untreated pigs with myocardial infarction (MI group; n = 6), and pigs receiving autologous MSC transplantation (MI + MSC group; n = 5). A distal occlusion of the left anterior descending coronary artery instigated significant myocardial hypertrophy. Ejection fraction decreased from 55.3 +/- 3.1% (normal) to 30.4 +/- 2.3% (MI group; P < 0.01) and to 45.4 +/- 3.1% (MI + MSC group; P < 0.01 vs. MI). Hearts in the MI group developed severe contractile dyskinesis in the infarct zone and border zone (BZ). MSC transplantation significantly improved contractile performance from dyskinesis to active contraction (P < 0.01 vs. MI). BZ systolic wall stress was severely increased in MI hearts but significantly improved after MSC transplantation (P < 0.01 vs. MI). The BZ demonstrated profound bioenergetic abnormalities in MI pigs; this was significantly improved after MSC transplantation (P < 0.01 vs. MI). Patchy spared myocytes were found in the infarct zone of hearts receiving MSC transplantation but not in control hearts. These data demonstrate that MSC transplantation into the BZ causes significant improvements in myocardial contractile performance and reduction in wall stress, which ultimately results in significant bioenergetic improvements. Low cell engraftment indicates that MSCs did not provide a structural contribution to the damaged heart and that the observed beneficial effects likely resulted from paracrine repair mechanisms.  相似文献   

19.
Bioenergetic and hemodynamic consequences of cellular redox manipulations by 0.2-20 mM pyruvate were compared with those due to adrenergic stress (0.7-1.1 microM norepinephrine) using isolated working guinea-pig hearts under the conditions of normoxia, low-flow ischemia, and reperfusion. 5 mM glucose (+ 5 U/l insulin) + 5 mM lactate were the basal energy-yielding substrates. To stabilize left ventricular enddiastolic pressure, ventricular filling pressure was held at 12 cmH2O under all conditions; this preload control minimized Frank-Starling effects on ventricular inotropism. Global low-flow ischemia was induced by reducing aortic pressure to levels (20-10 cmH2O) below the coronary autoregulatory reserve. Reactants of the creatine kinase, including H+ and other key metabolites, were measured by enzymatic, HPLC, and polarographic techniques. In normoxic hearts, norepinephrine stimulations of inotropism, heart rate x pressure product, and oxygen consumption (MVO2) were associated with a fall in the cytosolic phosphorylation potential [( ATP]/[( ADP].[Pi]] as judged by the creatine kinase equilibrium. In contrast, infusion of excess pyruvate (5 mM) markedly increased [ATP]/[( ADP].[Pi]) and ventricular work output, while intracellular phosphate decreased; MVO2 remained constant under the same conditions. During reperfusion following ischemia, pyruvate effected striking and concentration-dependent increases in MVO2, phosphorylation potential, and inotropism. Pyruvate dehydrogenase flux was augmented during reperfusion hyperemia followed by near-complete recoveries of [ATP]/([ADP].[Pi]), contractile force, heart rate x pressure product, and MVO2 in the presence of 5-10 mM pyruvate. Pyruvate also attenuated ischemic adenylate degradation. Omission of glucose from the perfusion medium rendered pyruvate ineffective in postischemic hearts. Similarly, excess lactate (5-15 mM) or acetate (5 mM) failed to reenergize reperfused hearts and severe depressions of MVO2 and inotropism developed despite the presence of glucose. Apparently, subcellular redox manipulations by pyruvate dissociated stimulated mitochondrial respiration and increased inotropism from low cytosolic phosphorylation potentials. This was evidence against the extramitochondrial [ADP].[Pi]/[ATP] ratio being the primary factor in the control of mitochondrial respiration. The mechanism of pyruvate enhancement of inotropism during normoxia and reperfusion is probably multifactorial. Thermodynamic effects on subcellular [NADH]/[NAD+] ratios are coupled with a rise in the cytosolic [ATP]/[( ADP].[Pi]) ratio at constant (normoxia) or increased (reperfusion) MVO2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Comparison of rat heart preservation by simple storage in a cardioplegic solution at 4 degrees C (6 hr for group I; 15 hr for group II) and by hypothermic low-flow perfusion of the same solution (0.3 ml min-1, 15 hr: group III) was performed by measuring biochemical and functional parameters and by collecting 31P-NMR spectroscopy data. When compared to control values, adenine nucleotide levels remained unchanged in group I hearts, while glycogen was 45% hydrolyzed and lactate level increased by 700%. Extension of heart immersion to 15 hr (group II) led to breakdown of ATP (-77%), of the sum of adenine nucleotides (-27%), and of glycogen (-77%), whereas lactate accumulation reached 900% of the control value. Functional recovery, measured at the end of a 60-min reperfusion was less than 10% in group II hearts when compared to group I hearts. This dramatic development was completely avoided by hypothermic low-flow perfusion (group III). 31P-NMR data showed that phosphocreatine was completely degraded in all groups of preserved hearts. Low-flow perfusion limited cellular acidosis. The ATP/Pi (Pi = inorganic phosphate) ratio calculated from NMR data was lower for group II hearts (0.04 +/- 0.01, n = 6) than for group I hearts (0.29 +/- 0.12; n = 6) or group III hearts (0.19 +/- 0.09; n = 6) and could constitute a convenient bioenergetic index to predict the capability of the heart to recover satisfactory contractility following a preservation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号