首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A broad expression of aromatase and estrogen receptors (ERs) in the testis suggests an important role for estrogens in regulating testicular cell function and reproductive events. The aim of the present study was to show whether Leydig cells in vitro isolated from cryptorchid testes of two inbred strains of mice, KE and CBA, are a site of estrogen synthesis. Using immunocytochemistry, aromatase, estrogen receptor alpha(ERalpha), and estrogen receptor beta(ERbeta) were localized in cultured Leydig cells. Immunoreactive aromatase was found in the cytoplasm of control Leydig cells and those isolated from cryptorchid males, however the intensity of immunostaining was different, being stronger in Leydig cells deriving from cryptorchid mice. The strongest aromatase immunostaining was found in cryptorchid-KE Leydig cells. Strong immunoexpression of ERalpha was detected in the nuclei of both KE-and CBA-Leydig cells. The intensity of ERalpha immunostaining was stronger in cultured cells deriving from cryptorchid testes. ERbeta immunoexpression was detected predominantly in KE-Leydig cells. Control CBA-Leydig cells were negative for ERbeta or the result was inconclusive, whereas in cryptorchid CBA-Leydig cells a weak immunostaining was present in their nuclei. Western blot analysis confirmed the results obtained by immunocytochemistry. In KE- and CBA-Leydig cells aromatase as a band of 55 kDa protein was present, whereas ERalpha molecular weight was 67 kDa on Western blots. No band was detected for ERbeta. Radioimmunological analysis revealed that androgen and estrogen levels secreted by Leydig cells in vitro were strain-dependent. Additionally, in KE-Leydig cells that derived from cryptorchid mice estrogen level was distinctly higher in comparison with that of the respective control.  相似文献   

2.
Among medicinal plants, extract from the hollyhock flowers is a source of antocyanides and flavonoids. The latter compounds belong, among others, to phytoestrogens (plant-derived dietary estrogens). The important role of estrogens in the testis is now well documented, and phytoestrogens, which may act as estrogen agonists or estrogen antagonists can also alter the reproductive function of the male. The aim of this study was to show whether the exposure of male rats to the aqueous hollyhock extract could affect the process of aromatization in their testes and in cultured Leydig cells. This was investigated by immunocytochemistry and radioimmunological assays. Immunoreactivities for aromatase and estrogen receptor beta were weaker both in testicular sections and cultured Leydig cells after hollyhock extract administration when compared to the controls, while the intensity of immunoreaction for estrogen receptor alpha remained unchanged. A lower level of estradiol secreted by cultured Leydig cells from the experimental group positively correlated with a direct inhibition of aromatase activity. Additionally, a quantitative analysis of flavonoid fraction from the hollyhock extract revealed the presence of quercetin and kaempferol. It seems that a weak antiestrogenic activity of flavonoid compounds present in the hollyhock extract is mediated through aromatase and estrogen receptor beta rather than by estrogen receptor alpha.  相似文献   

3.
Mice with mosaic mutation could be one of the models of human Menkes disease, which is associated with abnormal cooper metabolism. The aim of the present study was to localize androgen receptors (ARs) in the testes by means of immunohistochemistry. AR expression was observed in the nuclei of all somatic cells such as Leydig cells, Sertoli cells, and peritubular cells in sections from testes of control and mosaic mutant males. In the latter, very strong immunoreactivity for AR as well as higher levels of steroid hormones in homogenates were noticed in comparison to control mice. No positive immunoreaction for ARs was seen in control sections incubated without the primary antibody.  相似文献   

4.
The immunocytochemical localization of aromatase in the testes of young and adult rats was investigated by an indirect-immunofluorescent method using antihuman placental aromatase-II cytochrome P-450 antibody. In both young (1 and 2 weeks old) and adult rats, only the Leydig cells in the interstitial tissue showed a positive immunoreaction for aromatase, while the germ cells and Sertoli cells in the seminiferous tubule were entirely negative. In addition, electron microscopy revealed that the Leydig cells in the testes of young as well as adult rats have a well-developed smooth endoplasmic reticulum, mitochondria with tubulovesicular cristae, and a few lipid droplets, these structures being characteristic of steroid secretory cells. On the basis of these results, we suggest that estrogens are mainly synthesized in Leydig cells of the testes.  相似文献   

5.
High levels of plasma estrogens constitute an endocrine peculiarity of the adult stallion. This is mostly due to testicular cytochrome p450 aromatase, the only irreversible enzyme responsible for the bioconversion of androgens into estrogens. To identify more precisely the testicular aromatase synthesis sites in the stallion, testes from nine horses (2-5 years) were obtained during winter or spring. Paraplast-embedded sections were processed using rabbit anti-equine aromatase, followed by biotinylated goat anti-rabbit antibodies, and amplified with a streptavidin-peroxidase complex. Immunoreactivity was detected with diaminobenzidine. Immunofluorescence detection, using fluoroisothiocyanate-conjugated goat anti-rabbit antibodies, was also applied. Specific aromatase immunoreactivity was observed intensely in Leydig cells but also for the first time, to a lesser extent, in the cytoplasm surrounding germ cells at the junction with Sertoli cells. Interestingly, the immunoreactivity in Sertoli cells appears to vary with the spermatogenic stages in the basal compartment (with spermatogonia) as well as in the adluminal one (with spermatids). Relative staining intensity in Leydig and Sertoli cells and testicular microsomal aromatase activity increased with age. The present study in stallions indicates that in addition to Leydig cells, Sertoli cells also appear to participate in estrogen synthesis, and this could play a paracrine role in the regulation of spermatogenesis.  相似文献   

6.
Aromatase in the human testis   总被引:2,自引:0,他引:2  
Low levels of testicular estrogen synthesis have been reported in a number of species, but the cellular localization has not been unequivocally established. To study aromatase in the human testis, we have combined immunocytochemistry with direct measurement of enzyme activity in the testicular 6μm cryosections. Thus, the functionality of the immunoreaction and its sensitivity can be assessed in quantitative terms. Testes were obtained from immediate autopsy from men aged 18–53 years, from surgery from two patients with prostatic cancer (67 and 74 years) and from two normal children aged 8 months and 3 years at autopsy. Benign testicular sex cord tumors were also examined from two unrelated patients aged 5 and 8 years with gynecomastia and diagnosed with Peutz-Jeghers syndrome. Our results consistently showed low to moderate staining intensity of immunoreactive aromatase in comparison to that of normal human placental cryosections. Immunoreactive aromatase was only present in the interstitial Leydig cells and absent from the Sertoli cells of all normal adult testes showing spermatogenesis. Aromatase activity correlated well with the intensity of the immunostain. However, there was no obvious relationship between the level of aromatase activity and increasing age. Generally higher levels were present in testes of young men (18–22 years). No immunostain in any cell type was detected in one 33-year-old patient with testicular cancer. In the testes of the two normal prepubertal boys, no immunostaining was observed. However, intensely stained Sertoli cells as well as high aromatase activity were observed in the testicular tumors of the patients with Peutz-Jeghers syndrome. Our results suggest that Leydig cells are the source of aromatase in normal men but that Sertoli cells may express this enzyme under abnormal conditions. The combined methods for measuring enzyme activity and immunoreactive aromatase are suitable for application to tissues expressing low levels of aromatase.  相似文献   

7.
Aromatization of androgens into estrogens is performed by a microsomal enzyme, the cytochrome P450 aromatase. A direct approach for identifying the cellular source of aromatase is the use of immunohistochemistry with a specific antibody that recognizes aromatase. The pig presents some unusual features with regard to the synthesis of testosterone and estrogens in the male gonads. In testes from prepubertal males, testosterone level measured radioimmunologically, was lower than in testes from adult pig, while estrogen secretion was relatively high and comparable to that of mature porcine gonads. Immunolocalization of aromatase in testes from both immature and mature pigs was confined to the Leydig cell cytoplasm. The intensity of immunohistochemical staining indicated the presence of unsynchronous Leydig cell population. Other somatic cells and germ cells were negative for aromatase. In control tissue sections, incubated in the absence of the primary antibody or in the presence of normal rabbit serum, no positive staining was observed. Western blot analysis revealed one major band of aromatase about 50-52 kDa in testes from both immature and mature pigs.  相似文献   

8.
The present work was done to investigate the cell localization of testicular aromatase activity and its regulation in immature pig testis using an in vitro model. Leydig cells and Sertoli cells were isolated from immature pig testes and cultured alone or together in the absence or presence of human chorionic gonadotropin (hCG) or porcine follicle-stimulating hormone (pFSH) for 2 days. At the end of incubation, the amounts of testosterone (T), estrone sulfate (E1S) and estradiol (E2) were measured. Then the cells were incubated for 4 h in the presence of saturating concentrations of delta 4-androstenedione (3 microM) and the amounts of E1S and E2 were measured again (aromatase activity). The ability of Sertoli cells to produce estrogens was very low and neither hCG nor pFSH had any significant effect. hCG stimulated, in a dose-dependent manner, the secretion of T and E1S by Leydig cells cultured alone as well as the aromatase activity of these cells. The main estrogen produced by Leydig cells was E1S. pFSH also stimulated the above parameters of Leydig cell function; this may have been due to the contamination of this hormone with luteinizing hormone (LH). Coculture of Leydig cells with Sertoli cells without gonadotropins had very small effects on T and E1S production and on aromatase activity. However, treatment of coculture with increasing concentrations of hCG had a dramatic effect on Leydig cell functions. For each hCG concentration, the amounts of T and E1S secreted, as well as the aromatase activity of the coculture, were 2- to 3-fold higher than those of Leydig cells cultured alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Immunocytochemical localization of aromatase in rat testis   总被引:1,自引:0,他引:1  
Summary The immunocytochemical localization of armatase in the testes of young and adult rats was investigated by an indirect-immunofluorescent method using antihuman placental aromatase-II cytochrome P-450 antibody. In both young (1 and 2 weeks old) and adult rats, only the Leydig cells in the interstitial tissue showed a positive immunoreaction for aromatase, while the germ cells and Sertoli cells in the seminiferous tubule were entirely negative. In addition, electron microscopy revealed that the Leydig cells in the testes of young as well as adult rats have a well-developed smooth endoplasmic reticulum, mitochondria with tubulovesicular cristae, and a few lipid droplets; these structures being characteristic of steroid secretory cells. On the basis of these results, we suggest that estrogens are mainly synthesized in Leydig cells of the testes.Supported by grants from the Ministry of Education, Science, and Culture, Japan, and USPHS HD 04945  相似文献   

10.
Klinefelter's syndrome (47, XXY) is the most common chromosome aneuploidy in men and is usually characterized by underdeveloped testes and sterility. The aim of the present study was to detect cellular distribution of androgen receptors (AR) and aromatase in testes of patient with KS. The tissue sections were processed for morphological and immunohistochemical staining. Additionally, levels of FSH, LH, PRL, estradiol, and testosterone were measured in the plasma. Morphological analysis revealed a complete absence of spermatogenesis. No germ cells were present in seminiferous tubules. In some tubules, nests of apparently degenerating Sertoli cells were found. In the interstitium, Leydig cell hyperplasia was observed. Using immunohistochemistry, nuclear AR staining was detected in Sertoli cells and peritubular cells, whereas in Leydig cells the staining was exclusively cytoplasmic. The immunostaining of aromatase was detected in the cytoplasm of Sertoli cells and Leydig cells. Increased levels of gonadotropins and decreased level of testosterone concomitantly with the cytoplasmic localization of AR in Leydig cells might contribute to the impaired testicular function in patient with KS.  相似文献   

11.
Mitochondrial reactive oxygen species (ROS) have been implicated in spermatogenic damage, although direct in vivo evidence is lacking. We recently generated a mouse in which the inner mitochondrial membrane peptidase 2-like (Immp2l) gene is mutated. This Immp2l mutation impairs the processing of signal peptide sequences from mitochondrial cytochrome c1 and glycerol phosphate dehydrogenase 2. The mitochondria from mutant mice generate elevated levels of superoxide ion, which causes age-dependent spermatogenic damage. Here we confirm age-dependent spermatogenic damage in a new cohort of mutants, which started at the age of 10.5 months. Compared with age-matched controls, protein carbonyl content was normal in testes of 2- to 5-month-old mutants, but significantly elevated in testes of 13-month-old mutants, indicating elevated oxidative stress in the testes at the time of impaired spermatogenesis. Testicular expression of superoxide dismutases was not different between control and mutant mice, whereas that of catalase was increased in young and old mutants. The expression of cytosolic glutathione peroxidase 4 (phospholipid hydroperoxidase) in testes was significantly reduced in 13-month-old mutants, concomitant with impaired spermatogenesis. Apoptosis of all testicular populations was increased in mutant mice with spermatogenic damage. The mitochondrial DNA (mtDNA) mutation rate in germ cells of mutant mice with impaired spermatogenesis was unchanged, excluding a major role of mtDNA mutation in ROS-mediated spermatogenic damage. Our data show that increased mitochondrial ROS are one of the driving forces for spermatogenic impairment.  相似文献   

12.
Aromatization of androgens into estrogens in rat testis is catalyzed by the microsomal enzyme cytochrome P450 aromatase. In this work, aromatase cellular site was investigated in prepuberal, peripuberal and postpuberal testis, from 10-, 21- and 60-day-old rats respectively. Paraffin-embedded testis sections were processed for P450arom immunostaining using a rabbit polyclonal antiserum generated against purified human placental cytochrome P450 aromatase. Next, biotinylated anti-rabbit IgG was applied, followed by ABC/HRP/complex amplification with diaminobenzidine as chromogen. Prepuberal testis sections showed a strong immunoreactivity of aromatase in Sertoli cell cytoplasm while interstitial cells were immunonegative. In peripuberal testis sections, cytoplasmic immunoreaction was weak in Sertoli cells, but it was strong in spermatocytes and sporadic in Leydig cells. Postpuberal testis sections displayed a moderate aromatase immunoexpression in spermatocytes while a strong immunostaining was observed in round and elongated spermatids, as well as in Leydig cells. These results indicate a different age-dependence of aromatase localization in rat testicular cells during gonadal development. In particular, inside the seminiferous tubules, the aromatization site moves from Sertoli cells to late germ cells, suggesting a proliferative role of aromatase in prepuberal testis and its subsequent involvement in meiotic and post-meiotic germ cell maturation.  相似文献   

13.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is a selenoprotein belonging to the family of glutathione peroxidases and has been implicated in antioxidative defense and spermatogenesis. PHGPx accounts for almost the entire selenium content of mammalian testis. In an attempt to verify the expression pattern of PHGPx, testes of mouse mutants with arrest at different stages of germ cell development and testes of mice at different ages were subjected to immunostaining with a monoclonal anti-PHGPx antibody. PHGPx was detected in Leydig cells of testes in all developmental stages. In the seminiferous tubuli, the PHGPx staining was first observed in testes of 21-day-old mice which is correlated with the appearance of the first spermatids. This result was confirmed when the testes of mutant mice with defined arrest of germ cell development were used. An immunostaining was observed in the seminiferous tubuli of olt/olt and qk/qk mice which show an arrest at spermatid differentiation. In Western blot analysis of proteins extracted from testes of mutant mice and from developing testes, two signals at 19- and 22-kDa were observed which confirm the existence of two PHGPx forms in testicular cells. In mouse spermatozoa, a subcellular localization of PHGPx and sperm mitochondria-associated cysteine-rich protein (SMCP) was demonstrated, indicating the localization of PHGPx in mitochondria of spermatozoa midpiece. For verifying the midpiece localization of PHGPx in other species, spermatozoa of Drosophila melanogaster, frog, fish, cock, mouse, rat, pig, bull, and human were used in immunostaining using anti-PHGPx antibody. A localization of PHGPx was found in the midpiece of spermatozoa in all species examined. In electronmicroscopical analysis, PHGPx signals were found in the mitochondria of midpiece. These results indicate a conserved crucial role of PHGPx during sperm function and male fertility.  相似文献   

14.
Kit and its ligand, Kitl, function in hematopoiesis, melanogenesis, and gametogenesis. In the testis, Kitl is expressed by Sertoli cells and Kit is expressed by spermatogonia and Leydig cells. Kit functions are mediated by receptor autophosphorylation and subsequent association with signaling molecules, including phosphoinositide (PI) 3-kinase. We previously characterized the reproductive consequences of blocking Kit-mediated PI 3-kinase activation in KitY(719F)/Kit(Y719F) knockin mutant male mice. Only gametogenesis was affected in these mice, and males are sterile because of a block in spermatogenesis during the spermatogonial stages. In the present study, we investigated effects of the Kit(Y719F) mutation on Leydig cell development and steroidogenic function. Although the seminiferous tubules in testes of mutant animals are depleted of germ cells, the testes contain normal numbers of Leydig cells and the Leydig cells in these animals appear to have undergone normal differentiation. Evaluation of steroidogenesis in mutant animals indicates that testosterone levels are not significantly reduced in the periphery but that LH levels are increased 5-fold, implying an impairment of steroidogenesis in the mutant animals. Therefore, a role for Kit signaling in steroidogenesis in Leydig cells was sought in vitro. Purified Leydig cells from C57Bl6/J male mice were incubated with Kitl, and testosterone production was measured. Kitl-stimulated testosterone production was 2-fold higher than that in untreated controls. The Kitl-mediated testosterone biosynthesis in Leydig cells is PI 3-kinase dependent. In vitro, Leydig cells from mutant mice were steroidogenically more competent in response to LH than were normal Leydig cells. In contrast, Kitl-mediated testosterone production in these cells was comparable to that in normal cells. Because LH levels in mutant males are elevated and LH is known to stimulate testosterone biosynthesis, we proposed a model in which serum testosterone levels are controlled by elevated LH secretion. Leydig cells of mutant males, unable to respond effectively to Kitl stimulation, initially produce lower levels of testosterone, reducing testosterone negative feedback on the hypothalamic-pituitary axis. The consequent secretion of additional LH, under this hypothesis, causes a restoration of normal levels of serum testosterone. Kitl, acting via PI 3-kinase, is a paracrine regulator of Leydig cell steroidogenic function in vivo.  相似文献   

15.
Dax1 is an orphan nuclear receptor expressed in both Leydig and Sertoli cells of the testis. Mutation of DAX1 in humans causes adrenal failure and hypogonadotropic hypogonadism. Targeted mutagenesis of Dax1 in mice reveals a primary gonadal defect characterized by overexpression of aromatase and cellular obstruction of the seminiferous tubules and efferent ductules, leading to germ cell death and infertility. Transgenic expression of DAX1 under the control of the müllerian-inhibiting substance promoter, which is selectively expressed in Sertoli cells, improves fertility but does not fully correct the histological abnormalities in the testes of Dax1 knockout (Dax1KO) mice. We therefore hypothesized that Dax1 may also play a crucial role in other somatic cells of the testis, namely the Leydig cells. A 2.1-kilobase fragment of the murine LH receptor 5'-promoter (LHR-DAX1) was used to generate transgenic mice that selectively express DAX1 in Leydig cells. Expression of the LHR-DAX1 transgene caused no observable phenotype in wild-type mice but improved fertility when expressed in Dax1KO males (rescue [RS]). Although testicular size was not increased in LHR-DAX1 RS animals, aromatase expression was restored to normal levels, and sperm production was increased. Testicular pathology was only slightly improved in RS mice compared to Dax1KO animals. Taken together with the result of previous studies of DAX1 expression in Sertoli cells, we conclude that the testis phenotype of Dax1KO mice reflects the combined effects of Dax1 deficiency in both Sertoli and Leydig cells.  相似文献   

16.
The mosaic (Atp7a(mo-ms)) is an X-linked, lethal mutation in mice. Hemizygous males die at the age of 15 days and they exhibit strong similarities to the brindled and macular mutants. Injection of cupric chloride to mossaic mutants prolongs their life and diminishes the pathological results of mutation. Histochemical analysis of the kidneys from 14-day-old mutant males showed accumulation of copper in the renal cortex of the investigated animals leading to damage of the kidney architecture. A histological profile of the kidneys was defined for four groups of 14-day-old animals: mosaic males ms/-, control males +/-, mosaic males injected with cupric chloride ms/- (Cu), and control males injected with cupric chloride +/- (Cu). Pathological changes were observed in the cortex and in the medulla of the kidneys in both groups of mutants and control males injected with cupric chloride (50 microg of CuCl2 per each individual).  相似文献   

17.
18.
Y Yasuda  H Konishi  T Tanimura 《Teratology》1986,33(3):281-288
Pregnant female mice were given ethinyl estradiol on days 11 through 17 of gestation. On day 18 the dams were killed and the male fetuses were examined for testicular differentiation. Three of 12 males from dams treated with the highest dose of ethinyl estradiol showed cryptorchid testes with uterine tubes. Light and electron microscopic evaluation of the testes, both cryptorchid and normal, demonstrated foci of hyperplasia of Leydig cells showing cytoplasmic and nuclear pleomorphism, increase in lipid droplets, and decrease in smooth endoplasmic reticulum and ribosomes when compared to testes from control fetal mice. Morphometric determinations of the testes indicated that the number of Leydig cells in a unit area (mm2) in the interstitial tissue showed a dose-response relationship to ethinyl estradiol in the normal testes. The number of Leydig cells in the testes exposed to the highest dose of estrogen showed a significant difference between cryptorchid and normal testes: the former had fewer Leydig cells than the latter. These morphological observations indicate that hyperplasia of Leydig cells of fetal mouse testis at term can be induced by transplacental treatment with ethinyl estradiol and suggest that a malignant transformation into a Leydig cell tumor is possible.  相似文献   

19.
Morphological, histochemical and biochemical studies of the testis of mice with testicular feminization (tfm/y) reveal a large accumulation of lipids in Leydig cells and in Sertoli cells. In Leydig cells of tfm/y mice, lipid droplets do not exhibit the special relationship with smooth endoplasmic reticulum that exists in normal adult Leydig cells. Compared to the surgically-cryptorchid control, the tfm/y testis contains more lipid in Leydig cells but less in Sertoli cells. There are also quantitative differences in testicular lipids in tmf/y and normal testes but no significant differences were noted between tfm/y and surgically-cryptorchid testes. The testes of both the genetically defective and surgically-cryptochid animals contain increased amounts of total lipids and phospholipids, and of free and esterified cholesterols. Exogenous testosterone has no effect on lipids or other characteristics of these cells. The present results suggest that the increased lipids in tfm/y mice result from a genetic disorder that asserts itself (1) in Leydig cells where it is associated with, and is probably a result of, impaired lipid metabolism and steroidogenesis, and (2) in Sertoli cells where it is perhaps attributable to arrested spermatogenesis and impaired steroidogenesis.  相似文献   

20.
INTRODUCTION: Evidence collected over the years has demonstrated that cryptorchidism is associated with a defect in spermatogenesis and, as a consequence, with either reduced fertility or infertility. However, the effect of cryptorchidism on Leydig cell function is less clear. The aim of our study therefore was to investigate the regulation of steroid hormone biosynthesis and, additionally, intercellular communication in the cryptorchid equine testes. MATERIAL AND METHODS: Testes of mature bilaterally cryptorchid horse and healthy stallions were used for this study. The expression of luteinising hormone receptor (LHR), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), aromatase and connexin43 (Cx43) was detected by means of immunohistochemistry. Testosterone and oestradiol levels were measured in testicular homogenates using appropriate radioimmunoassays. RESULTS: In the testes of both normal and cryptorchid stallions, immunostaining for LHR, 3beta-HSD and aromatase was confined to the Leydig cells. In the cryptorchid horse, the intensity of the staining for LHR and 3beta-HSD was weaker, whereas the staining for aromatase was clearly stronger than that of the normal stallion. Radioimmunological analysis revealed disturbance of the androgen-oestrogen balance in the cryptorchid testes. Additionally, in both the seminiferous tubules and interstitial tissue of the cryptorchid a clear reduction of the Cx43 signal was observed. CONCLUSIONS: Decreased expression of LHR and 3beta-HSD and increased expression of aromatase in the cryptorchid testes suggest that hormonal imbalance was caused both by reduced testosterone synthesis and by increased androgen aromatisation. Impaired expression of Cx43 in the seminiferous tubules as well as in the interstitial tissue of the cryptorchid horse indicates that cryptorchidism affects intercellular communication in the testes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号