首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 112 毫秒
1.
In addition to the soluble lytic transglycosylase, a murein-metabolizing enzyme with a molecular mass of 70 kDa (Slt70), Escherichia coli possesses a second lytic transglycosylase, which has been described as a membrane-bound lytic transglycosylase (Mlt; 35 kDa; EC 3.2.1.-). The mlt gene, which supposedly encodes Mlt, was cloned, and the complete nucleotide sequence was determined. The open reading frame, identified on a 1.7-kb SalI-PstI fragment, codes for a protein of 323 amino acids (M(r) = 37,410). Two transmembrane helices and one membrane-associated helix were predicted in the N-terminal half of the protein. Lysine and arginine residues represent up to 15% of the amino acids, resulting in a calculated isoelectric point of 10.0. The deduced primary structure did not show significant sequence similarity to Slt70 from E. coli. High-level expression of the presumed mlt gene was not paralleled by an increase in murein hydrolase activity. To clarify the identity of the second transglycosylase, we purified an enzyme with the specificity of a transglycosylase from an E. coli slt deletion strain. The completely soluble transglycosylase, with a molecular mass of approximately 35 kDa, was designated Slt35. Its determined 26 N-terminal amino acids showed similarity to a segment in the middle of the Slt70 primary structure. Polyclonal anti-Mlt antibodies, which had been used for the isolation of the mlt gene, were found to cross-react with Mlt as well as with Slt35, suggesting that the previously described Mlt preparation was contaminated with Slt35. We conclude that the second transglycosylase of E. coli is not a membrane-bound protein but rather is a soluble protein.  相似文献   

2.
The soluble lytic transglycosylase (Slt) of Escherichia coli is known to be a powerful murein hydrolase in vitro. It is shown here to act as an autolysin in vivo as well. Rapid autolysis of Slt overproducing cells was induced by protein biosynthesis inhibitors, which also block the fomration of guanosine-5'-diphosphate-3'-diphosphate (ppGpp). When amino acid starvation was used to inhibit protein synthesis, autolysis was suppressed in relA+ but not in relA- cells. These findings indicate that the stringent control modulates the enzymatic activity of the soluble lytic transglycosylase in vivo.  相似文献   

3.
Abstract Two lytic transglycosylases, releasing 1,6-anhydromuropeptides from murein sacculi are present in a mutant deleted for the soluble lytic transglycosylase 70 (Slt70). Thus, there are three different lytic transglycosylases in Escherichia coli . One of the remaining enzymes is soluble and one is a membrane protein that can be solubilized by 2% Triton X-100 in 0.5 M NaCl. Both enzymes are exo-muramidases. Only the membrane enzyme, but not the soluble ones, hydrolyses isolated murein glycan strands (poly-GlcNAc-MurNAc). While the soluble enzymes are inhibited by the muropeptide TetraTriLysArg(dianhydro), the membrane enzyme is not. The antibiotic bulgecin that inhibits Slt70 does not inhibit the lytic transglycosylases present in the slt70 deletion mutant.  相似文献   

4.
Reid CW  Brewer D  Clarke AJ 《Biochemistry》2004,43(35):11275-11282
Lytic transglycosylases cleave the beta-(1-->4)-glycosidic bond in the bacterial cell wall heteropolymer, peptidoglycan, between the N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) residues with the concomitant formation of a 1,6-anhydromuramoyl residue. With 72% amino acid sequence identity between the enzymes, the theoretical structure of the membrane-bound lytic transglycosylase B (MltB) from Psuedomonas aeruginosa was modeled on the known crystal structure of Escherichia coli Slt35, the soluble derivative of its MltB. Of the twelve residues in Slt35 known to make contacts with peptidoglycan derivatives in Slt35, nine exist in the same position in the P. aeruginosa homologue, with two others only slightly displaced. To probe the binding properties of an engineered soluble form of the P. aeruginosa MltB, a SUPREX method involving hydrogen/deuterium exchange coupled with MALDI mass spectrometry detection was developed. Dissociation constants were calculated for a series of peptidoglycan components and compared to those obtained by difference UV absorption spectroscopy. These data indicated that GlcNAc alone does not bind to MltB with any measurable affinity but it does contribute to the binding of GlcNAc-MurNAc-dipeptide. With the MurNAc series of ligands, significant binding contributions are made through both the N-acetyl and C-3 lactyl moieties of the aminosugar with additional contributions to binding provided by associated peptides.  相似文献   

5.
Lytic transglycosylases catalyze the cleavage of the beta-1, 4-glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) in peptidoglycan with concomitant formation of a 1,6-anhydro bond in the MurNAc residue. To understand the reaction mechanism of Escherichia coli lytic transglycosylase Slt35, three crystal structures have been determined of Slt35 in complex with two different peptidoglycan fragments and with the lytic transglycosylase inhibitor bulgecin A. The complexes define four sugar-binding subsites (-2, -1, +1, and +2) and two peptide-binding sites in a large cleft close to Glu162. The Glu162 side chain is between the -1 and +1 sugar-binding sites, in agreement with a function as catalytic acid/base. The complexes suggest additional contributions to catalysis from Ser216 and Asn339, residues which are conserved among the MltB/Slt35 lytic transglycosylases.  相似文献   

6.
Summary The gene of the major autolysin of Escherichia coli, the soluble lytic transglycosylase (Slt), was isolated from an expression gene library. The cloned slt gene was used to determine its chromosomal map position adjacent to trpR at 99.7 min on the E. coli linkage map.  相似文献   

7.
A membrane-bound lytic transglycosylase (Mlt) has been solubilized in the presence of 2% Triton X-100 containing 0.5 M NaCl from membranes of an Escherichia coli mutant that carries a deletion in the slt gene coding for a 70-kDa soluble lytic transglycosylase (Slt70). The enzyme was purified by a four-step procedure including anion-exchange (HiLoad SP-Sepharose and MonoS), heparin-Sepharose, and poly(U)-Sepharose 4B column chromatography. The purified protein that migrated during denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single band corresponding to an apparent molecular mass of about 38 kDa is referred to as Mlt38. Optimal activity was found in buffers with a pH between 4.0 and 4.5. The enzyme is stimulated by a factor of 2.5 in the presence of Mg2+ at a concentration of 10 mM and loses its activity rapidly at temperatures above 30 degrees C. Besides insoluble murein sacculi, the enzyme was able to degrade glycan strands isolated from murein by amidase treatment. The enzymatic reaction occurred with a maximal velocity of about 2.2 mg/liter/min with murein sacculi as a substrate. The amino acid sequences of four proteolytic peptides showed no identity with known sequences in the data bank. With Mlt38, the number of proteins in E. coli showing lytic transglycosylase activity rises to three.  相似文献   

8.
Physiological studies of a mutant of Escherichia coli lacking the three lytic transglycosylases Slt70, MltA, and MltB revealed that interference with murein turnover can prevent AmpC beta-lactamase induction. The triple mutant, although growing normally, shows a dramatically reduced rate of murein turnover. Despite the reduction in the formation of low-molecular-weight murein turnover products, neither the rate of murein synthesis nor the amount of murein per cell was increased. This might be explained by assuming that during growth in the absence of the major lytic transglycosylases native murein strands are excised by the action of endopeptidases and directly reused without further breakdown to muropeptides. The reduced rate of murein turnover could be correlated with lowered cefoxitin-induced expression of beta-lactamase, present on a plasmid carrying the ampC and ampR genes from Enterobacter cloacae. Overproduction of MltB stimulated beta-lactamase induction, whereas specific inhibition of Slt70 by bulgecin repressed ampC expression. Thus, specific inhibitors of lytic transglycosylases can increase the potency of penicillins and cephalosporins against bacteria inducing AmpC-like beta-lactamases.  相似文献   

9.
BACKGROUND: Lytic transglycosylases are bacterial muramidases that catalyse the cleavage of the beta- 1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) in peptidoglycan with concomitant formation of a 1,6-anhydrobond in the MurNAc residue. These muramidases play an important role in the metabolism of the bacterial cell wall and might therefore be potential targets for the rational design of antibacterial drugs. One of the lytic transglycosylases is Slt35, a naturally occurring soluble fragment of the outer membrane bound lytic transglycosylase B (MltB) from Escherichia coli. RESULTS: The crystal structure of Slt35 has been determined at 1.7 A resolution. The structure reveals an ellipsoid molecule with three domains called the alpha, beta and core domains. The core domain is sandwiched between the alpha and beta domains. Its fold resembles that of lysozyme, but it contains a single metal ion binding site in a helix-loop-helix module that is surprisingly similar to the eukaryotic EF-hand calcium-binding fold. Interestingly, the Slt35 EF-hand loop consists of 15 residues instead of the usual 12 residues. The only other prokaryotic proteins with an EF-hand motif identified so far are the D-galactose-binding proteins. Residues from the alpha and core domains form a deep groove where the substrate fragment GlcNAc can be bound. CONCLUSIONS: The three-domain structure of Slt35 is completely different from the Slt70 structure, the only other lytic transglycosylase of known structure. Nevertheless, the core domain of Slt35 closely resembles the fold of the catalytic domain of Slt70, despite the absence of any obvious sequence similarity. Residue Glu162 of Slt35 is in an equivalent position to Glu478, the catalytic acid/base of Slt70. GlcNAc binds close to Glu162 in the deep groove. Moreover, mutation of Glu162 into a glutamine residue yielded a completely inactive enzyme. These observations indicate the location of the active site and strongly support a catalytic role for Glu162.  相似文献   

10.
A deletion in the structural gene for the soluble lytic transglycosylase, the predominant murein hydrolase in the soluble fraction of Escherichia coli, has been constructed. The mutant grows normally but exhibits increased sensitivity toward mecillinam, a beta-lactam specific for penicillin-binding protein 2. In the presence of furazlocillin or other beta-lactams with a specificity for penicillin-binding protein 3 which normally cause filamentation, bulges were formed prior to rapid bacteriolysis. Similar morphological alterations are known to develop in wild type E. coli cells when furazlocillin is combined with bulgecin, an antibiotic of unusual glucosaminyl structure. It turned out that bulgecin specifically inhibits the Sl-transglycosylase in a noncompetitive manner. Since bulgecin shows some structural analogy to the murein subunits we postulate that the soluble lytic transglycosylase, in addition to its active site, has a recognition site for specific murein structures. The possibility of an allosteric modulation of the activity of the enzyme by changes in the structure of the murein sacculus is discussed.  相似文献   

11.
The localization of the major autolytic enzyme, the soluble lytic transglycosylase, in the different cell compartments of Escherichia coli was investigated by immunoelectron microscopy. Ultrathin sections were labeled with a specific antiserum against purified soluble lytic transglycosylase, and the antibody-enzyme complexes were visualized with colloidal protein A-gold. A preferential localization of the lytic transglycosylase in the envelope was observed, with only 20 to 30% of the enzyme left in the cytoplasm. Most of the enzyme associated with the cell wall was tightly bound to the murein sacculus. Sacculi prepared by boiling of cells in 4% sodium dodecyl sulfate could be immunolabeled with the specific antiserum, indicating a surprisingly strong interaction of the lytic transglycosylase with murein. The enzyme-substrate complex could be reconstituted in vitro by incubating pronase-treated, protein-free murein sacculi with purified lytic transglycosylase at 0 degrees C. Titration of sacculi with increasing amounts of enzyme indicated a limiting number of binding sites for about 1,000 molecules of enzyme per sacculus. Ruptured murein sacculi obtained after penicillin treatment revealed that the enzyme is exclusively bound to the outer surface of the sacculus. This finding is discussed in the light of recent evidence suggesting that the murein of E. coli might be a structure of more than one layer expanding by inside-to-outside growth of patches of murein.  相似文献   

12.
Membrane-Bound Lytic Endotransglycosylase in Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
The gene for a novel endotype membrane-bound lytic transglycosylase, emtA, was mapped at 26.7 min of the E. coli chromosome. EmtA is a lipoprotein with an apparent molecular mass of 22 kDa. Overexpression of the emtA gene did not result in bacteriolysis in vivo, but the enzyme was shown to hydrolyze glycan strands isolated from murein by amidase treatment. The formation of tetra- and hexasaccharides, but no disaccharides, reflects the endospecificity of the enzyme. The products are characterized by the presence of 1,6-anhydromuramic acid, indicating a lytic transglycosylase reaction mechanism. EmtA may function as a formatting enzyme that trims the nascent murein strands produced by the murein synthesis machinery into proper sizes, or it may be involved in the formation of tightly controlled minor holes in the murein sacculus to facilitate the export of bulky compounds across the murein barrier.  相似文献   

13.
Summary In order to produce biologically active 1,6-anhydro-muropeptides in large amounts by enzymatic degradation of isolated bacterial murein polymer highly specific periplasmic murein-metabolizing enzymes from Escherichia coli are made available. The genes slt, dacB, and mepA, encoding the soluble lytic transglycosylase (Slt), the penicillin-sensitive DD-endopeptidase (PBP4), and the penicillin-insensitive murein endopeptidase A (MepA), were independently fused to the N-terminal encoding sequence of staphylococcal protein A (SpA) under control of the temperature-inducible phage p R promoter. The SpA fusion proteins were stably over-produced at high levels in E. coli upon temperature induction at 42°C and account for 3% (5 mg SpASlt/l culture), 3% (5 mg SpAPBP4/l culture), and 0.3% (0.5 mg SpAMepA/l culture) of total protein. The SpA fusion proteins, immobilized on IgG Sepharose, are proteolytically sensitive, in vitro, resulting in complete degradation of the SpA portion of the fusion proteins and release of the murein hydrolases in intact and enzymatically active form into the supernatant. Proteolytic degradation could be prevented by p-hydroxymercuribenzoic acid (PHMB) or ethylenediaminetetraacetate (EDTA) suggesting the involvement of the periplasmic protease Pi from E. coli. The immobilized fusion proteins were enzymatically active and could be used for the batch production of biologically active 1,6-anhydro-muropeptides, which were successively separated on HPLC. Isolated murein polymer was degraded quantitatively to monomeric 1,6-anhydro-muropeptides when immunoglobulin G (IgG)-SpASlt was used in combination with IgG-SpAMepA. A combination of IgG-SpASlt with IgG-SpAPBP4 left the 1,6-anhydro-dimers and oligomers being cross-linked via an LD-peptide bond (m-DAP-m-DAP) uncleaved. Correspondence to: W. Keck  相似文献   

14.
Reid CW  Blackburn NT  Clarke AJ 《Biochemistry》2006,45(7):2129-2138
Lytic transglycosylases cleave the beta-(1-->4)-glycosidic bond in the bacterial cell wall heteropolymer peptidoglycan between the N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) residues with the concomitant formation of a 1,6-anhydromuramoyl residue. On the basis of both sequence alignments with and structural considerations of soluble lytic transglycosylase Slt35 from Escherichia coli, four residues were predicted to be involved in substrate binding at the -1 subsite in the soluble derivative of Pseudomonas aeruginosa membrane-bound lytic transglycosylase MltB. These residues were targeted for site-specific replacement, and the effect on substrate binding and catalysis was determined. The residues Arg187 and Arg188, believed to be involved in binding the stem peptide on MurNAc, were shown to play an important role in substrate binding, as evidenced by peptidoglycan affinity assays and SUPREX analysis using MurNAc-dipeptide as ligand. The Michaelis-Menten parameters were determined for the respective mutants using insoluble peptidoglycan as substrate. In addition to affecting the steady-state binding of ligand to enzyme, as indicated by increases in K(M) values, significant decreases in k(cat) values suggested that replacement of either Arg187 and Arg188 with alanine perturbed the stabilization of both the transition state(s) and reaction intermediate. Thus, it appears that Arg187 and Arg188 are vital for proper orientation of the substrate in the active site, and furthermore this supports the proposed role of the stem peptide at binding subsite -2 in catalysis. Replacement of Gln100, a residue that would appear to interact with the N-acetyl group on MurNAc, did not show any changes in substrate affinity or activity.  相似文献   

15.
Murein hydrolase activities were analyzed in synchronized cultures of Escherichia coli B/r. Cell wall-bound murein hydrolase activities, including the penicillin-sensitive endopeptidase, increased discontinuously during the cell cycle and showed maximum activity at a cell age of 30 to 35 min (generation time, 43 min). Maximum activity was observed at the same time that the rate of cell wall synthesis reached its maximum. These oscillations depended on the termination of replication: no increase in hydrolase activity was found if deoxyribonucleic acid synthesis was inhibited at an early time in the life cycle. In contrast, the activity of another murein hydrolase that was not tightly bound to the membrane (transglycosylase) increased exponentially with time, even when deoxyribonucleic acid synthesis was inhibited.  相似文献   

16.
Two different species of murein transglycosylase in Escherichia coli.   总被引:14,自引:11,他引:3       下载免费PDF全文
We demonstrated that Escherichia coli murein transglycosylase exists in two forms. After mechanical disruption of the cells, one form was found in the soluble fraction and the other, in the cell envelope. The two enzymes differed with respect to molecular weight, isoelectric point, solubility in aqueous buffers, and to some extent in their requirements for maximal catalytic activity. The molecular weight of the membrane-bound transglycosylase (35,000) was half that of the soluble enzyme. Whether the high-molecular-weight soluble protein is a precursor of the membrane-bound enzyme species remains to be elucidated.  相似文献   

17.
Reid CW  Legaree BA  Clarke AJ 《FEBS letters》2007,581(25):4988-4992
Lytic transglycosylases cleave the beta-(1-->4)-glycosidic bond in the bacterial cell wall heteropolymer peptidoglycan between the N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) residues with the concomitant formation of a 1,6-anhydromuramoyl residue. Based on sequence alignments, Ser216 in Pseudomonas aeruginosa membrane-bound lytic transglycosylase B (MltB) was targeted for replacement with alanine to delineate its role in the enzyme's mechanism of action. The specific activity of the Ser216-->Ala MltB derivative was less than 12% of that for the wild-type enzyme, while its substrate binding affinity remained virtually unaltered. These data are in agreement with a role of Ser216 in orienting the N-acetyl group on MurNAc at the -1 subsite of MltB for its participation in a substrate-assisted mechanism of action.  相似文献   

18.
Phospholipase A activity was hardly detected in Escherichia coli K12 sonicate when solvent-extracted (free) 32P-phosphatides were used as substrate. Phosphatides bound in membrane were, however, actively hydrolyzed to give the corresponding lysolipids by an endogenous enzyme. The results indicated the presence in E. coli membrane of a novel phospholipase which can be more precisely called as lipoprotein phospholipase A. Lysophospholipase was shown to be present in the cellular soluble fraction.

With free phosphatides as substrate, alcohols and some water-miscible solvents, as well as nonionic detergents, markedly stimulated phospholipase A activity of the membrane, possibly by enabling the substrate to hold physical state in someway simillar to that in the membrane. Possible role of this enzyme in membrane lipid metabolism is discussed.  相似文献   

19.
Leung AK  Duewel HS  Honek JF  Berghuis AM 《Biochemistry》2001,40(19):5665-5673
The three-dimensional structure of the lytic transglycosylase from bacteriophage lambda, also known as bacteriophage lambda lysozyme, complexed to the hexasaccharide inhibitor, hexa-N-acetylchitohexaose, has been determined by X-ray crystallography at 2.6 A resolution. The unit cell contains two molecules of the lytic transglycosylase with two hexasaccharides bound. Each enzyme molecule is found to interact with four N-acetylglucosamine units from one hexasaccharide (subsites A-D) and two N-acetylglucosamine units from the second hexasaccharide (subsites E and F), resulting in all six subsites of the active site of this enzyme being filled. This crystallographic structure, therefore, represents the first example of a lysozyme in which all subsites are occupied, and detailed protein-oligosaccharide interactions are now available for this bacteriophage lytic transglycosylase. Examination of the active site furthermore reveals that of the two residues that have been implicated in the reaction mechanism of most other c-type lysozymes (Glu35 and Asp52 in hen egg white lysozyme), only a homologous Glu residue is present. The lambda lytic transglycosylase is therefore functionally closely related to the Escherichia coli Slt70 and Slt35 lytic transglycosylases and goose egg white lysozyme which also lack the catalytic aspartic acid.  相似文献   

20.
The flagellar machinery is a highly complex organelle composed of a free rotating flagellum and a fixed stator that converts energy into movement. The assembly of the flagella and the stator requires interactions with the peptidoglycan layer through which the organelle has to pass for externalization. Lytic transglycosylases are peptidoglycan degrading enzymes that cleave the sugar backbone of peptidoglycan layer. We show that an endogenous lytic transglycosylase is required for full motility of Helicobacter pylori and colonization of the gastric mucosa. Deficiency of motility resulted from a paralysed phenotype implying an altered ability to generate flagellar rotation. Similarly, another Gram‐negative pathogen Salmonella typhimurium and the Gram‐positive pathogen Listeria monocytogenes required the activity of lytic transglycosylases, Slt or MltC, and a glucosaminidase (Auto), respectively, for full motility. Furthermore, we show that in absence of the appropriate lytic transglycosylase, the flagellar motor protein MotB from H. pylori does not localize properly to the bacterial pole. We present a new model involving the maturation of the surrounding peptidoglycan for the proper anchoring and functionality of the flagellar motor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号