首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Local dielectric constant was evaluated from the Stokes shifts of fluorescence spectra ofl--dansylphosphatidylethanolamine (DPE) incorporated into liposomes made of synthetic phosphatidylcholine (dipalmitoyl or distearoyl) or bovine brain phosphatidylserine. The evaluation was established as follows. First, the Stokes shift of DPE was assured to follow Mataga-Lippert's equation and was a function of the dielectric constant and the refractive index in some standard organic solvents. Second, the change of the refractive index did not contribute much to the change in the Stokes shift. Third, the time resolved fluorescence depolarization of DPE in liposomes showed that the cone wobbling diffusion was rapid relative to the fluorescence lifetime and therefore that the dielectric relaxation did not affect the evaluation of the constant in the polar region of membranes. We then investigated the characteristics of the local dielectric constant in the polar region of the lipid bilayer and found that the dielectric constant varies between 4 and 34 depending upon calcium binding and also gel/liquid-crystal phase transition. Such large changes of the local dielectric constant were further correlated with the dynamic structure of lipid bilayer membranes measured by conventional fluorescence depolarization techniques. The large changes of dielectric constant around the polar region suggest that electrostatic interactions at this region can be altered 10-fold by such ionic or thermotropic factors and therefore that local dielectric properties can play crucial roles in membrane functions.  相似文献   

2.
A series of new phospholipids with polar head groups have been synthesized by enzymatic transphosphatidylation of 1,2-dioleoyl-sn-glycerophosphocholine and identified by 1H NMR and MALDI-TOF-MS. The acceptor alcohols were N- or C2-substituted derivatives of ethanolamine (diethanolamine, triethanolamine, serinol, Tris, BisTris). Phospholipases D from cabbage (PLDcab) and Streptomyces sp. (PLDStr) were compared with respect to product yield and purity as well as the initial rates in transphosphatidylation and competing hydrolysis. In all reactions, PLDStr showed a remarkably higher transphosphatidylation activity than PLDcab. However, higher yields of the phospholipids with diethanolamine, triethanolamine, and serinol were obtained by PLDcab because PLDStr resulted in the additional formation of diphosphatidyl derivatives. In the synthesis of the Tris and BisTris derivatives, PLD(Str) was much more appropriate because voluminous head group alcohols (>129A3) are poorly converted by PLDcab. With BisTris as acceptor alcohol two regioisomeric forms of phosphatidyl-BisTris were obtained.  相似文献   

3.
在前面进行的高产磷酯酶C(PLC)菌株筛选、分类鉴定及其抗血小板功能研究的基础上,对选育出的高产PLC菌株BacilluscereusShenZhen7541进行了紫外线和Co60γ射线诱变处理,以期提高其产PLC的水平,从而有利于PLC的纯化制备。B.cereus7541经过三次紫外线照射及两次Co60γ射线辐射诱变处理,通过分离与卵黄琼脂杯碟法及NPPC法酶活检验筛选,最终获得了三株高产PLC突变菌株9287、9289和5612,其产PLC酶活水平分别达到14.878±1.428u/mL、16.450±0.793u/mL、16.400±0.967u/mL,较原始出发菌株B.cereus7541产酶水平(5.803±0.793u/mL)分别提高了2.879、3.236和3.226倍。经t值检验,三株菌产PLC水平与7541差异均达极显著(P<0.001)。  相似文献   

4.
旨在研究大肠杆菌产磷脂酰肌醇特异性磷脂酶C(PI-PLC)的发酵表达和分离纯化,探究PI-PLC酶切GPI锚定蛋白的效果。依据NCBI数据库中蜡样芽孢杆菌的PI-PLC的基因序列,按照大肠杆菌的密码子偏好性进行密码子优化,合成相应基因序列并构建基因表达载体pGEX-6P-1-PI-PLC。将重组质粒转入受体菌E.coli BL21(DE3)中,通过加入异丙基硫代-β-D-半乳糖苷(IPTG)诱导目的基因PI-PLC表达。经检测,含有GST标签的PI-PLC融合蛋白以可溶蛋白形式存在于菌体破碎上清,分子量约为61 kDa,与预期相符。初步优化诱导表达条件后,发现最佳诱导表达条件为:以接种量5%接种体积分数接种,待菌体生长至OD600nm达到0.5,在16℃条件下以0.3 mmol/L浓度IPTG诱导24 h。利用GST标签对蛋白进行纯化,纯化后的PI-PLC质量浓度为0.52 mg/mL,比酶活为1322.5 U/mg。利用PI-PLC酶液对哺乳动物细胞表面的模式GPI锚定蛋白CD59进行酶切,酶切作用显著。因此,下一步可以将PI-PLC融合蛋白应用于细胞生物学中对GPI-APs的研究和鉴定。  相似文献   

5.
环境胁迫对植物的生长不利。转录因子DREB2对干旱、高温、低温等非生物胁迫应答基因的表达具有重要的调控作用。磷酸肌醇磷脂酶C对 DREB2 基因有双向调节机制。深入了解 DREB2 和磷酸肌醇磷脂酶C的研究进展及其在生物工程上的应用,以及磷酸肌醇磷脂酶C对 DREB2 基因的表达调控机理,可以为磷酸肌醇磷脂酶C和 DREB2 基因在提高植物胁迫耐受性中的利用提供基础。  相似文献   

6.
以生物量和酶活为主要指标,采用单因素优化方法结合均匀设计试验,对芽孢杆菌Z-13产磷脂酶C(phospholipaseC,PLC)条件进行了优化。结果表明,该菌合适的产酶条件为:魔芋飞粉2.5 g/L、黄豆粉30 g/L、K2HPO4·3H2O 2.8 g/L、Zn2SO4·7H2O 1.3 g/L、接种量0.5%、摇床转速150 r/min、培养温度30℃、初始pH值9.0,在此条件下培养15 h,活菌总数为4.5×109CFU/mL,卵黄琼脂杯碟法测定磷脂酶C产生的沉淀圈(乳白色晕圈)直径可达30 mm。  相似文献   

7.
Clostridium perfringens KZ1340 isolated from Antarctic soil was first classified as Clostridium plagarum and later as a lecithinase-negative variant of C. perfringens. Although the strain produced no detectable lecithinase (phospholipase C, PLC) activity in the culture supernatant, it was shown by Southern blot hybridization to possess a PLC-encoding gene (plc). To determine the cause of the PLC deficiency, we cloned and sequenced the plc gene from KZ1340. The deduced amino acid sequence consists of 398 amino acid residues, coinciding with those of the plc genes previously determined. Tyrosine was substituted for histidine at amino acid position 148, which is thought to bind a zinc ion essential for PLC activity. Northern blot analysis revealed that KZ1340 expressed the plc gene at an extremely low level. Furthermore, the plc gene cloned from C. perfringens strain 13 into a plasmid was expressed weakly in KZ1340, compared to that in strain 13. This indicates that the former strain represses plc gene expression in trans. When a phylogenetic tree of plc genes was constructed, the KZ1340 plc gene formed a monophyletic branch along with those of various other C. perfringens strains, supporting the classification of the strain as a variant of C. perfringens.  相似文献   

8.
In the past decade lipid vesicle fusion induced by either bacterial PC-preferring phospholipase C, phosphatidylinositol-specific phospholipase C, sphingomyelinase, or a combination of phospholipase C and sphingomyelinase has been demonstrated. In the present paper, the experimental evidence is reviewed, and discussed in terms of the underlying molecular mechanisms of fusion, and of the possible physiological relevance of these findings.  相似文献   

9.
Regional activities of phosphoinositide-specific phospholipase C (PLC) were measured after lateral fluid percussion (FP) brain injury in rats. The activity of PLC on phosphatidylinositol 4,5-bisphosphate (PIP2) in the rat cortex required calcium, and at 45 M concentration it increased PLC activity by about ten-fold. The activity of PLC was significantly increased in the cytosol fraction in the injured (left) cortex (IC) at 5 min, 30 min and 120 min after brain injury. However, in the same site, increases were observed in the membrane fraction only at 5 min after brain injury. In both the contralateral (right) cortex (CC) and ipsilateral hippocampus (IH), the activity of PLC was increased in the cytosol only at 5 min after brain injury. These results suggest that increased activity of PLC may contribute to increases in levels of cellular diacylglycerol and inositol trisphosphate in the IC (the greatest site of injury), and to a smaller extent in the IH and CC, after lateral FP brain injury. It is likely that this increased PLC activity is caused by alteration in either the levels or activities of one or more of its isozymes (PLC, PLC, and PLC) after FP brain injury.  相似文献   

10.
Phospholipase C (PLC) generates various second messenger molecules and mediates phospholipid hydrolysis. In recent years, the important roles of plant and fungal PLC in disease resistance and pathogenicity, respectively, have been determined. However, the roles of PLC in plants and fungi are unintegrated and relevant literature is disorganized. This makes it difficult for researchers to implement PLC-based strategies to improve disease resistance in plants. In this comprehensive review, we summarize the structure, classification, and phylogeny of the PLCs involved in plant biotic stress resistance and fungal pathogenicity. PLCs can be divided into two groups, nonspecific PLC (NPC) and phosphatidylinositol-specific PLC (PI-PLC), which present marked differences in phylogenetic evolution. The products of PLC genes in fungi play significant roles in physiological activity and pathogenesis, whereas those encoded by plant PLC genes mediate the immune response to fungi. This review provides a perspective for the future control of plant fungal diseases.  相似文献   

11.
The total pellet from pig forebrain (from which the cytosolic sialidase was completely washed out) was treated with phosphatidylinositol phospholipase C (PIPLC) and centrifuged at high speed. The supernatant contained sialidase and 5'-nucleotidase activities. The greatest liberation of sialidase was obtained after incubation for 20 min with PIPLC at 37 degrees C using pH 6.0 and a ratio between PIPLC (as units) and protein of 1.6. Under these conditions, the release of sialidase, 5'-nucleotidase, and protein was 22, 50, and 18.5%, respectively. On treatment with PIPLC, a purified preparation of pig brain neuronal (synaptosomal) membranes released 28% of its sialidase whereas a purified preparation of pig brain lysosomes did not liberate any sialidase activity. The pH optimum of sialidase present in the supernatant obtained after PIPLC treatment of the total pellet was 4.2, the same as that of the enzyme embedded in the membrane. When this supernatant was subjected to ammonium sulfate fractionation, 88% of its sialidase, having a pH optimum of 4.2, was recovered in the fraction precipitated between 20 and 45% of salt saturation and subsequently dialyzed. Ammonium sulfate treatment caused the appearance of a second sialidase activity, having a pH optimum of 6.6 and behaving on fractionation similarly to the pH 4.2 sialidase. The Km and Vmax values of pH 4.2 and pH 6.6 sialidase were similar (1.48 x 10(-4) and 0.98 x 10(-4) M for Km and 1.6 and 1.4 mU/mg of protein for Vmax, respectively), whereas the stability on standing at 4 degrees C or exposure to freezing and thawing cycles was greater for pH 4.2 sialidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
带有His tag的人胞浆磷脂酶A2 的C2结构域高效表达 ,用内源荧光的变化测定了其稳定性和其与钙离子结合的结合常数 .结果表明 ,带有His tag的C2结构域仍可有效用于研究其折叠及其与钙离子的协同性结合 ,温度从 2 2℃升高到 35℃时 ,C2结构域和钙离子结合的协同性程度显著增强 .  相似文献   

13.
Oocyte apoptosis can be used as an indicator of oocyte quality and development competency. Phospholipase C (PLC) is a critical enzyme that participates in phosphoinositide metabolic regulation and performs many functions, including the regulation of reproduction. In this study, we aimed to explore whether PLC participates in the regulation of apoptosis in porcine oocytes and investigated its possible mechanism. In porcine oocytes, 0.5 μM U73122 (the PLC inhibitor) was considered to be the best concentration to facilitate maturation, and 0.5 μM m-3M3FBS (the PLC activator) was regarded as the most appropriate concentration to inhibit maturation. The percentage of cleavage and blastocysts treated with 0.5 μM U73122 was lower than that of the control group. Furthermore, the percentage of cleavage and blastocysts treated with 0.5 μM m-3M3FBS was higher than that of the control group. The relative PLC messenger RNA (mRNA) expression tested by a quantitative real-time polymerase chain reaction was found to be inhibited by 0.5 μM U73122 or activated by 0.5 μM m-3M3FBS. The relative mRNA abundance of BAK, BAX, CASP3, CASP8, and TP53 and protein abundance of Bak, cleaved caspase-3, caspase-8, and P53 was activated by U73122 or inhibited by m-3M3FBS, while the relative mRNA and protein level of BCL6 showed the opposite trend. The intracellular Ca2+ concentration increased and the expression of PLCB1 protein also increased in porcine oocytes when they were cultured with 0.5 μM m-3M3FBS for 44 hours. The abundance of proteins PKCβ and CAMKIIα and the expression of several downstream genes (CDC42, NFATc1, NFATc2, NFκB, and NLK) were activated by m-3M3FBS or inhibited by U73122. Our findings indicate that PLC inhibits apoptosis and maturation in porcine oocytes. The intracellular Ca2+ concentration, two Ca2+-sensitive proteins, and several downstream genes were positively regulated by PLC.  相似文献   

14.
The role of phosphoinositide-specific phospholipase C (PI-PLC) signaling in the macrotubule-dependent protoplast volume regulation in plasmolyzed root cells of Triticum turgidum was investigated. At the onset of hyperosmotic stress, PI-PLC activation was documented. Inhibition of PI-PLC activity by U73122 blocked tubulin macrotubule formation in plasmolyzed cells and their protoplast volume regulatory mechanism. In neomycin-treated plasmolyzed cells, macrotubule formation and protoplast volume regulation were not affected. In these cells the PI-PLC pathway is down-regulated as neomycin sequesters the PI-PLC substrate, 4,5-diphosphate-phosphatidyl inositol (PtdInsP(2)). These phenomena were unaffected by R59022, an inhibitor of phosphatidic acic (PA) production via the PLC pathway. Taxol, a microtubule (MT) stabilizer, inhibited the hyperosmotic activation of PI-PLC, but oryzalin, which disorganized MTs, triggered PI-PLC activity. Taxol prevented macrotubule formation and inhibited the mechanism regulating the volume of the plasmolyzed protoplast. Neomycin partly relieved some of the taxol effects. These data suggest that PtdInspP(2) turnover via PI-PLC assists macrotubule formation and activation of the mechanism regulating the plasmolyzed protoplast volume; and the massive disorganization of MTs that is carried out at the onset of hyperosmotic treatment triggers the activation of this mechanism.  相似文献   

15.
Abstract: Phosphoinositide-specific phospholipase C (PI-PLC) hydrolyzes the membrane lipid phosphatidylinositol 4,5-bisphosphate (PtdInsP2) to generate 1,2-diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (InsP3). Both molecules serve as second messengers to carry out various cellular functions in mammals. In the present study, we demonstrate that many organic and inorganic nutrients cause the elevation of InsP3 concentrations in cultured soybean cells. This elevation of InsP3 content is sustained for several hours following treatment with Murashige-Skoog (MS) inorganic nutrients. Phosphate and calcium are the major components in MS salts responsible for the increase in InsP3 levels. DNA synthesis, a measure of cell growth, was significantly suppressed by the PI-PLC-specific inhibitor 1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione (U-73122), whereas its near-identical analogue 1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-2,5-pyrrolidinedione did not cause any suppression. Activation of PI-PLC by MS salts increased DNA synthesis and abolished the suppression of DNA synthesis caused by U-73122. Thus, we conclude that the higher cellular concentration of InsP3 induced by MS treatment is involved in DNA synthesis.  相似文献   

16.
17.
Stable overexpression of myristoylated alanine-rich C-kinase substrate (MARCKS) is known to enhance phorbol ester stimulation of phospholipase D (PLD) activity and protein kinase Cα (PKCα) levels in SK–N–MC neuroblastoma cells. In contrast, expression of MARCKS mutants (S152A or S156A) lacking key PKC phosphorylation sites within the central basic effector domain (ED) had no significant effect on PLD activity or PKCα levels relative to vector control cells. Like control cells, those expressing wild type MARCKS were elongated and possessed longitudinally oriented stress fibers, although these cells were more prone to detach from the substratum and undergo cell death upon phorbol ester treatment. However, cells expressing MARCKS ED mutants were irregularly shaped and stress fibers were either shorter or less abundant, and cell adhesion and viability were not affected. These results suggest that intact phosphorylation sites within the MARCKS ED are required for PLD activation and influence both membrane-cytoskeletal organization and cell viability.  相似文献   

18.
Phospholipase A2 (PLA2)-induced effects on the membrane organization, fluidity properties and surface charge density of pea chloroplasts were investigated. It was observed that lipolytic treatment with PLA2 altered the chloroplast structure having as a result a swelling of thylakoids and a total destruction of normal granal structure. In spite of this, the thylakoid membranes remained in close contact. At the same time, a slight decrease of surface charge density was registered, thus explaining the adhesion of swelled membranes. Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) was measured during PLA2 treatment. A pronounced decrease of DPH fluorescence polarization was found, indicating that phospholipase treatment resulted in considerable disordering and/or fluidization of the thylakoid membranes. The increased fluidity could be attributed to the destabilizing effect of the products of enzymatic hydrolysis of the phospholipids (free fatty acids, lysophospholipids) on the bilayer structure of thylakoids membranes.Abbreviations 9-AA 9-aminoacridine - BSA bovine serium albumin - DCMU 3-/3,4-dichlorophenyl-1,1-dimethyl/urea - DPH 1,6-diphenyl-1,3,5-hexatriene - EDTA ethylenediaminetetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - LHC light harvesting chlorophyll a/b-protein complex of PS II - MES 2/N-morpholine/ethanesulfonic acid - PLA2 phospholipase A2 - PS I, PS II photosystem I and photosystem II, respectively - S lipid structural order parameter - THF tetrahydrofuran - TRICINE N-/tris/hydroxymethyl/methyl/glicine  相似文献   

19.
Phospholipase C zeta, a novel sperm-specific protein which is widely known to induce oocyte activation following fertilization, had already been characterized in various mammalian species, but not in water buffaloes thus far. The present study was conducted to initially characterize and compare the sequences of PLCZ1 gene of swamp and riverine buffaloes. Semen samples were collected; total RNA was extracted and reverse-transcribed. PLCZ1 cDNA was then amplified, and submitted for sequencing. Buffalo PLCZ1 gene yielded a sequence of 1905 base pair nucleotides translated into 634?bp amino acids. In general, the buffalo PLCZ1 gene was found to have high sequence identity with cattle and other domestic species. Similarly, significant residues and motifs in PLCZ1 gene sequence are found conserved in water buffaloes. However, there are variations in sequences identified between types of water buffaloes that may play a role in species-specific differences in terms of gene and protein expression, physiological mechanisms, and biological functions. The molecular information on buffalo PLCZ1 gene is highly valuable in subsequent works such as correlation studies on the identified gene variations with semen quality and fertility, and the development of biomarkers for bull fertility.  相似文献   

20.
Acrosomal reaction is an essential prerequisite to fertilization. The changes in lipid composition of sperm membranes cause fusion of the plasma and outer acrosomal membranes that results in the exocytosis of acrosomal contents. We report that both bull and rabbit spermatozoa contain a phosphatidylcholine-specific phospholipase C (PC-PLC) that hydrolyzes L-alpha-dipalmitoyl-(choline-methyl-14C-153.0 Ci/mmol and a phosphatidylinositol-specific phospholipase C (PI-PLC) that hydrolyzes L-alpha-(Myo-Inositol-2-3H (N)-5.2 Ci mmol. PI-PLC from bull sperm acrosome has been purified 568 x fold with a specific activity 6.25 +/- 0.6 nmol/min/mg protein, km 0.004 mM, and Vmax 12 nmol/min/mg protein. Both enzymes had optimum at pH 7.5. The activity of PC-PLC remained unaffected by varying concentrations of Ca2+, whereas PI-PLC activity was significantly increased. The bulk of PI-PLC was found to be associated with inner acrosomal membrane of bull and rabbit sperm, while PC-PLC was found in the outer acrosomal membranes in the bull sperm and the plasma membrane of the rabbit sperm. Both enzymes are compartmentalized in sperm cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号