首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) is involved in retinal signal processing, but its cellular actions are only partly understood. An established source of retinal NO are NOACs, a group of nNOS-expressing amacrine cells which signal onto bipolar, other amacrine and ganglion cells in the inner plexiform layer. Here, we report that NO regulates glutamate responses in morphologically and electrophysiologically identified type 4 OFF cone bipolar cells through activation of the soluble guanylyl cyclase-cGMP-PKG pathway. The glutamate response of these cells consists of two components, a fast phasic current sensitive to kainate receptor agonists, and a secondary component with slow kinetics, inhibited by AMPA receptor antagonists. NO shortened the duration of the AMPA receptor-dependent component of the glutamate response, while the kainate receptor-dependent component remained unchanged. Application of 8-Br-cGMP mimicked this effect, while inhibition of soluble guanylate cyclase or protein kinase G prevented it, supporting a mechanism involving a cGMP signaling pathway. Notably, perfusion with a NOS-inhibitor prolonged the duration of the glutamate response, while the NO precursor L-arginine shortened it, in agreement with a modulation by endogenous NO. Furthermore, NO accelerated the response recovery during repeated stimulation of type 4 cone bipolar cells, suggesting that the temporal response properties of this OFF bipolar cell type are regulated by NO. These results reveal a novel cellular mechanism of NO signaling in the retina, and represent the first functional evidence of NO modulating OFF cone bipolar cells.  相似文献   

2.
In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL) show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs) and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above.  相似文献   

3.
4.
A key feature of signal processing in the mammalian retina is parallel processing, where the segregation of visual information, e.g., brightness, darkness, and color, starts at the first synapse in the retina, the photoreceptor synapse. These various aspects are transmitted in parallel from the input neurons of the retina, the photoreceptor cells, through the interconnecting bipolar cells, to the output neurons, the ganglion cells. The photoreceptors and bipolar cells release a single excitatory neurotransmitter, glutamate, at their synapses. This parsimony is contrasted by the expression of a plethora of glutamate receptors, receptor subunits, and isoforms. The detailed knowledge of the synaptic distribution of glutamate receptors thus is of major importance in understanding the mechanisms of retinal signal processing. This review intends to highlight recent studies on the distribution of glutamate receptors at the photoreceptor synapses of the mammalian retina.  相似文献   

5.
Organization of afferent information into parallel ON and OFF pathways is a critical feature of the vertebrate visual system. All afferent visual information in the vertebrate retina reaches the inner plexiform layer (IPL) via bipolar cells. It is at the bipolar cell level that separation of ON and OFF information first appears for afferent information from cones. This may also hold true for the rod pathway of cold-blooded vertebrates, but not for mammals. The all-rod retina of the skate presents an opportunity to examine such pathways in a retina having but a single class of photoreceptor. Immunocytochemical evidence suggests that both ON and OFF bipolar cells are present in the skate retina. We examined the pharmacology of the skate electroretinogram (ERG) to test the hypothesis that independent ON and OFF bipolar cell pathways are functional as rod afferent pathways from outer to inner plexiform layer in the skate. 100 microM 2-amino-4-phosphonobutyric acid (APB) reversibly blocked the skate ERG b-wave. A small d-wave-like OFF component of the ERG revealed by DC recording of response to a prolonged (10 s) flash of light was reduced or blocked by 5 mM kynurenic acid (KYN). We found that addition of 200 microM picrotoxin to the Ringer''s solution revealed prominent ON and OFF components of the skate ERG while reducing the c-wave. These ON and OFF components were reversibly blocked by 100 microM APB and 5 mM KYN, respectively. Reversible block of the OFF component by KYN was also accomplished in the presence of 500 microM N-methyl-DL-aspartate. From these findings, we conclude that ON and OFF bipolar cells are likely to be functional as parallel afferent interplexiform pathways in the all-rod retina of the skate.  相似文献   

6.
Removal of extracellular Cl- has been shown to suppress light-evoked voltage responses of ON bipolar and horizontal cells, but not photoreceptors or OFF bipolar cells, in the amphibian retina. A substantial amount of experimental evidence has demonstrated that the photoreceptor transmitter, L-glutamate, activates cation, not Cl-, channels in these cells. The mechanism for Cl-free effects was therefore reexamined in a superfused retinal slice preparation from the mudpuppy (Necturus maculosus) using whole-cell voltage and current clamp techniques. In a Cl-free medium, light-evoked currents were maintained in rod and cone photoreceptors but suppressed in horizontal, ON bipolar, and OFF bipolar cells. Changes in input resistance and dark current in bipolar and horizontal cells were consistent with the hypothesis that removal of Cl- suppresses tonic glutamate release from photoreceptors. The persistence of light-evoked voltage responses in OFF bipolar cells, despite the suppression of light-evoked currents, is due to a compensatory increase in input resistance. Focal application of hyperosmotic sucrose to photoreceptor terminals produced currents in bipolar and horizontal cells arising from two sources: (a) evoked glutamate release and (b) direct actions of the hyperosmotic solution on postsynaptic neurons. The inward currents resulting from osmotically evoked release of glutamate in OFF bipolar and horizontal cells were suppressed in a Cl-free medium. For ON bipolar cells, both the direct and evoked components of the hyperosmotic response resulted in outward currents and were thus difficult to separate. However, in some cells, removal of extracellular Cl- suppressed the outward current consistent with a suppression of presynaptic glutamate release. The results of this study suggest that removal of extracellular Cl- suppresses glutamate release from photoreceptor terminals. Thus, it is possible that control of [Cl-] in and around photoreceptors may regulate glutamate release from these cells.  相似文献   

7.
In the mammalian retina, complementary ON and OFF visual streams are formed at the bipolar cell dendrites, then carried to amacrine and ganglion cells via nonlinear excitatory synapses from bipolar cells. Bipolar, amacrine and ganglion cells also receive a nonlinear inhibitory input from amacrine cells. The most common form of such inhibition crosses over from the opposite visual stream: Amacrine cells carry ON inhibition to the OFF cells and carry OFF inhibition to the ON cells (”crossover inhibition”). Although these synapses are predominantly nonlinear, linear signal processing is required for computing many properties of the visual world such as average intensity across a receptive field. Linear signaling is also necessary for maintaining the distinction between brightness and contrast. It has long been known that a subset of retinal outputs provide exactly this sort of linear representation of the world; we show here that rectifying (nonlinear) synaptic currents, when combined thorough crossover inhibition can generate this linear signaling. Using simple mathematical models we show that for a large set of cases, repeated rounds of synaptic rectification without crossover inhibition can destroy information carried by those synapses. A similar circuit motif is employed in the electronics industry to compensate for transistor nonlinearities in analog circuits.  相似文献   

8.
The nature of surround-induced depolarizing responses in goldfish cones   总被引:2,自引:0,他引:2  
Cones in the vertebrate retina project to horizontal and bipolar cells and the horizontal cells feedback negatively to cones. This organization forms the basis for the center/surround organization of the bipolar cells, a fundamental step in the visual signal processing. Although the surround responses of bipolar cells have been recorded on many occasions, surprisingly, the underlying surround-induced responses in cones are not easily detected. In this paper, the nature of the surround-induced responses in cones is studied. Horizontal cells feed back to cones by shifting the activation function of the calcium current in cones to more negative potentials. This shift increases the calcium influx, which increases the neurotransmitter release of the cone. In this paper, we will show that under certain conditions, in addition to this increase of neurotransmitter release, a calcium-dependent chloride current will be activated, which polarizes the cone membrane potential. The question is, whether the modulation of the calcium current or the polarization of the cone membrane potential is the major determinant for feedback-mediated responses in second-order neurons. Depolarizing light responses of biphasic horizontal cells are generated by feedback from monophasic horizontal cells to cones. It was found that niflumic acid blocks the feedback-induced depolarizing responses in cones, while the shift of the calcium current activation function and the depolarizing biphasic horizontal cell responses remain intact. This shows that horizontal cells can feed back to cones, without inducing major changes in the cone membrane potential. This makes the feedback synapse from horizontal cells to cones a unique synapse. Polarization of the presynaptic (horizontal) cell leads to calcium influx in the postsynaptic cell (cone), but due to the combined activity of the calcium current and the calcium-dependent chloride current, the membrane potential of the postsynaptic cell will be hardly modulated, whereas the output of the postsynaptic cell will be strongly modulated. Since no polarization of the postsynaptic cell is needed for these feedback-mediated responses, this mechanism of synaptic transmission can modulate the neurotransmitter release in single synaptic terminals without affecting the membrane potential of the entire cell.  相似文献   

9.
Lateral inhibition at the first synapse in the retina is important for visual perception, enhancing image contrast, color discrimination, and light adaptation. Despite decades of research, the feedback signal from horizontal cells to photoreceptors that generates lateral inhibition remains uncertain. GABA, protons, or an ephaptic mechanism have all been suggested as the primary mediator of feedback. However, the complexity of the reciprocal cone to horizontal cell synapse has left the identity of the feedback signal an unsolved mystery.  相似文献   

10.
Electrical coupling of vertebrate photoreceptors is well known to improve the signal: noise ratio in the photoreceptor layer for large-area stimuli. For example, if N photoreceptors are perfectly coupled to each other, the signal: noise ratio is improved for stimuli illuminating more than a number M = square root of N of the receptors but is made worse for small-area stimuli illuminating less than M of the N receptors. Using the model of Lamb & Simon (J. Physiol., Lond. 263, 257 (1976], which treats the photoreceptor layer as a square array of cells, each coupled through a resistive gap junction to the four cells around it, we show that the signal:noise ratio for small-area stimuli is much greater than would be expected from a model in which receptors are assumed to be perfectly coupled. Contrary to predictions made assuming perfect coupling, receptor coupling should not prevent rods from detecting single photons, but whether the single photon signal can be detected at the bipolar cell level depends on how signals are read out of the receptor layer. The signal:noise ratio in bipolar cells postsynaptic to the photo-receptor layer is determined partly by synaptic convergence and nonlinearity in synaptic transmission from receptors. If the synaptic gain decreases with light-induced receptor hyperpolarization, as is found experimentally, then receptor coupling can improve the postsynaptic signal:noise ratio for stimuli illuminating only one receptor, even though coupling decreases the presynaptic signal:noise ratio for such stimuli. Moreover, increasing the number of coupled receptors projecting to a bipolar cell can improve the signal:noise ratio for localized stimuli if the synapse is sufficiently nonlinear (although, for the degree of nonlinearity seen in lower vertebrates, synaptic convergence makes the ratio worse for the single photon event). The fact that receptor coupling and synaptic convergence can, under some circumstances, improve the signal:noise ratio in bipolar cells suggests a principle of retinal design that may compete with the requirements of high spatial resolution.  相似文献   

11.
DeVries SH  Li W  Saszik S 《Neuron》2006,50(5):735-748
A cone photoreceptor releases glutamate at ribbons located atop narrow membrane invaginations that empty onto a terminal base. The unique shape of the cone terminal suggests that there are two transmitter microenvironments: within invaginations, where concentrations are high and exposures are brief; and at the base, where concentrations are low and exposure is smoothed by diffusion. Using multicell voltage-clamp recording, we show that different subtypes of Off bipolar cells sample transmitter in two microenvironments. The dendrites of an AMPA receptor-containing cell insert into invaginations and sense rapid fluctuations in glutamate concentration that can lead to transient responses. The dendrites of kainate receptor-containing cells make basal contacts and respond to a smoothed flow of glutamate that produces sustained responses. Signaling at the cone to Off bipolar cell synapse illustrates how transmitter spillover and synapse architecture can combine to produce distinct signals in postsynaptic neurons.  相似文献   

12.
Sampath AP  Rieke F 《Neuron》2004,41(3):431-443
A threshold-like nonlinearity in signal transfer from mouse rod photoreceptors to rod bipolar cells dramatically improves the absolute sensitivity of the rod signals. The work described here reaches three conclusions about the mechanisms generating this nonlinearity. (1) The nonlinearity is caused primarily by saturation of the feedforward rod-to-rod bipolar synapse and not by feedback from horizontal or amacrine cells. This saturation renders the rod bipolar current insensitive to small changes in transmitter release from the rod. (2) Saturation occurs within the G protein cascade that couples receptors to channels in the rod bipolar dendrites, with little or no contribution from presynaptic mechanisms or saturation of the postsynaptic receptors. (3) Between 0.5 and 2 bipolar transduction channels are open in darkness at each synapse, compared to the approximately 30 channels open at the peak of the single photon response.  相似文献   

13.
Dunn FA  Rieke F 《Neuron》2008,57(6):894-904
Adaptation or gain control allows sensory neurons to encode diverse stimuli using a limited range of output signals. Rod vision exemplifies a general challenge facing adaptational mechanisms-balancing the benefits of averaging to create a reliable signal for adaptation with the need to adapt rapidly and locally. The synapse between rod bipolar and AII amacrine cells dominates adaptation at low light levels. We find that adaptation occurs independently at each synapse and completes in <500 ms. This limited spatial and temporal integration suggests that the absorption of a single photon modulates gain. Indeed, responses to pairs of brief dim flashes showed directly that synaptic gain was depressed for 100-200 ms following transmission of a single-photon response. Presynaptic mechanisms mediated this synaptic depression. Thus, the division of light into discrete photons controls adaptation at this synapse, and gain varies with the irreducible statistical fluctuations in photon arrival.  相似文献   

14.
Regulation of ion and pH homeostasis is essential for normal neuronal function. The sodium-driven chloride bicarbonate exchanger NCBE (Slc4a10), a member of the SLC4 family of bicarbonate transporters, uses the transmembrane gradient of sodium to drive cellular net uptake of bicarbonate and to extrude chloride, thereby modulating both intracellular pH (pHi) and chloride concentration ([Cl]i) in neurons. Here we show that NCBE is strongly expressed in the retina. As GABAA receptors conduct both chloride and bicarbonate, we hypothesized that NCBE may be relevant for GABAergic transmission in the retina. Importantly, we found a differential expression of NCBE in bipolar cells: whereas NCBE was expressed on ON and OFF bipolar cell axon terminals, it only localized to dendrites of OFF bipolar cells. On these compartments, NCBE colocalized with the main neuronal chloride extruder KCC2, which renders GABA hyperpolarizing. NCBE was also expressed in starburst amacrine cells, but was absent from neurons known to depolarize in response to GABA, like horizontal cells. Mice lacking NCBE showed decreased visual acuity and contrast sensitivity in behavioral experiments and smaller b-wave amplitudes and longer latencies in electroretinograms. Ganglion cells from NCBE-deficient mice also showed altered temporal response properties. In summary, our data suggest that NCBE may serve to maintain intracellular chloride and bicarbonate concentration in retinal neurons. Consequently, lack of NCBE in the retina may result in changes in pHi regulation and chloride-dependent inhibition, leading to altered signal transmission and impaired visual function.  相似文献   

15.
The ribbon synapse is a specialized synaptic structure in the retinal outer plexiform layer where visual signals are transmitted from photoreceptors to the bipolar and horizontal cells. This structure is considered important in high-efficiency signal transmission; however, its role in visual signal processing is unclear. In order to understand its role in visual processing, the present study utilized Pikachurin-null mutant mice that show improper formation of the photoreceptor ribbon synapse. We examined the initial and late phases of the optokinetic responses (OKRs). The initial phase was examined by measuring the open-loop eye velocity of the OKRs to sinusoidal grating patterns of various spatial frequencies moving at various temporal frequencies for 0.5 s. The mutant mice showed significant initial OKRs with a spatiotemporal frequency tuning (spatial frequency, 0.09 ± 0.01 cycles/°; temporal frequency, 1.87 ± 0.12 Hz) that was slightly different from the wild-type mice (spatial frequency, 0.11 ± 0.01 cycles/°; temporal frequency, 1.66 ± 0.12 Hz). The late phase of the OKRs was examined by measuring the slow phase eye velocity of the optokinetic nystagmus induced by the sinusoidal gratings of various spatiotemporal frequencies moving for 30 s. We found that the optimal spatial and temporal frequencies of the mutant mice (spatial frequency, 0.11 ± 0.02 cycles/°; temporal frequency, 0.81 ± 0.24 Hz) were both lower than those in the wild-type mice (spatial frequency, 0.15 ± 0.02 cycles/°; temporal frequency, 1.93 ± 0.62 Hz). These results suggest that the ribbon synapse modulates the spatiotemporal frequency tuning of visual processing along the ON pathway by which the late phase of OKRs is mediated.  相似文献   

16.
Cone photoreceptors and horizontal cells (HCs) have a reciprocal synapse that underlies lateral inhibition and establishes the antagonistic center-surround organization of the visual system. Cones transmit to HCs through an excitatory synapse and HCs feed back to cones through an inhibitory synapse. Here we report that HCs also transmit to cone terminals a positive feedback signal that elevates intracellular Ca(2+) and accelerates neurotransmitter release. Positive and negative feedback are both initiated by AMPA receptors on HCs, but positive feedback appears to be mediated by a change in HC Ca(2+), whereas negative feedback is mediated by a change in HC membrane potential. Local uncaging of AMPA receptor agonists suggests that positive feedback is spatially constrained to active HC-cone synapses, whereas the negative feedback signal spreads through HCs to affect release from surrounding cones. By locally offsetting the effects of negative feedback, positive feedback may amplify photoreceptor synaptic release without sacrificing HC-mediated contrast enhancement.  相似文献   

17.
Ribbon synapses of the retina   总被引:1,自引:0,他引:1  
Vision is a highly complex task that involves several steps of parallel information processing in various areas of the central nervous system. Complex processing of visual signals occurs as early as at the retina, the first stage in the visual system. Various aspects of visual information are transmitted in parallel from the photoreceptors (the input neurons of the retina) through their interconnecting bipolar cells to the ganglion cells (the output neurons). Photoreceptors and bipolar cells transfer information via the release of the neurotransmitter glutamate at a specialized synapse, the ribbon synapse. Although known from early days of electron microscopy, the precise functioning of ribbon synapses has yet to be explained. In this review, we highlight recent advances towards understanding the molecular composition and function of this enigmatic synapse.This study was supported by a grant from the Deutsche Forschungsgemeinschaft (BR 1643/4-1) to J.H.B.  相似文献   

18.
A model of the vertebrate cone retina was tested with physiological stimuli. Results confirm previous findings that, except for photoreceptors, the spatial and temporal properties of simulated retinal elements conform to a linear system. The model is consistent with known physiological correlates. Tonic units detect intensity when the light spot is within the center field, while phasic units detect movement across borders of contrast. There is a dynamic balance between the tonic and phasic channels: the tonic channel is favored by a center field input voltage, while the phasic channel is favored by a surround field input voltage to bipolar cells. The ON discharge of the phasic ganglion cell is developed by the excitatory center field input to the depolarizing-center bipolar cell, which has the shortest delay, while the OFF discharge is the result of the excitatory surround field input voltage to the hyperpolarizing-center bipolar cell, which has the longest delay.  相似文献   

19.
In the mouse retina, dopaminergic amacrine (DA) cells synthesize both dopamine and GABA. Both transmitters are released extrasynaptically and act on neighbouring and distant retinal neurons by volume transmission. In simultaneous recordings of dopamine and GABA release from isolated perikarya of DA cells, a proportion of the events of dopamine and GABA exocytosis were simultaneous, suggesting co-release. In addition, DA cells establish GABAergic synapses onto AII amacrine cells, the neurons that transfer rod bipolar signals to cone bipolars. GABAA but not dopamine receptors are clustered in the postsynaptic membrane. Therefore, dopamine, irrespective of its site of release—synaptic or extrasynaptic—exclusively acts by volume transmission. Dopamine is released upon illumination and sets the gain of retinal neurons for vision in bright light. The GABA released at DA cells'' synapses probably prevents signals from the saturated rods from entering the cone pathway when the dark-adapted retina is exposed to bright illumination. The GABA released extrasynaptically by DA and other amacrine cells may set a ‘GABAergic tone’ in the inner plexiform layer and thus counteract the effects of a spillover of glutamate released at the bipolar cell synapses of adjacent OFF and ON strata, thus preserving segregation of signals between ON and OFF pathways.  相似文献   

20.
Tian N  Copenhagen DR 《Neuron》2003,39(1):85-96
ON and OFF pathways separately relay increment and decrement luminance signals from retinal bipolar cells to cortex. ON-OFF retinal ganglion cells (RGCs) are activated via synaptic inputs onto bistratified dendrites localized in the ON and OFF regions of the inner plexiform layer. Postnatal maturational processes convert bistratifying ON-OFF RGCs to monostratifying ON and OFF RGCs. Although visual deprivation influences refinement of higher visual centers, no previous studies suggest that light regulates either the development of the visual-evoked signaling in retinal ON and OFF pathways, nor pruning of bistratified RGC dendrites. We find that dark rearing blocks both the maturational loss of ON-OFF responsive RGCs and the pruning of dendrites. Thus, in retina, there is a previously unrecognized, pathway-specific maturation that is profoundly affected by visual deprivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号