首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein phosphatase-2B was purified from extracts of rabbit skeletal muscle by a procedure that involved fractionation with ammonium sulphate, chromatography on DEAE-Sepharose, fractionation with poly(ethylene glycol), gel filtration on Sephadex G-200 (Mr = 98000 +/- 4000), chromatography on Affi-Gel Blue and affinity chromatography on calmodulin-Sepharose. The enzyme was purified 3500-fold in seven days with an overall yield of 0.5%. The alpha-subunit of phosphorylase kinase, protein phosphatase inhibitor-1 and the myosin P-light chain from rabbit skeletal muscle were dephosphorylated by protein phosphatase-2B with similar kinetic constants. The alpha-subunit of phosphorylase kinase was dephosphorylated at least 100-fold more rapidly than the beta-subunit, while glycogen phosphorylase, glycogen synthase, histones H1 and H2B, ATP-citrate lyase, acetyl-CoA carboxylase, L-pyruvate kinase and protein synthesis initiation factor eIF-2 were not dephosphorylated at significant rates. Protein phosphatase-2B became activated 10-fold by calmodulin (A0.5 = 6 nM) after chromatography on DEAE-Sepharose and this degree of activation was maintained throughout the remainder of the purification. Calmodulin increased the Vmax of the reaction without altering the Km for inhibitor-1. The activity of protein phosphatase-2B was completely dependent on Ca2+ in the presence or absence of calmodulin. Half-maximal activation was observed at 1.0 microM Ca2+ in the absence, and at 0.5 microM Ca2+ in the presence, of 0.03 microM calmodulin. Protein phosphatase-2B was inhibited completely by trifluoperazine; half-maximal inhibition occurred at 45 microM in the absence and 35 microM in the presence of 0.03 microM calmodulin. The metabolic role of protein phosphatase-2B in vivo is discussed in the light of the observation that this enzyme is probably identical to a major calmodulin-binding protein of neural tissue termed calcineurin or CaM-BP80 [Stewart, A. A., Ingebritsen, T. S., Manalan, A., Klee, C. B., and Cohen, P. (1982) FEBS Lett. 137, 80-84].  相似文献   

2.
The gel-overlay technique with 125I-labelled calmodulin allowed the detection of several calmodulin-binding proteins of Mr 280 000, 150 000, 97 000, 56 000, 35 000 and 24 000 in canine cardiac sarcoplasmic reticulum. Only two calmodulin-binding proteins could be identified unambiguously. Among them, the 97 000-Mr protein that undergoes phosphorylation in the presence of Ca2+ and calmodulin, is likely to be glycogen phosphorylase. In contrast, the (Ca2+ + Mg2+)-activated ATPase did not appear to bind calmodulin under our experimental conditions. The second known calmodulin target is dephosphophospholamban, which migrates with an apparent Mr of 24 000. The dimeric as well as the monomeric form of phospholamban was found to bind calmodulin. Phospholamban shifts the apparent Kd of erythrocyte (Ca2+ + Mg2+)-activated ATPase for calmodulin, suggesting thus a tight binding of calmodulin to the proteolipid. Interestingly enough, phospholamban phosphorylation by either the catalytic subunit of cyclic AMP-dependent protein kinase or the Ca2+/calmodulin-dependent phospholamban kinase was found to inhibit calmodulin binding.  相似文献   

3.
Two protein phosphatases (enzymes I and II) were extensively purified from wheat embryo by a procedure involving chromatography on DEAE-cellulose, phenyl-Sepharose CL-4B, DEAE-Sephacel and Ultrogel AcA 44. Preparations of enzyme I (Mr 197,000) are heterogeneous. Preparations of enzyme II (Mr 35,000) contain only one major polypeptide (Mr 17,500), which exactly co-purifies with protein phosphatase II on gel filtration and is not present in preparations of enzyme I. However, this major polypeptide has been identified as calmodulin. Calmodulin and protein phosphatase II can be separated by further chromatography on phenyl-Sepharose CL-4B. Protein phosphatases I and II do not require Mg2+ or Ca2+ for activity. Both enzymes catalyse the dephosphorylation of phosphohistone H1 (phosphorylated by wheat-germ Ca2+-dependent protein kinase) and of phosphocasein (phosphorylated by wheat-germ Ca2+-independent casein kinase), but neither enzyme dephosphorylates a range of non-protein phosphomonoesters tested. Both enzymes are inhibited by Zn2+, Hg2+, vanadate, molybdate, F-, pyrophosphate and ATP.  相似文献   

4.
Several bovine brain proteins have been found to interact with a hydrophobic chromatography resin (phenyl-Sepharose CL-4B) in a Ca2+-dependent manner. These include calmodulin, the Ca2+/phospholipid-dependent protein kinase (protein kinase C) and a novel Ca2+-binding protein that has now been purified to electrophoretic homogeneity. This latter protein is acidic (pI 5.1) and, like calmodulin and some other high-affinity Ca2+-binding proteins, exhibits a Ca2+-dependent mobility shift on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, with an apparent Mr of 22 000 in the absence of Ca2+ and Mr 21 000 in the presence of Ca2+. This novel calciprotein is distinct from known Ca2+-binding proteins on the basis of Mr under denaturing conditions, Cleveland peptide mapping and amino acid composition analysis. It may be a member of the calmodulin superfamily of Ca2+-binding proteins. This calciprotein does not activate two calmodulin-dependent enzymes, namely cyclic nucleotide phosphodiesterase and myosin light-chain kinase, nor does it have any effect on protein kinase C. It may be a Ca2+-dependent regulatory protein of an as-yet-undefined enzymic activity. The Ca2+/phospholipid-dependent protein kinase is also readily purified by Ca2+-dependent hydrophobic-interaction chromatography followed by ion-exchange chromatography, during which it is easily separated from calmodulin. A preparation of protein kinase C that lacks contaminating kinase or phosphatase activities is thereby obtained rapidly and simply. Such a preparation is ideal for the study of phosphorylation reactions catalysed in vitro by protein kinase C.  相似文献   

5.
Sarcoplasmic phosphorylase phosphatase extracted from ground skeletal muscle was recovered in a high molecular weight from (Mr = 250000). This enzyme has been purified from extracts by anion-exchange and gel chromatography to yield a preparation with three major protein components of Mr 83000, 72000, and 32000 by sodium dodecyl sulfate gel electrophoresis. The phosphorylase phosphatase activity of the complex form was activated more than 10-fold by Mn2+, with a K0.5 of 10(-5) M, but not by Mg2+ or Ca2+. Manganese activation occurred over a period of several minutes and resulted primarily in an increase in Vmax of a phosphatase that was sensitive to trypsin. Activation persisted after gel filtration, and the active form of the enzyme did not contain bound manganese measured by using 54Mn2+. A contaminating p-nitrophenylphosphatase was activated by either Mn2+ (K0.5 of 10(-4) M) or Mg2+ (K0.5 of 10(-3) M). Unlike the protein phosphatase this enzyme was inactive following removal of the metal ions by gel filtration. The phosphatase complex could be dissociated into its component subunits by precipitation with 50% acetone at 20 degrees C in the presence of an inert divalent cation, reducing agent, and bovine serum albumin. Two catalytic subunits were quantitatively recovered; one of Mr 83000 was a trypsin-sensitive manganese-activated phosphatase and the second of Mr 32000 was trypsin-stable and metal ion dependent. Both enzymes were effective in catalyzing the dephosphorylation of either phosphorylase a or the regulatory subunit of adenosine cyclic 3',5'-phosphate (cAMP) dependent protein kinase, but neither subunit possessed p-nitrophenylphosphatase activity.  相似文献   

6.
Infection of Escherichia coli with phage lambda gt10 resulted in the appearance of a protein phosphatase with activity towards 32P-labelled casein. Activity reached a maximum near the point of cell lysis and declined thereafter. The phosphatase was stimulated 30-fold by Mn2+, while Mg2+ and Ca2+ were much less effective. Activity was unaffected by inhibitors 1 and 2, okadaic acid, calmodulin and trifluoperazine, distinguishing it from the major serine/threonine-specific protein phosphatases of eukaryotic cells. The lambda phosphatase was also capable of dephosphorylating other substrates in the presence of Mn2+, although activity towards 32P-labelled phosphorylase was 10-fold lower, and activity towards phosphorylase kinase and glycogen synthase 25 50-fold lower than with casein. No casein phosphatase activity was present in either uninfected cells, or in E. coli infected with phage lambda gt11. Since lambda gt11 lacks part of the open reading frame (orf) 221, previously shown to encode a protein with sequence similarity to protein phosphatase-1 and protein phosphatase-2A of mammalian cells [Cohen, Collins, Coulson, Berndt & da Cruz e Silva (1988) Gene 69, 131-134], the results indicate that ORF221 is the protein phosphatase detected in cells infected with lambda gt10. Comparison of the sequence of ORF221 with other mammalian protein phosphatases defines three highly conserved regions which are likely to be essential for function. The first of these is deleted in lambda gt11.  相似文献   

7.
A phosphoprotein phosphatase that dephosphorylates smooth muscle myosin has been purified to apparent homogeneity from turkey gizzards. Smooth muscle phosphatase (SMP) IV has a molecular weight of 150,000 as determined by gel filtration on a Sephadex G-200 column and is composed of two subunits (Mr = 58,000 and 40,000). Although it is active toward a number of proteins, its activities toward the contractile proteins, intact myosin, heavy meromyosin, and isolated myosin light chains are higher than its activities toward phosphorylase alpha, histone IIA, and phosphorylase kinase. SMP-IV preferentially dephosphorylates the beta-subunit of phosphorylase kinase. The properties of the enzyme have been studied using heavy meromyosin, a soluble chymotryptic fragment of myosin, and isolated myosin light chains as substrates. SMP-IV has high affinity for both substrates and is optimally active at neutral pH. Divalent cations, Ca2+ and Mg2+, activate the dephosphorylation of heavy meromyosin but inhibit the activity toward myosin light chains. Low concentrations of ATP (1-5 mM) activate SMP-IV but concentrations higher than 5 mM are inhibitory. Inhibition of 50% of the activity of the enzyme by NaF and PPi requires concentrations higher than 10 mM. Rabbit skeletal muscle heat stable inhibitor-2 has no effect on the activity of SMP-IV toward heavy meromyosin, myosin light chains, and phosphorylase alpha.  相似文献   

8.
1. Reabsorption of NaCl in the thick ascending limb of Henle's loop involves the integrated function of the Na+,K+,Cl- -cotransport system and a Ca2+-activated K+ channel in the luminal membrane with the Na+,K+-pump and a net Cl- conductance in the basolateral membrane. 2. Assay of K+ channel activity after reconstitution into phospholipid vesicles shows that the K+ channel is stimulated by Ca2+ in physiological concentrations and that its activity is regulated by calmodulin and phosphorylation from cAMP dependent protein kinase. 3. For purification luminal plasma membrane vesicles are isolated and solubilized in CHAPS. K+ channel protein is isolated by affinity chromatography on calmodulin columns. The purified protein has high Ca2+-activated K+ channel activity after reconstitution into vesicles. 4. The purified K+ channel consists of two proteins of 51 and 36 kDa. Phosphorylation from cAMP dependent protein kinase stimulates K+ channel activity and labels the 51 kDa band. The 36 kDa band is rapidly cleaved by trypsin and may be involved in Ca2+ stimulation. 5. Opening of the K+ channel by Ca2+ in physiological concentrations and regulation by calmodulin and phosphorylation by protein kinase may mediate kinetic and hormonal regulation of NaCl transport across the tubule cells in TAL.  相似文献   

9.
Gangliosides have profound modulatory effects on protein phosphorylation in brain. A protein kinase activated directly by gangliosides has been partially purified from the particulate fractions of guinea pig brain through extraction with nonionic detergent, ion-exchange chromatography, hydrophobic chromatography, and gel filtration. This novel ganglioside-stimulated protein kinase is distinct from cAMP-dependent, Ca2+/calmodulin-dependent, and Ca2+/phospholipid-dependent protein kinases. The partially purified kinase preparation could undergo ganglioside-stimulated autophosphorylation of a major phosphoprotein with Mr corresponding to 68,000. It also could phosphorylate exogenous substrates such as the synthetic peptide Leu-Arg-Arg-Ala Ser-Leu-Gly. The requirement of gangliosides for the activation of kinase activity is dose-dependent and specific. Among the various gangliosides tested, GT1b and GD1a were found to be the most potent activators, whereas GD1b and GM1 were slightly less effective. The activation process is rapid and does not require the presence of Ca2+, suggesting that the stimulatory effect of gangliosides is not mediated through limited proteolysis or Ca2+-glycolipid complexes. Although the exact physiological significance of the ganglioside-stimulated protein kinase is not known at present, it is possible that certain functions related to gangliosides in the nervous system are mediated through the activation of this novel enzyme.  相似文献   

10.
The Ca2+ dependence of the Ca2+-pumping ATPase of bovine cardiac sarcolemma was studied for four states of activation: (a) unactivated, (b) cAMP-dependent protein kinase (cAMP protein kinase C-subunit)-activated, (c) calmodulin (CAM)-activated, and (d) CAM plus cAMP protein kinase C-subunit-activated. Analysis of the Ca2+ dependence of active transport gave the following Vmax (nanomoles Ca2+/(mg x min], Km (nM) for Ca2+, and Hill coefficient values for the four states at pH 7.4, 37 degrees C: (a) 1.7 +/- 0.3, 1800 +/- 100, 1.6 +/- 0.1; (b) 3.1 +/- 0.5, 1100 +/- 100, 1.7 +/- 0.1; (c) 15.0 +/- 2.5, 64 +/- 1.4, 3.7 +/- 0.2; and (d) 36.0 +/- 6.5, 63 +/- 1.7, 3.7 +/- 0.1. CAM has the most dramatic effect, increasing the apparent Ca2+ affinity by a factor of 28, increasing the Hill coefficient 2.0 units to a value approaching 4 and increasing the Vmax by a factor of 9 or 12. The effective Ca2+ concentration (EC50) for the Ca2+-induced activation of the enzyme in the presence of 5 microM calmodulin is close to the Km for Ca2+ for the CAM-activated state (64 nM). Activation by cAMP protein kinase C-subunit had only minor effects on the Km and Hill coefficient, but increased the Vmax of both the unactivated and the CAM-activated forms of the pump by factor of 1.8 and 2.4, respectively. Analysis suggests that CAM activation is the result of direct binding of Ca2-CAM or high complexes, conferring higher Ca2+ affinity to the enzyme. Analysis suggests that regulatory phosphorylation (cAMP protein kinase C-subunit) increases the rates of processes subsequent to or distinct from Ca2+ binding. The CAM-activated form of the pump was further characterized. Unexpectedly, this form of the enzyme is stimulated a factor of 1.9 by ADP, with half-maximal stimulation between 0.4 and 0.7 mM. Analysis of the progress curves for uptake show that the CAM-activated enzyme is highly resistant to inhibition by transported Ca2+, with an IC50 of 32 mM. The implications of these findings for the pump mechanism and for its role in the regulation of cardiac contractility are discussed.  相似文献   

11.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

12.
We have shown previously that the subcellular distribution of a major calmodulin-binding protein is altered under conditions causing increased synthesis of cAMP in Aplysia neurons (Saitoh, T., and J. H. Schwartz, 1983, Proc. Natl. Acad. Sci. USA, 80:6708-6712). We now provide evidence that this Mr 55,000 protein is a subunit of a Ca2+/calmodulin-dependent kinase: (a) both the Mr 55,000 calmodulin-binding protein and kinase activity are loosely attached to the membrane-cytoskeletal complex; (b) both kinase activity and the Mr 55,000 protein are translocated from the membrane-cytoskeleton complex to the cytoplasm under conditions that cause the change in the subcellular distribution of the Mr 55,000 calmodulin-binding protein; and (c) calmodulin-binding activity of the Mr 55,000 protein and the ability to carry out the Ca2+/calmodulin-dependent phosphorylation of synapsin I are purified in parallel. The subcellular localization of the Ca2+/calmodulin-dependent protein kinase appears to be under control of two second messengers: Ca2+ and cAMP. We find that the Mr 55,000 subunit is phosphorylated when the extracted membrane-cytoskeleton complex is incubated with Ca2+, calmodulin, and ATP, with the concomitant release of this phosphorylated peptide from the complex. Previously, we had found that, when translocation occurs in extracts in the presence of cAMP and ATP (but in the absence of Ca2+), there was no detectable phosphorylation of the Mr 55,000 subunit itself. The subcellular distribution of the subunit thus appears to be influenced by (a) cAMP-dependent phosphorylation, which, we infer, modifies some as yet unidentified structural component, causing the release of the enzyme; and (b) Ca2+/calmodulin-dependent phosphorylation of the Mr 55,000 subunit. These studies also suggest that phosphorylation has an important regulatory consequence: during the Ca2+/calmodulin-dependent translocation of the Mr 55,000 subunit, the kinase appears to be activated, becoming independent of added Ca2+/calmodulin.  相似文献   

13.
A calmodulin-dependent protein kinase has been purified extensively from a Rous sarcoma virus-transformed rat cell line (RR1022) and from normal rat liver. The calmodulin-dependent protein kinase activity was manifested by in vitro phosphorylation of a single Mr 57 000 endogenous phosphoprotein (pp57) present in both the virally transformed cells and normal rat liver. The calmodulin-dependent protein kinase from transformed cells fractionated with the viral src gene product, pp60v-src, through a 650-fold purification of the oncogene product. However, purification of the calmodulin-dependent protein kinase from normal liver demonstrated that the calmodulin-dependent kinase was distinct from pp60v-src. Phosphorylation of pp57 by the kinase purified from the transformed cell line required Ca2+ and calmodulin, was inhibited by EDTA and was unaffected by cAMP or the heat- and acid-stable protein inhibitor of cAMP-dependent protein kinase. Troponin C did not substitute for calmodulin. A virtually identical calmodulin-dependent protein kinase activity was purified from rat liver by affinity chromatography on calmodulin-Sepharose. Phosphorylation of pp57 by the affinity-purified liver protein kinase was also observed, and required Ca2+ and calmodulin. EGTA and trifluoroperazine inhibited pp57 phosphorylation. The calmodulin-dependent protein kinase reported here did not phosphorylate substrates of known calmodulin-dependent protein kinases in vitro (myosin light chain, phosphorylase b, glycogen synthase, microtubule-associated proteins, tubulin, alpha-casein). Because none of these proteins served as substrates in vitro and pp57 was the only endogenous substrate found, the properties of this enzyme appear to be different from any previously described calmodulin-dependent protein kinase.  相似文献   

14.
The Ca2+/calmodulin (CaM)-dependent protein kinase associated with rat cerebral synaptic junction (SJ) was characterized, using the SJ fraction as the enzyme preparation, to clarify the functional significance of the enzyme in situ. The protein kinase was greatly activated in the presence of micromolar concentrations of both Ca2+ and calmodulin (EC50 for Ca2+, 1.0 microM; that for CaM, 100 nM). The Km for ATP was 150 microM. SJ proteins were phosphorylated without a lag time, and the phosphorylation reached its maximum within 2-10 min at 25 degrees C. The endogenous substrates consisted of four major (160K, 120K, 60K, and 51K Mr) and 10 minor proteins. Compared with the endogenous substrate phosphorylation, the phosphorylation of exogenously added proteins (myosin light chains from chicken muscle, casein, arginine-rich histone, microtubule-associated protein-2, tau-protein, and tubulin) was weak, although they are expected to be good substrates for the soluble form of the Ca2+/CaM-dependent protein kinase. Autophosphorylation of the enzyme in SJ inhibited its activity and did not alter the subcellular distribution of the enzyme.  相似文献   

15.
Four phosphoprotein phosphatases, with the ability to act upon hydroxymethylglutaryl (HMG)-CoA reductase, phosphorylase, and glycogen synthase have been purified from rat liver cytosol through a process that involves DEAE-cellulose, aminohexyl-Sepharose-4B, and Bio-Gel A 1.5 m chromatographies. Protein phosphatase II (Mr 180,000) was the major enzyme (68%) with a very broad substrate specificity, showing similar activity toward the three substrates. Phosphatases I1 (Mr 180,000) and I3 (Mr 250,000) accounted for only 12 and 15% of the total activity, respectively, and they were also able to dephosphorylate the three substrates. In contrast, phosphatase I2 (Mr 200,000) showed only phosphorylase phosphatase activity with insignificant dephosphorylating capacity toward HMG-CoA reductase and glycogen synthase. Upon ethanol treatment at room temperature, the Mr of all phosphatases changed; protein phosphatases I2, I3, and II were brought to an Mr of 35,000, while phosphatase I1 was reduced to an Mr of 69,000. Glycogen synthase phosphatase activity was decreased in all four phosphatases. There was also a decrease in phosphatase I1 activity toward HMG-CoA reductase and phosphorylase as substrates. The HMG-CoA reductase phosphatase and phosphorylase phosphatase activities of phosphatases I2, I3, and II were increased after ethanol treatment. Each protein phosphatase showed a different optimum pH, which changed depending on the substrate. The four phosphatases increased their activity in the presence of Mn2+ and Mg2+. In general, Mn2+ was a better activator than Mg2+, and phosphatase I1 showed a stronger dependency on these cations than any other phosphatase. Phosphorylase was a competitive substrate in the HMG-CoA reductase phosphatase and glycogen synthase phosphatase reactions of protein phosphatases I1, I3, and II. HMG-CoA reductase was also able to compete with phosphorylase and glycogen synthase for phosphatase activity. Glycogen synthase phosphatase activity presented less inhibition in the low-Mr forms. A comparison has been made with other protein phosphatases previously reported in the literature.  相似文献   

16.
Purified zymogen granules were prepared from rat pancreas by using an iso-osmotic Percoll gradient. In the presence of [gamma-32P]ATP, phosphorylation of several granule proteins was induced by Ca2+, most notably a Mr-13 000 protein, whereas addition of cyclic AMP was without effect. When phosphatidylserine was also added, Ca2+ increased the phosphorylation of additional proteins, with the largest effect on a protein of Mr 62 000. Purified granules were also able to phosphorylate exogenous substrates. Ca2+-induced phosphorylation of lysine-rich histone was enhanced over 3-fold in the presence of phosphatidylserine, and cyclic AMP-activated protein kinase activity was revealed with mixed histone as substrate. The concentrations of free Ca2+ and cyclic AMP required for half-maximal phosphorylation of both endogenous and exogenous proteins were 1-3 microM and 57 nM respectively. Treatment of granules with 0.25 M-KCl resulted in the release of phosphatidylserine-dependent kinase activity into a high-speed granule supernatant. In contrast, granule-protein substrates of Ca2+-activated kinase activity were resistant to KCl extraction, and in fact were present in purified granule membranes. Kinase activity activated by cyclic AMP was not extracted by KCl treatment. It is concluded that phosphorylation of integral membrane proteins in the zymogen granule can be induced by one or more Ca2+-activated protein kinases. Such a reaction is a potential mechanism by which exocytosis may be regulated in the exocrine pancreas by Ca2+-mediated secretagogues.  相似文献   

17.
Protein phosphorylation in permeabilized pancreatic islet cells.   总被引:4,自引:4,他引:0       下载免费PDF全文
A system of digitonin-permeabilized islet cells was developed to characterize Ca2+- and calmodulin-dependent protein phosphorylation further and to determine whether activation of this membrane-bound process was sufficient for initiation of Ca2+-stimulated insulin secretion. The efficacy of digitonin in permeabilizing the plasma membrane was assessed by Trypan Blue exclusion, by extracellular leakage of lactate dehydrogenase, and by permeability to [gamma-32P]ATP. This treatment did not detectably alter the ultrastructure of the permeabilized cells. Digitonin was equally effective when presented to islet cells that had been previously dispersed or directly to intact isolated islets. The Ca2+- and calmodulin-dependent phosphorylation of endogenous membrane-bound substrates could be demonstrated in the permeabilized cells incubated with [gamma-32P]ATP. This activity displayed characteristics that were similar to those described for the protein kinase measured in subcellular fractions and was dependent on addition of exogenous calmodulin, indicating that calmodulin had been removed from the kinase by permeabilization of the cells. Ca2+-dependent insulin release by the digitonin-permeabilized islet was demonstrated, with half-maximal release occurring at 0.1 microM-free Ca2+ and maximal secretion at 0.2 microM-free Ca2+. Under these conditions, calmodulin did not further enhance insulin release, although a stimulatory effect of calmodulin was observed in the absence of free Ca2+. These studies indicate that the permeabilized-islet model will be useful in dissecting out the factors involved in Ca2+-activated insulin secretion.  相似文献   

18.
Muscle extracts were subjected to fractionation with ethanol, chromatography on DEAE-cellulose, precipitation with (NH4)2SO4 and gel filtration on Sephadex G-200. These fractions were assayed for protein phosphatase activities by using the following seven phosphoprotein substrates: phosphorylase a, glycogen synthase b1, glycogen synthase b2, phosphorylase kinase (phosphorylated in either the alpha-subunit or the beta-subunit), histone H1 and histone H2B. Three protein phosphatases with distinctive specificities were resolved by the final gel-filtration step and were termed I, II and III. Protein phosphatase-I, apparent mol.wt. 300000, was an active histone phosphatase, but it accounted for only 10-15% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities and 2-3% of the phosphorylase kinase phosphatase and phosphorylase phosphatase activity recovered from the Sephadex G-200 column. Protein phosphatase-II, apparent mol.wt. 170000, possessed histone phosphatase activity similar to that of protein phosphatase-I. It possessed more than 95% of the activity towards the alpha-subunit of phosphorylase kinase that was recovered from Sephadex G-200. It accounted for 10-15% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activity, but less than 5% of the activity against the beta-subunit of phosphorylase kinase and 1-2% of the phosphorylase phosphatase activity recovered from Sephadex G-200. Protein phosphatase-III was the most active histone phosphatase. It possessed 95% of the phosphorylase phosphatase and beta-phosphorylase kinase phosphatase activities, and 75% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities recovered from Sephadex G-200. It accounted for less than 5% of the alpha-phosphorylase kinase phosphatase activity. Protein phosphatase-III was sometimes eluted from Sephadex-G-200 as a species of apparent mol.wt. 75000(termed IIIA), sometimes as a species of mol.wt. 46000(termed IIIB) and sometimes as a mixture of both components. The substrate specificities of protein phosphatases-IIA and -IIB were identical. These findings, taken with the observation that phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities co-purified up to the Sephadex G-200 step, suggest that a single protein phosphatase (protein phosphatase-III) catalyses each of the dephosphorylation reactions that inhibit glycogenolysis or stimulate glycogen synthesis. This contention is further supported by results presented in the following paper [Cohen, P., Nimmo, G.A. & Antoniw, J.F. (1977) Biochem. J. 1628 435-444] which describes a heat-stable protein that is a specific inhibitor of protein phosphatase-III.  相似文献   

19.
M Nomura  J T Stull  K E Kamm  M C Mumby 《Biochemistry》1992,31(47):11915-11920
Smooth muscle myosin light chain kinase is phosphorylated at two sites (A and B) by different protein kinases. Phosphorylation at site A increases the concentration of Ca2+/calmodulin required for kinase activation. Diphosphorylated myosin light chain kinase was used to determine the site-specificity of several forms of protein serine/threonine phosphatase. These phosphatases readily dephosphorylated myosin light chain kinase in vitro and displayed differing specificities for the two phosphorylation sites. Type 2A protein phosphatase specifically dephosphorylated site A, and binding of Ca2+/calmodulin to the kinase had no effect on dephosphorylation. The purified catalytic subunit of type 1 protein phosphatase dephosphorylated both sites in the absence of Ca2+/calmodulin but only dephosphorylated site A in the presence of Ca2+/calmodulin. A protein phosphatase fraction was prepared from smooth muscle actomyosin by extraction with 80 mM MgCl2. On the basis of sensitivity to okadaic acid and inhibitor 2, this activity was composed of multiple protein phosphatases including type 1 activity. This phosphatase fraction dephosphorylated both sites in the absence of Ca2+/calmodulin. However, dephosphorylation of both sites A and B was completely blocked in the presence of Ca2+/calmodulin. These results indicate that two phosphorylation sites of myosin light chain kinase are dephosphorylated by multiple protein serine/threonine phosphatases with unique catalytic specificities.  相似文献   

20.
Calmodulin, an activator protein in most calcium-dependent processes, was isolated to apparent homogeneity from the femurs of 1-day old chicks using phenyl-Sepharose and high performance liquid chromatography. The purified calmodulin was found to produce a 6-fold increase in the activity of alkaline phosphatase isolated from the same source. A Ca2+ concentration of 10(-5) M was required for the activation. Purification of alkaline phosphatase involved acetone precipitation, DEAE-Sephacel and Sephadex G-200 column chromatography. The enzyme was purified to 540-fold and had a specific activity of 10.75 U/mg protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号