首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To study the fate of external membrane proteins during phagocytosis, rabbit peritoneal neutrophils were labeled by enzymatic iodination. Iodine was incorporated into at least 13 proteins ranging in size from approximately 250,000 to 18,000 daltons as judged from autoradiography of gels after SDS-polyacrylamide gel electrophoresis of labeled cells. The major contractile proteins of neutrophils, actin and myosin, were not labeled when intact cells were iodinated but were labeled when homogenates of these cells were iodinated. Nine of the iodinated proteins were released by mild protease treatment of intact cells. A plasma membrane-rich fraction was isolated by density centrifugation. This fraction was enriched at least 10-fold for lactoperoxidase-labeled acid-insoluble proteins. It was enriched to the same extent for the presence of iodinated wheat germ agglutinin that had been bound to intact cells at 4 degrees C before homogenization. Analysis of SDS-polyacrylamide gel electrophoresis revealed that the proteins of this fraction were predominantly of high molecular weight. However, only 8 of the 13 proteins iodinated on intact cells were found in this fraction. The remaining five were enriched in a dense fraction containing nuclei, intact cells, and membranous vesicles, and may represent a specialized segment of the neutrophil cell surface.  相似文献   

2.
The enzymatic iodination technique has been utilized in a study of the externally disposed membrane proteins of the mouse L cell. Iodination of cells in suspension results in lactoperoxidase-specific iodide incorporation with no loss of cell viability under the conditions employed, less than 3% lipid labeling, and more than 90% of the labeled species identifiable as monoiodotyrosine. 90% of the incorporated label is localized to the cell surface by electron microscope autoradiography, with 5-10% in the centrosphere region and postulated to represent pinocytic vesicles. Sodium dodecylsulfate-polyacrylamide gels of solubilized L-cell proteins reveals five to six labeled peaks ranging from 50,000 to 200,000 daltons. Increased resolution by use of gradient slab gels reveals 15-20 radioactive bands. Over 60% of the label resides in approximately nine polypeptides of 80,000 to 150,000 daltons. Various controls indicate that the labeling pattern reflects endogenous membrane proteins, not serum components. The incorporated 125-I, cholesterol, and one plasma membrane enzyme marker, alkaline phosphodiesterase I, are purified in parallel when plasma membranes are isolated from intact, iodinated L cells. The labeled components present in a plasma membrane-rich fraction from iodinated cells are identical to those of the total cell, with a 10- to 20-fold enrichment in specific activity of each radioactive peak in the membrane.  相似文献   

3.
Intact HeLa cells and isolated HeLa cell plasma membranes were subjected to lactoperoxidase-catalysed iodination. The 125I-labelled proteins were separated by SDS-polyacrylamide gel electrophoresis. Six protein species with apparent molecular weights from 32 000 to 200 000 were accessible to labelling from the outer cell surface, while most of the proteins present in the plasma membrane were labelled when isolated plasma membranes were iodinated. Iodination of synchronized intact cells revealed that the labelling obtained was cell cycle dependent with maximal labelling at mitosis. No changes in the distribution of radioactivity among the labelled proteins were observed when cells from different phases were iodinated.  相似文献   

4.
The cell surface protein components of Sarcoma 180 ascites tumor cells have been investigated by a combination of plasma membrane isolation techniques and lactoperoxidase iodination. For plasma membrane isolation cells were homogenized in the presence or absence of Zn2+ and fractionated by sucrose density gradient centrifugation or a two-phase partition to give large membrane fragments or membrane envelopes. Membrane purification was monitored by phase contrast microscopy and chemical and enzyme marker assays. The membrane preparations were analyzed by acrylamide gel electrophoresis in sodium dodecylsulfate. Each preparation showed a common protein pattern of about 15 bands ranging in molecular weights from 33 000 to >300000. Two carbohydrate-containing bands were also present in all preparations. Membranes prepared with Zn2+ were much less fragmented and showed much greater amounts of three high molecular weight components than those prepared in the absence of Zn2+. This might suggest a role for these components in membrane stabilization.The tumor cells were also subjected to iodination with lactoperoxidase, followed by membrane isolation and acrylamide gel electrophoresis in sodium dodecylsulfate in order to identify polypeptides accessible to the cell surface. The major radioactive band coincided with the major carbohydrate-containing band, presumably a surface glycoprotein. A second carbohydrate-containing band showed variable labeling behavior between different cell preparations. This material had a high molecular weight, as indicated by both acrylamide gel electrophoresis and gel permeation chromatography in dodecylsulfate. Several other components are labeled to a lesser extent in the intact cell.  相似文献   

5.
Erythrocyte and HeLa cell plasma membranes were isolated on polylysinecoated polyacrylamide beads and the transbilayer disposition of their proteins was investigated.When membranes of intact erythrocytes were isolated on beads and then labelled by lactoperoxidase-catalysed iodination, their labelling pattern was similar to that of inside-out vesicles in solution.When the membranes of intact HeLa cells were isolated on beads and then labelled by galactose oxidase-[3H]borohydride treatment, no glycoprotein or glycolipid sugars were accessible. On the other hand, when the HeLa cell membranes were isolated on beads and then labelled by the lactoperoxidase-catalysed iodination, all of the major membrane proteins were iodinated. These experiments confirmed for HeLa cell membranes what had previously been shown for erythrocyte membranes: when the membranes of intact cells are isolated on beads, the accessibility of their surfaces to enzymatic probes is the same as would be expected of inside-out vesicles in suspension. Double-label experiments, in which the HeLa cell membranes were labelled first on the intact HeLa cells and again after isolation on beads, identified several  相似文献   

6.
Iodination of Myxococcus xanthus during development   总被引:5,自引:4,他引:1       下载免费PDF全文
Intact cells of Myxococcus xanthus were iodinated with [125I]lactoperoxidase to permit examination of the surface components accessible to labeling during cell development. Vegetative cells, starved on a defined solid medium, aggregated, formed fruiting bodies, and produced myxospores. Cells collected at different stages were iodinated, and their proteins were analyzed by one- and two-dimensional electrophoresis and autoradiography. One-dimensional electrophoresis revealed six iodinated bands in vegetative cell extracts. During development, 10 radioactive bands were detected, 4 of which migrated to the same positions as those of vegetative cells. Only six bands were detected in purified, labeled myxospores. Of these, one band possessed mobility similar to that of labeled vegetative cell proteins, whereas the other bands possessed mobility similar to that detected in developing cells. Analysis of two-dimensional gels indicated that at least 14 proteins were iodinated in vegetative cells, one of which was intensely labeled (protein b). Another of the proteins (protein a) was labeled throughout development. During development, about 30 proteins were iodinated and the prominently labeled ones were designated c, d, e, f, and g. The latter two (proteins f and g) were not detected in purified, iodinated myxospores. The data indicated a pronounced change in surface structure during development; some of the change may be involved in cellular interaction during aggregation.  相似文献   

7.
The internalization of the insulin receptor in the isolated rat adipose cell and the spatial orientation of the alpha (Mr = 135,000) and beta (Mr = 95,000) subunits of the receptor in the plasma membrane have been examined. The receptor subunits were labeled by lactoperoxidase/Na125I iodination, a technique which side-specifically labels membrane proteins in intact cells and impermeable membrane vesicles. Internalization was induced by incubating cells for 30 min at 37 degrees C in the presence of saturating insulin. Plasma, high density microsomal (endoplasmic reticulum-enriched), and low density microsomal (Golgi-enriched) membrane fractions were prepared by differential ultracentrifugation. Receptor subunit iodination was analyzed by immunoprecipitation with anti-receptor antibodies, sodium dodecyl sulfate/polyacrylamide gel electrophoresis, and autoradiography. When intact cells were surface-labeled and incubated in the absence of insulin, the alpha and beta receptor subunits were clearly observed in the plasma membrane fraction and their quantities in the microsomal membrane fractions paralleled plasma membrane contamination. Following receptor internalization, however, both subunits were decreased in the plasma membrane fraction by 20-30% and concomitantly and stoichiometrically increased in the high and low density microsomal membrane fractions, without alterations in either their apparent molecular size or proportion. In contrast, when the isolated particulate membrane fractions were directly iodinated, both subunits were labeled in the plasma membrane fraction whereas only the beta subunit was prominently labeled in the two microsomal membrane fractions. Iodination of the subcellular fractions following their solubilization in Triton X-100 again clearly labeled both subunits in all three membrane fractions in identical proportions. These results suggest that 1) insulin receptor internalization comprises the translocation of both major receptor subunits from the plasma membrane into at least two different intracellular membrane compartments associated, respectively, with the endoplasmic reticulum and Golgi-enriched membrane fractions, 2) this translocation occurs without receptor loss or alterations in receptor subunit structure, and 3) the alpha receptor subunit is primarily, if not exclusively, exposed on the extracellular surface of the plasma membrane while the beta receptor subunit traverses the membrane, and this vectorial disposition is inverted during internalization.  相似文献   

8.
Isolation of messenger ribonucleoproteins from mammalian cells   总被引:21,自引:0,他引:21  
EDTA-dissociated polysomes from normally growing and adenovirus-infected KB cells were fractionated by affinity chromatography on oligo(dT)-cellulose into an unadsorbed fraction containing the ribosomal subunits and a second fraction which bound to the adsorbent. The latter fraction, recovered from the oligo(dT)-cellulose by elution with formamide in a buffer containing 0.2 m-NaCl, was shown to contain messenger RNA together with protein. Evidence was obtained that a substantial part (50%) of 35S-labelled protein was associated with the mRNA when eluted from the oligo(dT)-cellulose, and that up to 75% of the labelled protein was mRNA-associated after dilution of the eluted material in buffer not containing formamide. As judged from the characteristic gel electrophoresis pattern of adenovirus-specific mRNA derived from such messenger ribonucleoprotein complexes, the mRNA remained intact during the isolation procedure. Analysis of the fraction containing the majority of the messenger ribonucleoprotein complexes on sodium dodecyl sulfate-polyacrylamide gels showed a specific pattern of labelled polypeptides, which in the case of material from uninfected cells consisted of four major labelled polypeptides; approximate molecular weights 56,000, 68,000, 78,000 and 130,000. When the material from the adenovirus infected cells was analysed a set of four polypeptides, which migrated identically to those of the uninfected cells, was found. However, in addition to this apparently common set of polypeptides, the material from the infected cells, harvested late in the infectious cycle, contained one extra polypeptide with an approximate molecular weight of 110,000.  相似文献   

9.
Mouse leukemia L-1210 cells were iodinated with 125I; this permitted the development of a method for the isolation of the plasma membranes. These show a 10- to 16-fold increase in the specific activity of 125I over that of the cell homogenate and a 20-fold increase in the specific activities of 5'-nucleotidase and alkaline phosphatase; 20-fold increase in the specific activities of 5'-nucleotidase and alkaline phosphatase; no mitochondrial or microsomal marker enzyme activities were detected. Sodium dodecyl sulfate gel electrophoresis of the plasma membranes shows approx. 40 peptides with molecular weights ranging from 10 000 to over 200 000; a polypeptide (Mr 50 000) predominates. Of 13 iodinated surface membrane proteins, the major radioactive peptide has a molecular weight of 85 000. The importance of the selection of the appropriate gel system for the analysis of membrane proteins is emphasized.  相似文献   

10.
NIL 8 hamster fibroblast cells were labeled by lactoperoxidase-catalyzed iodination. Their membranes were fractionated by sedimentation-rate and isopycnic zonal centrifugation. All the iodinated proteins except the very prominently labeled high molecular weight protein (greater than 200,000 daltons) were located in a fraction identified enzymically and compositionally as plasma membrane. The high molecular weight protein that was previously shown to be sensitive to virus transformation (Hynes, 1973) is concentrated in a very high density particle (rho equals 1.253-1.259) which contains mainly carbohydrate and protein and very low levels of lipid. 5'-nucleotidase was the only enzyme reproducibly demonstrated in this fraction, and electron micrographs revealed a predominantly amorphous morphology together with a few membraneous structures. The iodine label in this fraction was very sensitive to trypsinization prior to homogenization. All the available evidence indicates that this fraction is derived from the surface coat. Mitochondria, nuclei, and soluble protein were labeled to an insignificant extent. The presence of the iodinated surface proteins associated with the endoplasmic reticulum fraction is discussed in the light of these results.  相似文献   

11.
Mast cell granules free of membranes were isolated by differential centrifugation of water-lysed cells. The granules were extracted sequentially with 0.5, 1.0, and 2.0 m KCl. The 0.5 m fraction contained 95% of the N-acetyl-β-glucosaminidase activity; this enzyme probably accounts for no more than 1% of the total granule protein. The 1.0 m fraction contained more than 80% of the granule chymotrypsin-like activity; the chymotrypsin-like enzyme was calculated to represent at least 15% of total granule protein. Heparin was found largely in the 1.0 m extract and in the residue after 2.0 m extraction. The heparin in both fractions had a molecular weight by gel exclusion chromatography considerably in excess of commercial porcine heparin. Acrylamide-gel electrophoresis of granules dissolved in 1% sodium dodecyl sulfate and reduced with dithiothreitol demonstrated four major protein bands. The 1.0 m fraction contained the most prominent, rapidly migrating band. The more slowly migrating, higher molecular weight bands appeared in greater proportion in the 2.0 m and residue fractions. Autodigestion of the 1.0 m extract permitted purification of the mast cell chymotrypsin-like enzyme to specific activities as high as that of crystallized bovine pancreatic α-chymotrypsin. The mast cell chymotrypsin-like enzyme purified in this way migrated on dodecyl sulfate-gel electrophoresis as a single major band with an estimated molecular weight of 29,000.  相似文献   

12.
Cell surface polypeptides of mouse pachytene spermatocytes and round spermatids (steps 1–8) have been iodinated using 1,2,3,6,tetracholoro-3α, 6α-diphenylglycouril (IODOGEN). Labeled proteins have been assayed using two-dimensional polyacrylamide electrophoresis and radioautography. Purified plasma membranes, prepared from both spermatocytes and spermatids after the iodination of intact cells, exhibit 25–30 polypeptides which label reproducibly. No significant qualitative differences are noted in the labeled polypeptide map obtained from each of the purified cell types. Iodinated proteins range in molecular weight from greater than 100k daltons to approximately 40k daltons. The isoelectric points of labeled constituents range from pI 5.7 to 7.2. Three polypeptides represent the major iodinated species: p 94/5.8, p 75/5.9, and p 53/7.1. Comparison with total plasma membrane constituents assayed using Coomassie brilliant blue indicates that many of the radioactively labeled proteins are not present in quantities sufficient to allow ready detection without isotopic techniques. As a result, many of the proteins identified autoradiographically represent newly described surface components of mouse pachytene spermatocytes and round spermatids. The preparation of purified plasma membrane fractions prior to electrophoresis ensures that all iodinated species are in fact cell surface components. Furthermore, experiments designed to assess the vectorial nature of the IODOGEN-catalyzed labeling procedure suggest that most, if not all, of the iodinated species are exposed on the external side of the cell plasma membrane. Therefore, these studies have (1) identified hitherto unrecognized plasma membrane components of mouse pachytene spermatocytes and round spermatids and (2) provided the first available biochemical data concerning the molecular orientation of particular proteins in the surface membranes of developing mouse spermatogenic cells.  相似文献   

13.
A membrane fraction with sarcolemmal properties was purified from the smooth muscle layers (myometrium) of rat uterus by successive differential and equilibrium centrifugation in sucrose. The putative sarcolemmal fraction was identified by iodination with [125I]iodosulfanilic acid, had an equilibrium density of 1.15, and was enriched in enzyme activities usually associated with the plasma membrane including 5'-nucleotidase (EC 3.1.3.5) and (Na+ + K+) ATPase (EC 3.6.1.3). These membranes were free of mitochondrial or nuclear membrane contamination, suggesting the relative enrichment of sarcolemmal membranes in the fraction. Proteins of the membranes were heterogeneous with respect to molecular weight, but only a few were labelled when intact muscle was radioiodinated. Uniform resistance of sarcolemmal proteins to trypsin digestion and salt extraction suggested many are tightly bound or intrinsic membrane proteins and was a further indication of the homogeneity of membranes in this fraction.  相似文献   

14.
The enzyme lactoperoxidase was used to catalyse the radioiodination of membrane proteins in intact human erythrocytes and in erythrocyte `ghosts'. Two major proteins of the erythrocyte membrane were isolated after iodination of these two preparations, and the peptide `maps' of each protein so labelled were compared. Peptides from both proteins are labelled in the intact cell. In addition, further mobile peptides derived from one of the proteins are labelled only in the `ghost' preparation. Various sealed `ghost' preparations were also iodinated, lactoperoxidase being present only at either the cytoplasmic or extra-cellular surface of the membrane. The peptide `maps' of protein E (the major membrane protein) labelled in each case were compared. Two discrete sets of labelled peptides were consistently found. One group is obtained when lactoperoxidase is present at the extra-cellular surface and the other group is found when the enzyme is accessible only to the cytoplasmic surface of the membrane. The results support the assumption that the organization of protein E in the membrane of the intact erythrocyte is unaltered on making erythrocyte `ghosts'. They also confirm previous suggestions that both the sialoglycoprotein and protein E extend through the human erythrocyte membrane.  相似文献   

15.
We have previously shown that lactoperoxidase (LPO) covalently coupled to polystyrene tissue culture flasks can be used to radioiodinate monolayer cell proteins that come into intimate contact with the LPO- polystyrene surface. These studies have now been extended to include a detailed examination of the class of iodinated polypeptides migrating with apparent molecular weights of 50,000 and 55,000 in SDS polyacrylamide gels. Whereas in cultured L929 cells the 55,000 band is predominantly iodinated, in thioglycollate-activated murine peritoneal macrophages the 55,000 and 50,000 bands are of equal intensity. It is possible that the marked degree of exposure of the 50,000 mol wt polypeptide to immobilized LPO is related to the unique strength of macrophages attachment. After labeling of both L929 cells and macrophages with immobilized LPO, all polypeptides in this molecular weight region were subjected to peptide mapping by simultaneous limited proteolysis and electrophoresis in a second SDS polyacrylamide slab gel. The results clearly show that the two major polypeptides in this region are identical within the limits of resolution of this technique. The 55,000 mol wt polypeptide can also be identified in Triton X-100 cytoskeletons from L929 cells after labeling with soluble LPO either before or after detergent lysis. We conclude that this cell surface polypeptide is in continuity with the cytoskeleton and is preferentially exposed to the substratum during attachment to polystyrene.  相似文献   

16.
We have examined yeast cell ghost preparations to assess their value in obtaining plasma membrane proteins. Ghosts prepared by two methods involving stabilization of spheroplast envelopes had similar protein patterns by two-dimensional gel electrophoresis, and approximately 200 proteins were resolved. Spheroplasts were lactoperoxidase iodinated, and recovery of label in ghost preparations was greater than 60%. Spheroplasts appeared to be impermeable to the lactoperoxidase reagents as judged by an examination of two-dimensional gel electrophoretic patterns of ghost proteins that had been iodinated in spheroplasts or in unsealed ghosts. Spheroplasts were also impermeable to pronase proteases. Surface iodination and surface proteolysis allowed us to identify exposed ghost proteins; the major ghost glycoprotein was exposed in spheroplasts.Two-dimensional patterns of ghost proteins were not heavily contaminated (?25% of all proteins) by proteins present in soluble or promitochondrial fractions, and estimates of surface label and total cell protein recovery suggested that the ghost fraction represents a cell envelope enrichment of 8–10 fold over whole cells.Resolution of ghost proteins by two-dimensional gel electrophoresis appears to be a powerful aid toward identifying membrane proteins.  相似文献   

17.
1. Conditions are described for the enzymic iodination of ribosomal subunits from rat liver. The reaction is relatively insensitive to broad changes in the concentration of KCl, allowing subunits to be studied under conditions which minimize their dimerization. 2. Mixtures of extracted ribosomal proteins were iodinated with (125)I, the proteins separated by two-dimensional gel electrophoresis and the radioactivity in each protein was determined. Thus 19 out of 23 of the proteins of the small subunit and 25 out of 33 of the proteins of the large subunit were labelled. Iodination should therefore be a suitable method for studying the topography of the ribosomal proteins of rat liver. 3. When the intact 40S subunit (rather than the extracted mixture of proteins) was iodinated, 18 of the 19 proteins were still labelled. However five of these were labelled less strongly than before. When the intact 60S subunit was iodinated, 17 of the 25 proteins were still labelled, although six of these were labelled less strongly. 4. These results show that in rat liver most of the ribosomal proteins of both subunits are at least partially at the surface of the particles. They are also consistent with the idea that the proportion of the ribosomal proteins in the interior of the particle may be greater for the 60S subunit than for the 40S subunit.  相似文献   

18.
Multiple forms of ADP-glucose pyrophosphorylase from tomato fruit.   总被引:3,自引:0,他引:3       下载免费PDF全文
B Y Chen  H W Janes 《Plant physiology》1997,113(1):235-241
ADP-glucose pyrophosphorylase (AGP) was purified from tomato (Lycopersicon esculentum Mill.) fruit to apparent homogeneity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme migrated as two close bands with molecular weights of 50,000 and 51,000. Two-dimensional polyacrylamide gel electrophoresis analysis of the purified enzyme, however, revealed at least five major protein spots that could be distinguished by their slight differences in net charge and molecular weight. Whereas all of the spots were recognized by the antiserum raised against tomato fruit AGP holoenzyme, only three of them reacted strongly with antiserum raised against the potato tuber AGP large subunit, and the other two spots (with lower molecular weights) reacted specifically with antisera raised against spinach leaf AGP holoenzyme and the potato tuber AGP small subunit. The results suggest the existence of at least three isoforms of the AGP large subunit and two isoforms of the small subunit in tomato fruit in vivo. The native molecular mass of the enzyme determined by gel filtration was 220 +/- 10 kD, indicating a tetrameric structure for AGP from tomato fruit. The purified enzyme is very sensitive to 3-phosphoglycerate/inorganic phosphate regulation.  相似文献   

19.
Two fractions of gastric mucosal membranes obtained by Ficoll-sucrose density gradient centrifugation were studied by a variety of techniques to localize the polypeptides. Gel electrophoresis showed the presence of five major polypeptides and several minor ones. Only one of these, 82,000 daltons, was available for iodination in the intact tissue. The two membrane fractions differed in their accessibility to peroxidase. The denser fraction showed two major defined iodination peaks at 82,000 and 102,000 daltons. Freeze-thawing and iodinating with 131-I produced additional labeling of peaks as well as relabeling the 82,000-dalton component, showing it was accessible from both sides of the membrane. The two major components were also sensitive to cross-linking, the 102,000 polypeptide being especially sensitive to --SH oxidation. Proteolysis with trypsin removed both components in the denser membrane fraction, in addition to inhibiting the K+-ATPase and K+-p-nitrophenylphosphatase of that fraction. Phosphorylation with [gamma-32-P]ATP labeled the 102,000-dalton component and K+, HCO3- minus and p-nitrophenylphosphate reduced the level of labeling. Hence the 102,000 region contains a subunit of the ATPase, is readily iodinated in inside-out vesicles, and is the most available for interpeptide S--S cross-linking.  相似文献   

20.
We have examined yeast cell ghost preparations to assess their value in obtaining plasma membrane proteins. Ghosts prepared by two methods involving stabilization of spheroplast envelopes had similar protein patterns by two-dimensional gel electrophoresis, and approximately 200 proteins were resolved. Spheroplasts were lactoperoxidase iodinated, and recovery of label in ghost preparations was greater than 60%. Spheroplasts appeared to be impermeable to the lactoperoxidase reagents as judged by an examination of two-dimensional gel electrophoretic patterns of ghost proteins that had been iodinated in spheroplasts or in unsealed ghosts. Spheroplasts were also impermeable to pronase proteases. Surface iodination and surface proteolysis allowed us to identify exposed ghost proteins; the major ghost glycoprotein was exposed in spheroplasts. Two-dimensional patterns of ghost proteins were not heavily contaminated (less than or equal to 25% of all proteins) by proteins present in soluble or promitochondrial fractions, and estimates of surface label and total cell protein recovery suggested that the ghost fraction represents a cell envelope enrichment of 8--10 fold over whole cells. Resolution of ghost proteins by two-dimensional gel electrophoresis appears to be a powerful aid toward identifying membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号