首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nucleotide sequences of the origins of DNA replication (ori) of the S- and L-component (oriS, oriL) of the herpes simplex virus type 1 (HSV-1) standard genome were determined from HSV-1 strain Angelotti (ANG). In contrast to other HSV-1 strains, the ANG oriS sequence revealed an insertion of an TA-dinucleotide in an otherwise very conserved but imperfect palindromic sequence of 47 bp. The oriL sequence of the standard ANG genome was found to be identical to that of an ANG class II defective genome which exhibits a duplication of a 144 bp palindrome. A model is presented to explain the origination of the amplified ANG oriL sequences from the parental genome with a single copy of oriL via illegitimate recombination. Alignment of the ori sequences of HSV, adeno- and papovaviruses unveiled that the HSV ori region can be subdivided into two distinct sites of homology to the DNA initiation signals of papova- and adenoviruses, suggesting that the HSV origins of replication comprise elements for DNA replication by both, cellular and virus-encoded DNA polymerases.  相似文献   

2.
3.
4.
The herpes simplex virus type 1 (HSV-1) genome contains three origins of DNA replication, one copy of oriL and two copies of oriS. Although oriL and oriS are structurally different, they have extensive nucleotide sequence similarity and can substitute for each other to initiate viral DNA replication. A fundamental question that remains to be answered is why the HSV-1 genome contains two types of origin. We have recently identified a novel glucocorticoid response element (GRE) within oriL that is not present in oriS and have shown by gel mobility shift assays that purified glucocorticoid receptor (GR), as well as GR present in cellular extracts, can bind to the GRE in oriL. To determine whether glucocorticoids and the GRE affect the efficiency of oriL-dependent DNA replication, we performed transient DNA replication assays in the presence and absence of dexamethasone (DEX). Because HSV-1 is a neurotropic virus and establishes latency in cells of neural origin, these tests were conducted in PC12 cells, which assume the properties of sympathetic neurons when differentiated with nerve growth factor (NGF). In NGF-differentiated PC12 cells, oriL-dependent DNA replication was enhanced 5-fold by DEX, whereas in undifferentiated cells, DEX enhanced replication approximately 2-fold. Notably, the enhancement of oriL function by DEX was abolished when the GRE was mutated. NGF-induced differentiation alone had no effect. In contrast to oriL, oriS-dependent DNA replication was reduced approximately 5-fold in NGF-differentiated PC12 cells and an additional 4-fold in differentiated cells treated with DEX. In undifferentiated PC12 cells, DEX had only a minor inhibitory effect (approximately 2-fold) on oriS function. Although the cis-acting elements that mediate the NGF- and DEX-specific repression of oriS-dependent DNA replication are unknown, a functional GRE is critical for the DEX-induced enhancement of oriL function in NGF-differentiated PC12 cells. The enhancement of oriL-dependent DNA replication by DEX in differentiated PC12 cells suggests the possibility that glucocorticoids, agents long recognized to enhance reactivation of latent herpesvirus infections, act through the GRE in oriL to stimulate viral DNA replication and reactivation in terminally differentiated neurons in vivo.  相似文献   

5.
Herpes simplex virus (HSV) types 1 and 2 contain two classes of origins of DNA replication, oriS and oriL, which are closely related. A series of plasmids was constructed which contained specifically altered versions of the HSV type 2 oriS replication origin. Their ability to replicate in an in vivo replicon assay allowed a core origin of 75 base pairs (bp) to be defined. It included both arms of a 56-bp palindrome and from 13 to 20 bp of sequence leftward of the palindrome. The AT-rich sequence at the center of the palindrome was essential. Sequences on either side of the core origin enhanced replication. When additional copies of the -AT-dinucleotide were introduced progressively into the center of the palindrome, an oscillating effect on origin function was observed. These and other data implicate a linear rather than a cruciform conformation of the oriS palindrome in the initiation of HSV replication.  相似文献   

6.
Initiation of herpes simplex virus type 1 (HSV-1) DNA replication during productive infection of fibroblasts and epithelial cells requires attachment of the origin binding protein (OBP), one of seven essential virus-encoded DNA replication proteins, to specific sequences within the two viral origins, oriL and oriS. Whether initiation of DNA replication during reactivation of HSV-1 from neuronal latency also requires OBP is not known. A truncated protein, consisting of the C-terminal 487 amino acids of OBP, termed OBPC, is the product of the HSV UL8.5 gene and binds to origin sequences, although OBPC's role in HSV DNA replication is not yet clear. To characterize protein-DNA complex formation at oriS in cells of neural and nonneural lineage, we used nuclear extracts of HSV-infected nerve growth factor-differentiated PC12 and Vero cells, respectively, as the source of protein in gel shift assays. In both cell types, three complexes (complexes A, B, and C) which contain either OBP or OBPC were shown to bind specifically to a probe which contains the highest-affinity OBP binding site in oriS, site 1. Complex A was shown to contain OBPC exclusively, whereas complexes B and C contained OBP and likely other cellular proteins. By fine-mapping the binding sites of these three complexes, we identified single nucleotides which, when mutated, eliminated formation of all three complexes, or complexes B and C, but not A. In transient DNA replication assays, both mutations significantly impaired oriS-dependent DNA replication, demonstrating that formation of OBP-containing complexes B and C is required for efficient initiation of oriS-dependent DNA replication, whereas formation of the OBPC-containing complex A is insufficient for efficient initiation.  相似文献   

7.
In vitro studies of herpes simplex virus type 1 (HSV-1) viruses containing mutations in core sequences of the viral origins of DNA replication, oriL and oriS, that eliminate the ability of these origins to initiate viral-DNA synthesis have demonstrated little or no effect on viral replication in cultured cells, leading to the conclusion that the two types of origins are functionally redundant. It remains unclear, therefore, why origins that appear to be redundant are maintained evolutionarily in HSV-1 and other neurotropic alphaherpesviruses. To test the hypothesis that oriL and oriS have distinct functions in the HSV-1 life cycle in vivo, we determined the in vivo phenotypes of two mutant viruses, DoriL-I(LR) and DoriS-I, containing point mutations in oriL and oriS site I, respectively, that eliminate origin DNA initiation function. Following corneal inoculation of mice, tear film titers of DoriS-I were reduced relative to wild-type virus. In all other tests, however, DoriS-I behaved like wild-type virus. In contrast, titers of DoriL-I(LR) in tear film, trigeminal ganglia (TG), and hindbrain were reduced and mice infected with DoriL-I(LR) exhibited greatly reduced mortality relative to wild-type virus. In the TG explant and TG cell culture models of reactivation, DoriL-I(LR) reactivated with delayed kinetics and, in the latter model, with reduced efficiency relative to wild-type virus. Rescuant viruses DoriL-I(LR)-R and DoriS-I-R behaved like wild-type virus in all tests. These findings demonstrate that functional differences exist between oriL and oriS and reveal a prominent role for oriL in HSV-1 pathogenesis.  相似文献   

8.
The herpes simplex virus type 1 genome contains three origins of DNA replication: two copies of oriS and one copy of oriL. Although oriS has been characterized extensively, characterization of oriL has been severely limited by the inability to amplify oriL sequences in an undeleted form in Escherichia coli. We report the successful cloning of intact oriL sequences in an E. coli strain, SURE, which contains mutations in a series of genes involved in independent DNA repair pathways shown to be important in the rearrangement and deletion of DNA containing irregular structures such as palindromes. The oriL-containing clones propagated in SURE cells contained no deletions, as determined by Southern blot hybridization and DNA sequence analysis, and were replication competent in transient DNA replication assays. Deletion of 400 bp of flanking sequences decreased the replication efficiency of oriL twofold in transient assays, demonstrating a role for flanking sequences in enhancing replication efficiency. Comparison of the replication efficiencies of an 822-bp oriS-containing plasmid and an 833-bp oriL-containing plasmid demonstrated that the kinetics of replication of the two plasmids were similar but that the oriL-containing plasmid replicated 60 to 70% as efficiently as the oriS-containing plasmid at both early and late times after infection with herpes simplex virus type 1. The virus-specified origin-binding protein (OBP) and a cellular factor(s) (OF-1) have been shown in gel mobility shift experiments to bind specific sequences in oriS (C.E. Dabrowski, P. Carmillo, and P.A. Schaffer, Mol. Cell. Biol. 14:2545-2555, 1994; C.E. Dabrowski and P.A. Schaffer, J. Virol. 65:3140-3150, 1991). Although the nucleotides required for the binding of OBP to OBP binding site I in oriL and oriS are the same, a single nucleotide difference distinguishes OBP binding site III in the two origins. The nucleotides adjacent to oriS sites I and III have been shown to be important for the binding of OF-1 to oriS site I. Several nucleotide differences exist in these sequences in oriL and oriS. Despite these minor nucleotide differences, the protein-DNA complexes that formed with oriL and oriS sites I and III were indistinguishable when extracts of infected and uninfected cells were used as the source of protein. Furthermore, the results of competition analysis suggest that the proteins involved in protein-DNA complex formation with sites I and III of the two origins are likely the same.  相似文献   

9.
10.
Herpes simplex virus (HSV) induces DNA amplification of target genes within the host cell chromosome. To characterize the HSV genes that mediate the amplification effect, combinations of cloned DNA fragments covering the entire HSV genome were transiently transfected into simian virus 40 (SV40)-transformed hamster cells. This led to amplification of the integrated SV40 DNA sequences to a degree comparable to that observed after transfection of intact virion DNA. Transfection of combinations of subclones and of human cytomegalovirus immediate-early promoter-driven expression constructs for individual open reading frames led to the identification of six HSV genes which together were necessary and sufficient for the induction of DNA amplification: UL30 (DNA polymerase), UL29 (major DNA-binding protein), UL5, UL8, UL42, and UL52. All of these genes encode proteins necessary for HSV DNA replication. However, an additional gene coding for an HSV origin-binding protein (UL9) was required for origin-dependent HSV DNA replication but was dispensible for SV40 DNA amplification. Our results show that a subset of HSV replication genes is sufficient for the induction of DNA amplification. This opens the possibility that HSV expresses functions sufficient for DNA amplification but separate from those responsible for lytic viral growth. HSV infection may thereby induce DNA amplification within the host cell genome without killing the host by lytic viral growth. This may lead to persistence of a cell with a new genetic phenotype, which would have implications for the pathogenicity of the virus in vivo.  相似文献   

11.
12.
The bacterial transposable element Tn5 was observed to undergo high-frequency sequence inversion when integrated into the herpes simplex virus type 1 (HSV-1) genome. Deletion analysis of the IS50 elements through which this recombination event occurred demonstrated the absence of cis-acting signals involved in the inversion process. Several observations suggested an intimate association of the recombination mechanism with HSV-1 DNA replication, including the ability of the seven viral genes that are essential for HSV-1 DNA synthesis to mediate Tn5 inversion in the absence of any other viral functions. Comparable results were obtained by using duplicate copies of the L-S junction of the HSV-1 genome. Thus inversion of the L and S components of the HSV-1 genome during productive infection does not appear to be a site-specific process, but rather is the result of generalized recombination mediated by the complex of gene products that replicate the viral DNA.  相似文献   

13.
Herpesviruses are helper viruses for productive adeno-associated virus (AAV) replication. To analyze the herpes simplex virus type 1 (HSV-1) functions mediating helper activity, we coinfected HeLa cells with AAV type 2 (AAV-2) and different HSV-1 mutants defective in individual HSV replication genes. AAV replication was fully accomplished in the absence of HSV DNA replication and thus did not require expression of late HSV genes. In addition, HSV mutants lacking either the origin-binding protein or the functional DNA polymerase fully maintained the capacity to replicate AAV. Cotransfection of the cloned, replication-competent AAV-2 genome together with the seven HSV replication genes (UL5, UL8, UL9, UL29, UL30, UL42, and UL52) led to productive AAV replication. Cotransfections with different combinations of these genes demonstrated that a subset of four of them, coding for the HSV helicase-primase complex (UL5, UL8, UL52) and the major DNA-binding protein (UL29), was already sufficient to mediate the helper effect. Thus, the HSV helper activity for productive AAV replication seems to consist of DNA replication functions. This appears to be different from the helper effect provided by adenovirus, which predominantly modulates AAV gene regulation.  相似文献   

14.
Herpes simplex virus induces the replication of foreign DNA.   总被引:4,自引:0,他引:4       下载免费PDF全文
Plasmids containing the simian virus 40 (SV40) DNA replication origin and the large T gene are replicated efficiently in Vero monkey cells but not in rabbit skin cells. Efficient replication of the plasmids was observed in rabbit skin cells infected with herpes simplex virus type 1 (HSV-1) and HSV-2. The HSV-induced replication required the large T antigen and the SV40 replication origin. However, it produced concatemeric molecules resembling replicative intermediates of HSV DNA and was sensitive to phosphonoacetate at concentrations known to inhibit the HSV DNA polymerase. Therefore, it involved the HSV DNA polymerase itself or a viral gene product(s) which was expressed following the replication of HSV DNA. Analyses of test plasmids lacking SV40 or HSV DNA sequences showed that, under some conditions, HSV also induced low-level replication of test plasmids containing no known eucaryotic replication origins. Together, these results show that HSV induces a DNA replicative activity which amplifies foreign DNA. The relevance of these findings to the putative transforming potential of HSV is discussed.  相似文献   

15.
The UL9 protein of herpes simplex virus type 1 (HSV-1) binds specifically to the HSV-1 oriS and oriL origins of replication, and is a DNA helicase and DNA-dependent NTPase. In this study electron microscopy was used to investigate the binding of UL9 protein to DNA fragments containing oriS. In the absence of ATP, UL9 protein was observed to bind specifically to oriS as a dimer or pair of dimers, which bent the DNA by 35 degrees +/- 15 degrees and 86 degrees +/- 38 degrees respectively, and the DNA was deduced to make a straight line path through the protein complex. In the presence of 4 mM ATP, binding at oriS was enhanced 2-fold, DNA loops or stem-loops were extruded from the UL9 protein complex at oriS, and the DNA in them frequently appeared highly condensed into a tight rod. The stem-loops contained from a few hundred to over one thousand base pairs of DNA and in most, oriS was located at their apex, although in some, oriS was at a border. The DNA in the stem-loops could be stabilized by photocrosslinking, and when Escherichia coli SSB protein was added to the incubations, it bound the stem-loops strongly. Thus the DNA strands in the stem-loops exist in a partially paired, partially single-stranded state presumably making them available for ICP8 binding in vivo. These observations provide direct evidence for an origin specific unwinding by the HSV-1 UL9 protein and for the formation of a relatively stable four-stranded DNA in this process.  相似文献   

16.
The complete DNA sequence of herpes B virus (Cercopithecine herpesvirus 1) strain E2490, isolated from a rhesus macaque, was determined. The total genome length is 156,789 bp, with 74.5% G+C composition and overall genome organization characteristic of alphaherpesviruses. The first and last residues of the genome were defined by sequencing the cloned genomic termini. There were six origins of DNA replication in the genome due to tandem duplication of both oriL and oriS regions. Seventy-four genes were identified, and sequence homology to proteins known in herpes simplex viruses (HSVs) was observed in all cases but one. The degree of amino acid identity between B virus and HSV proteins ranged from 26.6% (US5) to 87.7% (US15). Unexpectedly, B virus lacked a homolog of the HSV gamma(1)34.5 gene, which encodes a neurovirulence factor. Absence of this gene was verified in two low-passage clinical isolates derived from a rhesus macaque and a zoonotically infected human. This finding suggests that B virus most likely utilizes mechanisms distinct from those of HSV to sustain efficient replication in neuronal cells. Despite the considerable differences in G+C content of the macaque and B virus genes (51% and 74.2%, respectively), codons used by B virus are optimal for the tRNA population of macaque cells. Complete sequence of the B virus genome will certainly facilitate identification of the genetic basis and possible molecular mechanisms of enhanced B virus neurovirulence in humans, which results in an 80% mortality rate following zoonotic infection.  相似文献   

17.
18.
19.
N D Stow 《The EMBO journal》1982,1(7):863-867
An assay has been developed and used to locate an origin of DNA replication on the herpes simplex virus type 1 (HSV-1) genome. Baby hamster kidney cells were transfected with circular plasmid molecules containing cloned copies of HSV-1 DNA fragments, and helper functions were provided by superinfection with wild-type HSV-1. The presence of an HSV-1 origin of replication within a plasmid enabled amplification of the vector DNA sequences, which was detected by the incorporation of [32P]orthophosphate. By screening various HSV-1 DNA fragments it was possible to identify a 995-bp fragment that maps entirely within the reiterated sequences flanking the short unique region of the viral genome and contains all the cis-acting signals necessary to function as an origin of viral DNA replication. The products of plasmid replication were shown to be high mol. wt. DNA molecules consisting of tandem duplications of the complete plasmid, suggesting that replication was occurring by a rolling-circle mechanism.  相似文献   

20.
During the course of infection, elements of the herpes simplex virus type 1 (HSV-1) genome undergo inversion, a process that is believed to occur through the viral a sequences. To investigate the mechanism of this recombinational event, we have developed an assay that detects the deletion of DNA segments flanked by directly repeated a sequences in plasmids transiently maintained in Vero cells. With this assay, we have observed a high frequency of recombination (approximately 8%) in plasmids that undergo replication in HSV-1-infected cells. We also found a low level of recombination between a sequences in plasmids introduced into uninfected cells and in unreplicated plasmids in HSV-1-infected cells. In replicating plasmids, recombination between a sequences occurs at twice the frequency seen with directly repeated copies of a different sequence of similar size. Recombination between a sequences appears to occur at approximately the same time as replication, suggesting that the processes of replication and recombination are closely linked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号