首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel "green" composites were successfully fabricated from recycled cellulose fibers (RCF) and a bacterial polyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by melt mixing technique. Various weight contents (15%, 30%, and 40%) of the fibers were incorporated in the PHBV matrix. The effect of the fiber weight contents on the thermal, mechanical, and dynamic-mechanical thermal properties of PHBV was investigated and a comparative property analysis was performed with RCF-reinforced polypropylene (PP) composites. The tensile and storage moduli of the PHBV-based composites were improved by 220% and 190%, respectively, by reinforcement with 40 wt % RCF. Halpin-Tsai and Tsai-Pagano's equations were applied for the theoretical modeling of the tensile modulus of PHBV-based composites. The heat deflection temperature (HDT) of the PHBV-based composites was increased from 105 to 131 degrees C, while the coefficient of linear thermal expansion (CLTE) value was reduced by 70% upon reinforcement with 40 wt % RCF. The PHBV-based composites had also shown better tensile and storage moduli and lower CLTE values than PP-based composites. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to study the melting behavior, thermal stability, and morphology of the composite systems, respectively.  相似文献   

2.
Pea starch-based composites reinforced with citric acid-modified pea starch (CAPS) and citric acid-modified rice starch (CARS), respectively, were prepared by screw extrusion. The effects of granular CAPS and CARS on the morphology, thermal stability, dynamic mechanical thermal analysis, the relationship between the mechanical properties and water content, as well as the water vapor permeability of the composite films were investigated. Scanning electron microscope and X-ray diffraction reveal that the reinforcing agents, the granules of CAPS and CARS, are not disrupted in the thermoplastic process, while the pea starch in the matrix is turned into a continuous TPS phase. Granular CAPS and CARS can improve the storage modulus, the glass transition temperature, the tensile strength and the water vapor barrier, but decrease thermal stability. CARS/TPS composites exhibit a better storage modulus, tensile strength, elongation at break and water vapor barrier than CAPS/TPS composites because of the smaller size of the CARS granules.  相似文献   

3.
The goal of this study was to provide material property data for the cement/bone composite resulting from the introduction of PMMA bone cement into human vertebral bodies. A series of quasistatic tensile and compressive mechanical tests were conducted using cement/bone composite structures machined from cement-infiltrated vertebral bodies. Experiments were performed both at room temperature and at body temperature. We found that the modulus of the composite structures was lower than bulk cement (p<0.0001). For compression at 37( composite function)C: composite =2.3+/-0.5GPa, cement =3.1+/-0.2GPa; at 23( composite function)C: composite =3.0+/-0.3GPa, cement =3.4+/-0.2GPa. Specimens tested at room temperature were stiffer than those tested at body temperature (p=0.0004). Yield and ultimate strength factors for the composite were all diminished (55-87%) when compared to cement properties. In general, computational models have assumed that cement/bone composite had the same modulus as cement. The results of this study suggest that computational models of cement infiltrated vertebrae and cemented arthroplasties could be improved by specifying different material properties for cement and cement/bone composite.  相似文献   

4.
Nanocellulose/montmorillonite (MTM) composite films were prepared from 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized cellulose nanofibrils (TOCNs) with an aspect ratio of >200 dispersed in water with MTM nanoplatelets. The composite films were transparent and flexible and showed ultrahigh mechanical and oxygen barrier properties through the nanolayered structures, which were formed by compositing the anionic MTM nanoplatelet filler in anionic and highly crystalline TOCN matrix. A composite film with 5% MTM content had Young's modulus 18 GPa, tensile strength 509 MPa, work of fracture of 25.6 MJ m(-3), and oxygen permeability 0.006 mL μm m(-2) day(-1) kPa(-1) at 0% relative humidity, respectively, despite having a low density of 1.99 g cm(-3). As the MTM content in the TOCN/MTM composites was increased to 50%, light transmittance, tensile strength, and elongation at break decreased, while Young's modulus was almost unchanged and oxygen barrier property was further improved to 0.0008 mL μm m(-2) day(-1) kPa(-1).  相似文献   

5.
Qiu X  Hong Z  Hu J  Chen L  Chen X  Jing X 《Biomacromolecules》2005,6(3):1193-1199
A new method of surface modification of hydroxyapatite nanoparticles (n-HA) by surface grafting reaction of l-lactic acid and ring-opening polymerization of l-lactide (LLA) was developed. Two modified HA nanoparticles were obtained: HA modified by l-lactic acid (l-HA) and HA grafting with poly(l-lactide) (PLLA; p-HA). The modified surface of n-HA was attested by Fourier transformation infrared, (31)P MAS NMR, and thermal gravimetric analysis. The results showed that l-lactic acid could be easily grafted onto the n-HA surface by forming a Ca carboxylate bond and initiated by the hydroxyl group of the grafted l-lactic acid and LLA could be graft-polymerized onto the n-HA surface in the presence of stannous octanoate. The highest grafting amounts of l-lactic acid and PLLA were about 33 and 22 wt %, respectively. The modified HA/PLLA composites showed good mechanical properties and uniform microstructure. The tensile strength and modulus of the p-HA/PLLA composite containing 15 wt % of p-HA were 67 MPa and 2.1 GPa, respectively, while those of the n-HA/PLLA composites were 45 MPa and 1.7 GPa, respectively. The elongation at the break of the l-HA/PLLA composite containing 15 wt % l-HA could reach 44%, in comparison with 6.5% of the n-HA/PLLA composites containing 15 wt % n-HA.  相似文献   

6.
The purpose of this work was to manufacture the porous biomorphous composite using carbonized shapes cut from solid stem of solid iron bamboo, Dendrocalamus strictus, as a monolithic support. Bamboo carbonized at 800 degrees C was next infiltrated with liquid filler--furfuryl alcohol. After the polymerization and cross-linking of the filler, the shapes were carbonized again to obtain carbon/carbon composite. TGA method was used to investigate the thermal decomposition of the resulting composite as well as of the raw and carbonized bamboo. The ultrasonic measurements, optical microscopy observations, the adsorption of N(2) at -196 degrees C and mercury porosimetry were applied to characterize the structure of the investigated materials. The obtained composite was found to be highly porous (over 80%), thermo-resistant in inert atmosphere (up to 940 degrees C). It possessed stiff hierarchically ordered pore structure with elastic moduli >4 GPa along the stem, and >1 GPa perpendicularly to the stem. Furthermore, the layer of carbon from the polymer coated the support accurately and did not affect the shape of the monolithic pieces of carbonized bamboo. The resulting composite possessed also more uniform, mesoporous structure than the support.  相似文献   

7.
An attempt was made to synthesize novel composites comprising poly(2-hydroxyethyl methacrylate) (PHEMA) and cellulose nanocrystallites (CNC) (acid-treated cotton microfibrils) from suspensions of CNC in an aqueous 2-hydroxyethyl methacrylate (HEMA) monomer solution. The starting suspensions (~5 wt % CNC) separated into an isotropic upper phase and an anisotropic bottom one in the course of quiescent standing. By way of polymerization of HEMA in different phase situations of the suspensions, we obtained films of three polymer composites, PHEMA-CNC(iso), PHEMA-CNC(aniso), and PHEMA-CNC(mix), coming from the isotropic phase, anisotropic phase, and embryonic nonseparating mixture, respectively. All the composites were transparent and, more or less, birefringent under a polarized optical microscope. A fingerprint texture typical of cholesteric liquid crystals of longer pitch spread widely in PHEMA-CNC(aniso) but rather locally appeared in PHEMA-CNC(iso). Any of the CNC incorporations into the PHEMA matrix improved the original thermal and mechanical properties of this amorphous polymer material. In dynamic mechanical measurements, the locking-in of the respective CNC assemblies gave rise to an increase in the glass-state modulus E' of PHEMA as well as a marked suppression of the E'-falling at temperatures higher than T(g) (≈ 110 °C) of the vinyl polymer. It was also observed for the composites that their modulus E' rerose in a range of about 150-190 °C, which was attributable to a secondary cross-linking formation between PHEMA chains mediated by the acidic CNC filler. The mechanical reinforcement effect of the CNC dispersions was ensured in a tensile test, whereby PHEMA-CNC(aniso) was found to surpass the other two composites in stiffness and strength.  相似文献   

8.
The viscoelastic mechanical properties of normal and osteoarthritic articular were analyzed based on data reported by Kempson [in: Adult Articular Cartilage (1973)] and Silver et al. (Connect. Tissue Res., 2001b). Results of the analysis of tensile elastic stress-strain curves suggest that the elastic modulus of cartilage from the superficial zone is approximately 7.0 GPa parallel and 2.21 GPa perpendicular to the cleavage line pattern. Collagen fibril lengths in the superficial zone were found to be approximately 1265 microm parallel and 668 microm perpendicular to the cleavage line direction. The values for the elastic modulus and fibril lengths decreased with increased extent of osteoarthritis. The elastic modulus of type II collagen parallel to the cleavage line pattern in the superficial zone approaches that of type I collagen in tendon, suggesting that elastic energy storage occurs in the superficial zone due to the tensile pre-tension that exists in this region. Decreases in the elastic modulus associated with osteoarthritis reflect decreased ability of cartilage to store elastic energy, which leads to cartilage fibrillation and fissure formation. We hypothesize that under normal physiological conditions, collagen fibrils in cartilage function to store elastic energy associated with weight bearing and locomotion. Enzymatic cleavage of cartilage proteoglycans and collagen observed in osteoarthritis may lead to fibrillation and fissure formation as a result of impaired energy storage capability of cartilage.  相似文献   

9.
The mechanical properties of turkey and heron leg tendons have been investigated in dynamic tensile tests. Heron tendons have properties similar to those found for various mammalian tendons. The Young's modulus and the density of turkey tendons increase with increasing calcification. Ultimate tensile stresses are similar to those found for uncalcified tendon, but Young's modulus may reach about 16 GPa, a value normally associated with bone. Calcification lowers the amount of strain energy that can be stored temporarily in the tendons of the legs. The contribution made by elastic strain energy storage to lowering the cost of running is reduced.  相似文献   

10.
Composites from recycled newspaper would result in the effective use of the waste product which is currently burned or land-filled, as well as potential reduction in the cost of manufactured composite. In this work, old newspaper (ONP) together with yellowish wood pulp and waste polystyrene from packaging were used to produce composite. The technique studied in this work is an alternative to the conventional melt compounding and was expected to provide efficient wetting of fibers by the polymer. Polystyrene was grafted with acrylonitrile, ethylmethacrylate and butylmethacrylate, respectively, using benzoyl peroxide as an initiator. The amount of polystyrene to monomer is 1:0.75 and to initiator is 1:1. The grafted copolymers were characterized using thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Different ratios of waste polystyrene or grafted waste polystyrene were mixed with a blend of old newsprint and wood pulp to form composites. The mechanical properties of these composites as well as water uptake were studied. The tensile properties of the prepared composites did not show essential improvement, except for the modulus of elasticity. Scanning electron microscopy indicate that composites with grafted polystyrene showed more homogeneity than the composite with polystyrene and also than blank, so the grafted polymer is distributed very well improving the mechanical properties of the composites. Strong adhesion between the fiber and grafted polymer was found.  相似文献   

11.
Cysts of Polytomella parva and Polytomella caeca were recovered after 7 days storage at cryogenic temperatures following drying on shredded filter paper, silica gel or without added substrate. Accelerated storage testing, by exposing dried material to elevated temperatures, indicated that shredded filter paper was the best of the substrates tested. Polytomella parva was recovered after 5 years storage at -30 degrees C when dried on filter paper but not when dried on silic agel. Determinations of the number of cysts recovered indicated that viable cysts survived all conditions of storage tested. However, excystment following storage was delayed, the extent depending on storage conditions and the substrate used for drying. Most rapid recovery occurred when cysts were rehydrated immediately after drying, and after storage on filter paper at below -70 degrees C.  相似文献   

12.
Tensile experiments and SEM fractography on bovine subchondral bone   总被引:4,自引:0,他引:4  
Subchondral bone undecalcified samples, extracted from bovine femoral heads, are subjected to a direct tensile load. The Young's modulus of each sample is determined from repeated tests within the elastic limit. In a last test, the tensile load is increased up to the specimen failure, determining the ultimate tensile strength. The investigation is performed on both dry and wet specimens. The measured Young's modulus for dry samples is 10.3+/-2.5GPa, while that of wet samples is 3.5+/-1.2GPa. The ultimate tensile strengths are 36+/-10 and 30+/-7.5MPa for dry and wet specimens, respectively. SEM micrographs of failure surfaces show characteristic lamellar bone structures, with lamellae composed of calcified collagen fibers. Rudimentary osteon-like structures are also observed. Failure surfaces of wet samples show a marked fiber pull-out, while delamination predominates in dry samples. The obtained results are interpreted on the basis of the deformation mechanisms typical of fiber-reinforced laminated composite materials.  相似文献   

13.
The effect of surface area and morphological features of filler particles on the fatigue behavior of hydroxyapatite-filled high-density polyethylene composites was studied. Composites containing 40 vol % filler were injection-molded into tensile bars, gamma-irradiated, and subjected to sinusoidal tensile fatigue at a frequency of 2 Hz. To simulate the physiological environment, the tests were conducted at 37 degrees C in saline. Results showed that properties such as secant modulus, cyclic energy dissipation, dynamic creep strain, hysteresis loops, and even fracture surfaces differ depending on the morphology and surface area of the fillers used.  相似文献   

14.
Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from abionic view to investigate the material properties of a beetle wing experimentally.In the present study,we have used a DigitalImage Correlation (DIC) technique to measure the elastic modulus of a beetle wing membrane.Specimens were prepared bycarefully cutting a beetle hind wing into 3.0 mm by 7.0 mm segments (the gage length was 5 mm).We used a scanning electronmicroscope for a precise measurement of the thickness of the beetle wing membrane.The specimen was attached to a designedfixture to induce a uniform displacement by means of a micromanipulator.We used an ARAMISTM system based on the digitalimage correlation technique to measure the corresponding displacement of a specimen.The thickness of the beetle wing variedat different points of the membrane.The elastic modulus differed in relation to the membrane arrangement showing a structuralanisotropy;the elastic modulus in the chordwise direction is approximately 2.65 GPa,which is three times larger than the elasticmodulus in the spanwise direction of 0.84 GPa.As a result,the digital image correlation-based ARAMIS system was suc-cessfully used to measure the elastic modulus of a beetle wing.In addition to membrane’s elastic modulus,we considered thePoisson’s ratio of the membrane and measured the elastic modulus of a vein using an Instron universal tensile machine.Theresult reveals the Poisson’s ratio is nearly zero and the elastic modulus of a vein is about 11 GPa.  相似文献   

15.
Rats use specialized tactile hairs on their snout, called vibrissae (whiskers), to explore their surroundings. Vibrissae have no sensors along their length, but instead transmit mechanical information to receptors embedded in the follicle at the vibrissa base. The transmission of mechanical information along the vibrissa, and thus the tactile information ultimately received by the nervous system, depends critically on the mechanical properties of the vibrissa. In particular, transmission depends on the bending stiffness of the vibrissa, defined as the product of the area moment of inertia and Young's modulus. To date, Young's modulus of the rat vibrissa has not been measured in a uniaxial tensile test. We performed tensile tests on 22 vibrissae cut into two halves: a tip-segment and a base-segment. The average Young's modulus across all segments was 3.34±1.48GPa. The average modulus of a tip-segment was 3.96±1.60GPa, and the average modulus of a base-segment was 2.90±1.25GPa. Thus, on average, tip-segments had a higher Young's modulus than base-segments. High-resolution images of vibrissae were taken to seek structural correlates of this trend. The fraction of the cross-sectional area occupied by the vibrissa cuticle was found to increase along the vibrissa length, and may be responsible for the increase in Young's modulus near the tip.  相似文献   

16.
Nanocrystals prepared from bacterial cellulose are considered as 'green nanomaterials' depending on their renewable nature and ease of production without the involvement of hazardous chemical treatments. In this investigation, a top down approach was followed for the preparation of bacterial cellulose nanocrystals (BCNC) using a commercially available cellulase enzyme so as to retain native properties of bacterial cellulose even in its nanodimensional form. The morphological and dimensional parameters of BCNC were studied using atomic force microscope (AFM) and transmission electron microscope (TEM). Thermal properties of BCNC produced using the novel enzyme treatment and conventional sulfuric acid hydrolysis were compared. The thermal stability of enzyme processed BCNC was almost two fold higher than sulfuric acid processed ones. Further, the activation energy required for decomposition of enzyme processed BCNC was much higher than the other. Using this enzyme processed BCNC, Polyvinylalcohol (PVA) nanocomposite films were prepared and characterized. Incorporation of these nanocrystals in polymer matrix resulted in a remarkable improvement in the thermal stability as well as mechanical properties of nanocomposite films. These nanocomposites exhibited higher melting temperature (Tm) and enthalpy of melting (ΔHm) than those of pure PVA, suggesting that the addition of nanocrystals modified the thermal properties of PVA. The effective load transfer from polymer chains to the BCNC resulted in an improved tensile strength from 62.5 MPa to 128 MPa, by the addition of just 4 wt% of BCNC. Furthermore, the elastic modulus was found to increase from 2 GPa to 3.4 GPa. The BCNC obtained through cellulose treatment under controlled conditions were associated with several desirable properties and appear to be superior over the conventional methods of nanocrystals production. The enzymatic method followed in this study is expected to contribute the fabrication of high performance polymer nanocomposites in a much greener and innovative manner.  相似文献   

17.
Design and mechanical properties of insect cuticle   总被引:2,自引:0,他引:2  
Since nearly all adult insects fly, the cuticle has to provide a very efficient and lightweight skeleton. Information is available about the mechanical properties of cuticle-Young's modulus of resilin is about 1 MPa, of soft cuticles about 1 kPa to 50 MPa, of sclerotised cuticles 1-20 GPa; Vicker's Hardness of sclerotised cuticle ranges between 25 and 80 kgf mm(-2); density is 1-1.3 kg m(-3)-and one of its components, chitin nanofibres, the Young's modulus of which is more than 150 GPa. Experiments based on fracture mechanics have not been performed although the layered structure probably provides some toughening. The structural performance of wings and legs has been measured, but our understanding of the importance of buckling is lacking: it can stiffen the structure (by elastic postbuckling in wings, for example) or be a failure mode. We know nothing of fatigue properties (yet, for instance, the insect wing must undergo millions of cycles, flexing or buckling on each cycle). The remarkable mechanical performance and efficiency of cuticle can be analysed and compared with those of other materials using material property charts and material indices. Presented in this paper are four: Young's modulus-density (stiffness per unit weight), specific Young's modulus-specific strength (elastic hinges, elastic energy storage per unit weight), toughness-Young's modulus (fracture resistance under various loading conditions), and hardness (wear resistance). In conjunction with a structural analysis of cuticle these charts help to understand the relevance of microstructure (fibre orientation effects in tendons, joints and sense organs, for example) and shape (including surface structure) of this fibrous composite for a given function. With modern techniques for analysis of structure and material, and emphasis on nanocomposites and self-assembly, insect cuticle should be the archetype for composites at all levels of scale.  相似文献   

18.
Unique gelation behavior of cellulose in NaOH/urea aqueous solution   总被引:11,自引:0,他引:11  
Cai J  Zhang L 《Biomacromolecules》2006,7(1):183-189
A transparent cellulose solution was prepared by mixing 7 wt % NaOH with 12 wt % urea aqueous solution which was precooled to below -10 degrees C and which was able to rapidly dissolve cellulose at ambient temperature. The rheological properties and behavior of the gel-formed cellulose solution were investigated by using dynamic viscoelastic measurement. The effects of temperature, time, cellulose molecular weight, and concentrations on both the shear storage modulus (G') and the loss modulus (G") were analyzed. The cellulose solution having a viscosity-average molecular weight (M(eta)) of 11.4 x 10(4) had its sol-gel transition temperature decreased from 60.3 to 30.5 degrees C with an increase of its concentration from 3 to 5 wt %. The gelation temperature of a 4 wt % cellulose solution dropped from 59.4 to 30.5 degrees C as the M(eta) value was increased from 4.5 x 10(4) to 11.4 x 10(4). Interestingly, at either higher temperature (above 30 degrees C), or lower temperature (below -3 degrees C), or for longer gelation time, gels could form in the cellulose solutions. However, the cellulose solution remains a liquid state for a long time at the temperature range from 0 to 5 degrees C. For the first time, we revealed an irreversible gelation in the cellulose solution system. The gel having been formed did not dissolve even when cooled to the temperature of -10 degrees C, at which it was dissolved previously. Therefore, this indicates that either heating or cooling treatment could not break such stable gels. A high apparent activation energy (E(a)) of the cellulose solution below 0 degrees C was obtained and was used to explain the gel formation under the cooling process.  相似文献   

19.
A composite hip prosthesis (CHP) made from poly(ether-imide) reinforced with carbon and glass fibres was manufactured and characterized. The main objective of the study was to evaluate the effect of fibre organization on the mechanical properties of the composite femoral implant and compare with the bone. A stacking sequence of drop-off plies of carbon/glass fibres reinforcing poly(ether-imide) (PEI) constitutes a symmetrical and balanced CHP. The hip was manufactured according to the finite element modelling (FEM) design and using the compression moulding and water-jet technologies. The measured stress-strain data according to tensile, flexural and torsional tests showed agreement with the numerical calculation. Young's modulus and the strength in tension are uniform along the stem axis (40 GPa and 600 MPa, respectively) while the elastic modulus in bending varies from 10 to 60 GPa in the tip-head direction. The composite stem showed a linear load-displacement relation up to 4500 N without breaking. Mechanical behaviour of the CHP is compared to that of a canine femur. Comparison with metal prostheses has also been undertaken. CHPs control stress-strain distributions, and hence the mechanical signals to bone, through a material-structure design.  相似文献   

20.
Biodegradable polyphosphazenes have been investigated for a variety of applications, such as controlled drug delivery matrixes, tissue-engineering scaffolds, membranes, and bone-type composites. In this study we have evaluated the effect of side group chemistry on the properties of biodegradable phosphazene polymers that contain ethyl alanato side groups together with ethyl glycinato, p-methylphenoxy, or p-phenylphenoxy side groups. The polymers were synthesized by a macromolecular substitution route. The molecular weights of aryloxy/amino acid ester cosubstituted polymers were much higher than the amino acid ester substituted polyphosphazenes described earlier. Polymer properties, such as glass transition temperature, hydrolytic degradation, surface wettability, tensile strength, and modulus of elasticity varied over a wide range following changes to the type of co-substituents on the polymer backbone. The glass transition temperatures varied from -10 to 35 degrees C and increased with the bulkiness of the side groups. Polymer films in phosphate buffer saline solution showed molecular weight declines ranging from 58% to >80% and mass loss ranging from 4% to 90% over a period of 7 weeks. Water contact angles for polymer films varied from 63 degrees to 107 degrees , with the highest angles for the alanine ethyl ester and p-phenylphenoxy cosubstituted polyphosphazene. The tensile strengths were in the range of 2.4-7.6 MPa and the modulus of elasticity was in the range of 31.4-455.9 MPa. Thus, in this study we have demonstrated the tunability of biodegradable polyphosphazenes to suit a range of biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号