首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An excessive production of vasoactive and proinflammatory bradykinin-related peptides, the kinins, is often involved in the human host defense against microbial infections. Recent studies have shown that a major fungal pathogen to humans, Candida albicans, can bind the proteinaceous kinin precursor, the high molecular weight kininogen (HK) and trigger the kinin-forming cascade on the cell surface. In this work, we preliminarily characterized a molecular mechanism underlying the HK adhesion to the fungal surface by (i) identification of major kininogen-binding constituents on the candidial cell wall and (ii) mapping the cell wall-binding regions on HK molecule. A major fraction of total fungal kininogen-binding capacity was assigned to β-1,3-glucanase-extractable cell wall proteins (CWP). By adsorption of CWP on HK-coupled agarose gel and mass spectrometric analysis of the eluted material, major putative HK receptors were identified, including Als3 adhesin and three glycolytic enzymes, i.e., enolase 1, phosphoglycerate mutase 1 and triosephosphate isomerase 1. Using monoclonal antibodies directed against selected parts of HK molecule and synthetic peptides with sequences matching selected HK fragments, we assigned the major fungal cell wall-binding ability to a short stretch of amino acids in the C-terminal part of domain 3 and a large continuous region involving the C-terminal part of domain 5 and N-terminal part of domain 6 (residues 479-564). The latter characteristics of HK binding to C. albicans surface differ from those reported for bacteria and host cells.  相似文献   

2.
Candida albicans is an opportunistic fungal pathogen of humans causing superficial mucosal infections and life‐threatening systemic disease. The fungal cell wall is the first point of contact between the invading pathogen and the host innate immune system. As a result, the polysaccharides that comprise the cell wall act as pathogen associated molecular patterns, which govern the host–pathogen interaction. The cell wall is dynamic and responsive to changes in the external environment. Therefore, the host environment plays a critical role in regulating the host–pathogen interaction through modulation of the fungal cell wall. This review focuses on how environmental adaptation modulates the cell wall structure and composition, and the subsequent impact this has on the innate immune recognition of C. albicans.  相似文献   

3.
The innate immune system constitutes the first line of defence against invading microbes. The basis of this defence resides in the recognition of defined structural motifs of the microbes called “Microbial associated molecular patterns” that are absent in the host. Cell wall, the outer layer of both bacterial and fungal cells, a unique structure that is absent in the host and is recognized by the germ line encoded host receptors. Nucleotide oligomerization domain proteins, peptidoglycan recognition proteins and C-type lectins are host receptors that are involved in the recognition of bacterial cell wall (usually called peptidoglycan), whereas fungal cell wall components (N- and O-linked mannans, β-glucans etc.) are recognized by host receptors like C-type lectins (Dectin-1, Dectin-2, mannose receptor, DC-SIGN), Toll like receptors-2 and -4 (TLR-2 and TLR-4). These recognitions lead to activation of a variety of host signaling cascades and ultimate production of anti-microbial compounds including phospholipase A2, antimicrobial peptides, lysozyme, reactive oxygen and nitrogen species. These molecules act in cohort against the invading microbes to eradicate infections. Additionally pathogen recognition leads to the production of cytokines, which further activate the adaptive immune system. Both pathogenic and commensal bacteria and fungus use numerous strategies to subvert the host defence. These strategies include bacterial peptidoglycan glycan backbone modifications by O-acetylation, N-deacetylation, N-glycolylation and stem peptide modifications by amidation of meso-Diaminopimelic acid; fungal cell wall modifications by shielding the β-glucan layer with mannoproteins and α-1,3 glucan. This review focuses on the recent advances in understanding the role of bacterial and fungal cell wall in their innate immune recognition and evasion strategies.  相似文献   

4.
The fungal cell wall is a dynamic organelle required for cell shape, protection against the environment and, in pathogenic species, recognition by the innate immune system. The outer layer of the cell wall is comprised of glycosylated mannoproteins with the majority of these post‐translational modifications being the addition of O‐ and N‐linked mannosides. These polysaccharides are exposed on the outer surface of the fungal cell wall and are, therefore, the first point of contact between the fungus and the host immune system. This review focuses on O‐ and N‐linked mannan biosynthesis in the fungal pathogen Candida albicans and highlights new insights gained from the characterization of mannosylation mutants into the role of these cell wall components in host–fungus interactions. In addition, we discuss the use of fungal mannan as a diagnostic marker of fungal disease.  相似文献   

5.
The major murein and pseudomurein cell wall-binding domains, i.e., the Lysin Motif (LysM) (Pfam PF01476) and pseudomurein cell wall-binding (PMB) (Pfam PF09373) motif, respectively, were genetically fused. The fusion protein is capable of binding to both murein- and pseudomurein-containing cell walls. In addition, it also binds to chitin, the major polymer of fungal cell walls. Binding is influenced by pH and occurs at a pH close to the pI of the binding protein. Functional studies on truncated versions of the fusion protein revealed that murein and chitin binding is provided by the LysM domain, while binding to pseudomurein is achieved through the PMB domain.  相似文献   

6.
Antimicrobial peptides (AMPs) are key elements of innate immunity, which can directly kill multiple bacterial, viral, and fungal pathogens. The medically important fungus Candida albicans colonizes different host niches as part of the normal human microbiota. Proliferation of C. albicans is regulated through a complex balance of host immune defense mechanisms and fungal responses. Expression of AMPs against pathogenic fungi is differentially regulated and initiated by interactions of a variety of fungal pathogen-associated molecular patterns (PAMPs) with pattern recognition receptors (PRRs) on human cells. Inflammatory signaling and other environmental stimuli are also essential to control fungal proliferation and to prevent parasitism. To persist in the host, C. albicans has developed a three-phase AMP evasion strategy, including secretion of peptide effectors, AMP efflux pumps, and regulation of signaling pathways. These mechanisms prevent C. albicans from the antifungal activity of the major AMP classes, including cathelicidins, histatins, and defensins leading to a basal resistance. This minireview summarizes human AMP attack and C. albicans resistance mechanisms and current developments in the use of AMPs as antifungal agents.  相似文献   

7.
The yeast cell wall consists of an internal skeletal layer and an outside protein layer. The synthesis of both β-1,3-glucan and chitin, which together form the cell wall skeleton, is cell cycle-regulated. We show here that the expression of five cell wall protein-encoding genes (CWP1, CWP2, SED1, TIP1 and TIR1) is also cell cycle-regulated. TIP1 is expressed in G1 phase, CWP1, CWP2 and TIR1 are expressed in S/G2 phase, and SED1 in M phase. The data suggest that these proteins fulfil distinct functions in the cell wall.  相似文献   

8.
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.  相似文献   

9.
A gene product of ORF24' was identified on the genome of corynephage BFK20 as a putative phage endolysin. The protein of endolysin BFK20 (gp24') has a modular structure consisting of an N-terminal amidase_2 domain (gp24CD) and a C-terminal cell wall binding domain (gp24BD). The C-terminal domain is unrelated to any of the known cell wall binding domains of phage endolysins. The whole endolysin gene and the sequences of its N-terminal and C-terminal domains were cloned; proteins were expressed in Escherichia coli and purified to homogeneity. The lytic activities of endolysin and its catalytic domain were demonstrated on corynebacteria and bacillus substrates. The binding activity of cell wall binding domain alone and in fusion with green fluorescent protein (gp24BD-GFP) were shown by specific binding assays to the cell surface of BFK20 host Brevibacterium flavum CCM 251 as well as those of other corynebacteria.  相似文献   

10.
Three glucanase-extractable cell wall proteins from Saccharomyces cerevisiae were purified, and their N-terminal amino acid sequences were determined. With this information, we were able to assign gene products to three known open reading frames (ORFs). The N-terminal sequence of a 55-kDa mannoprotein corresponded with the product of ORF YKL096w, which we named CWP1 (cell wall protein 1). A 80-kDa mannoprotein was identified as the product of the TIP1 gene, and a 180-kDa mannoprotein corresponded to the product of the ORF YKL444, which we named CWP2. CWP1, TIP1, and CWP2 encode proteins of 239, 210, and 92 amino acids, respectively. The C-terminal regions of these proteins all consist for more than 40% of serine/threonine and contain putative glycosylphosphatidylinositol attachment signals. Furthermore, Cwp1p and Tip1p were shown to carry a beta 1,6-glucose-containing side chain. The cwp2 deletion mutant displayed an increased sensitivity to Congo red, calcofluor white, and Zymolyase. Electron microscopic analysis of the cwp2 deletion mutant showed a strongly reduced electron-dense layer on the outside of the cell wall. These results indicate that Cwp2p is a major constituent of the cell wall and plays an important role in stabilizing the cell wall. Depletion of Cwp1p or Tip1p also caused increased sensitivities to Congo red and calcofluor white, but the effects were less pronounced than for cwp2 delta. All three cell wall proteins show a substantial homology with Srp1p, which also appears to be localized in the cell wall. We conclude that these four proteins are small structurally related cell wall proteins.  相似文献   

11.
Tasting the fungal cell wall   总被引:1,自引:0,他引:1  
The search for common host mechanisms that recognize human fungal pathogens as non‐self has led to an increased interest in cell wall polysaccharides since they are absent from mammals and at least for some of them, common to all fungal species. Even though the receptors recognizing mannans and β‐1,3‐glucans have been extensively studied to date, the epitope of the polysaccharide ligand is often not well defined. In addition, receptors recognizing other cell wall major components such as chitin, α‐1,3‐glucan or galactose polymers remain to be identified. Moreover, the fungal adhesins playing a role in adhesion to host have been only explored in yeasts. Eventhough progresses have been made in the last 10 years, a comprehensive understanding of the interactions between the host membrane receptors and the fungal cell wall components is still lacking.  相似文献   

12.
The Giardia lamblia cyst wall (CW), which is required for survival outside the host and infection, is a primitive extracellular matrix. Because of the importance of the CW, we queried the Giardia Genome Project Database with the coding sequences of the only two known CW proteins, which are cysteine-rich and contain leucine-rich repeats (LRRs). We identified five new LRR-containing proteins, of which only one (CWP3) is up-regulated during encystation and incorporated into the cyst wall. Sequence comparison with CWP1 and -2 revealed conservation within the LRRs and the 44-amino-acid N-flanking region, although CWP3 is more divergent. Interestingly, all 14 cysteine residues of CWP3 are positionally conserved with CWP1 and -2. During encystation, C-terminal epitope-tagged CWP3 was transported to the wall of water-resistant cysts via the novel regulated secretory pathway in encystation-secretory vesicles (ESVs). Deletion analysis revealed that the four LRRs are each essential to target CWP3 to the ESVs and cyst wall. In a deletion of the most C-terminal region, fewer ESVs were stained in encysting cells, and there was no staining in cysts. In contrast, deletion of the 44 amino acids between the signal sequence and the LRRs or the region just C-terminal to the LRRs only decreased the number of cells with CWP3 targeting to ESVs and cyst wall by approximately 50%. Our studies indicate that virtually every portion of the CWP3 protein is needed for efficient targeting to the regulated secretory pathway and incorporation into the cyst wall. Further, these data demonstrate the power of genomics in combination with rigorous functional analyses to verify annotation.  相似文献   

13.
The major fungal pathogen Candida albicans can occupy diverse microenvironments in its human host. During colonization of the gastrointestinal or urogenital tracts, mucosal surfaces, bloodstream, and internal organs, C. albicans thrives in niches that differ with respect to available nutrients and local environmental stresses. Although most studies are performed on glucose‐grown cells, changes in carbon source dramatically affect cell wall architecture, stress responses, and drug resistance. We show that growth on the physiologically relevant carboxylic acid, lactate, has a significant impact on the C. albicans cell wall proteome and secretome. The regulation of cell wall structural proteins (e.g. Cht1, Phr1, Phr2, Pir1) correlated with extensive cell wall remodeling in lactate‐grown cells and with their increased resistance to stresses and antifungal drugs, compared with glucose‐grown cells. Moreover, changes in other proteins (e.g. Als2, Gca1, Phr1, Sap9) correlated with the increased adherence and biofilm formation of lactate‐grown cells. We identified mating and pheromone‐regulated proteins that were exclusive to lactate‐grown cells (e.g. Op4, Pga31, Pry1, Scw4, Yps7) as well as mucosa‐specific and other niche‐specific factors such as Lip4, Pga4, Plb5, and Sap7. The analysis of the corresponding null mutants confirmed that many of these proteins contribute to C. albicans adherence, stress, and antifungal drug resistance. Therefore, the cell wall proteome and secretome display considerable plasticity in response to carbon source. This plasticity influences important fitness and virulence attributes known to modulate the behavior of C. albicans in different host microenvironments during infection.  相似文献   

14.
PE_PGRS proteins localize in the mycobacterial cell wall and the cell wall localization of PE_PGRS33 has been shown to be attributed to its PE domain. In this study, we expressed deletion mutants of PE_PGRS30 in Mycobacterium smegmatis to characterize the role of its domains in protein localization. It was revealed that, apart from the PE domain, the C-terminal domain present in few PE_PGRS proteins carries individual cell wall localization signals. Proteinase K sensitivity assay showed that PE_PGRS30 is exposed on the mycobacterial surface through its PGRS domain. PGRS domain was also shown to be responsible for polar localization of PE_PGRS30.  相似文献   

15.
16.
The survival of all microbes depends upon their ability to respond to environmental challenges. To establish infection, pathogens such as Candida albicans must mount effective stress responses to counter host defences while adapting to dynamic changes in nutrient status within host niches. Studies of C. albicans stress adaptation have generally been performed on glucose‐grown cells, leaving the effects of alternative carbon sources upon stress resistance largely unexplored. We have shown that growth on alternative carbon sources, such as lactate, strongly influence the resistance of C. albicans to antifungal drugs, osmotic and cell wall stresses. Similar trends were observed in clinical isolates and other pathogenic Candida species. The increased stress resistance of C. albicans was not dependent on key stress (Hog1) and cell integrity (Mkc1) signalling pathways. Instead, increased stress resistance was promoted by major changes in the architecture and biophysical properties of the cell wall. Glucose‐ and lactate‐grown cells displayed significant differences in cell wall mass, ultrastructure, elasticity and adhesion. Changes in carbon source also altered the virulence of C. albicans in models of systemic candidiasis and vaginitis, confirming the importance of alternative carbon sources within host niches during C. albicans infections.  相似文献   

17.
Knr4/Smi1 proteins are specific to the fungal kingdom and their deletion in the model yeast Saccharomyces cerevisiae and the human pathogen Candida albicans results in hypersensitivity to specific antifungal agents and a wide range of parietal stresses. In S. cerevisiae, Knr4 is located at the crossroads of several signalling pathways, including the conserved cell wall integrity and calcineurin pathways. Knr4 interacts genetically and physically with several protein members of those pathways. Its sequence suggests that it contains large intrinsically disordered regions. Here, a combination of small-angle X-ray scattering (SAXS) and crystallographic analysis led to a comprehensive structural view of Knr4. This experimental work unambiguously showed that Knr4 comprises two large intrinsically disordered regions flanking a central globular domain whose structure has been established. The structured domain is itself interrupted by a disordered loop. Using the CRISPR/Cas9 genome editing technique, strains expressing KNR4 genes deleted from different domains were constructed. The N-terminal domain and the loop are essential for optimal resistance to cell wall-binding stressors. The C-terminal disordered domain, on the other hand, acts as a negative regulator of this function of Knr4. The identification of molecular recognition features, the possible presence of secondary structure in these disordered domains and the functional importance of the disordered domains revealed here designate these domains as putative interacting spots with partners in either pathway. Targeting these interacting regions is a promising route to the discovery of inhibitory molecules that could increase the susceptibility of pathogens to the antifungals currently in clinical use.  相似文献   

18.
Structure and lytic activity of a Bacillus anthracis prophage endolysin   总被引:1,自引:0,他引:1  
We report a structural and functional analysis of the lambda prophage Ba02 endolysin (PlyL) encoded by the Bacillus anthracis genome. We show that PlyL comprises two autonomously folded domains, an N-terminal catalytic domain and a C-terminal cell wall-binding domain. We determined the crystal structure of the catalytic domain; its three-dimensional fold is related to that of the cell wall amidase, T7 lysozyme, and contains a conserved zinc coordination site and other components of the catalytic machinery. We demonstrate that PlyL is an N-acetylmuramoyl-L-alanine amidase that cleaves the cell wall of several Bacillus species when applied exogenously. We show, unexpectedly, that the catalytic domain of PlyL cleaves more efficiently than the full-length protein, except in the case of Bacillus cereus, and using GFP-tagged cell wall-binding domain, we detected strong binding of the cell wall-binding domain to B. cereus but not to other species tested. We further show that a related endolysin (Ply21) from the B. cereus phage, TP21, shows a similar pattern of behavior. To explain these data, and the species specificity of PlyL, we propose that the C-terminal domain inhibits the activity of the catalytic domain through intramolecular interactions that are relieved upon binding of the C-terminal domain to the cell wall. Furthermore, our data show that (when applied exogenously) targeting of the enzyme to the cell wall is not a prerequisite of its lytic activity, which is inherently high. These results may have broad implications for the design of endolysins as therapeutic agents.  相似文献   

19.
Clostridium difficile is the main cause of antibiotic-associated diarrhea, leading to significant morbidity and mortality and putting considerable economic pressure on healthcare systems. Current knowledge of the molecular basis of pathogenesis is limited primarily to the activities and regulation of two major toxins. In contrast, little is known of mechanisms used in colonization of the enteric system. C. difficile expresses a proteinaceous array on its cell surface known as the S-layer, consisting primarily of the major S-layer protein SlpA and a family of SlpA homologues, the cell wall protein (CWP) family. CwpV is the largest member of this family and is expressed in a phase variable manner. Here we show CwpV promotes C. difficile aggregation, mediated by the C-terminal repetitive domain. This domain varies markedly between strains; five distinct repeat types were identified and were shown to be antigenically distinct. Other aspects of CwpV are, however, conserved. All CwpV types are expressed in a phase variable manner. Using targeted gene knock-out, we show that a single site-specific recombinase RecV is required for CwpV phase variation. CwpV is post-translationally cleaved at a conserved site leading to formation of a complex of cleavage products. The highly conserved N-terminus anchors the CwpV complex to the cell surface. Therefore CwpV function, regulation and processing are highly conserved across C. difficile strains, whilst the functional domain exists in at least five antigenically distinct forms. This hints at a complex evolutionary history for CwpV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号