首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antimicrobial peptides play a crucial role in innate immunity, whose components are mainly peptide-based molecules with antibacterial properties. Indeed, the exploration of the immune system over the past 40 years has revealed a number of natural peptides playing a pivotal role in the defence mechanisms of vertebrates and invertebrates, including amphibians, insects, and mammalians. This review provides a discussion regarding the antibacterial mechanisms of peptide-based agents and their structure–activity relationships (SARs) with the aim of describing a topic that is not yet fully explored. Some growing evidence suggests that innate immunity should be strongly considered for the development of novel antibiotic peptide-based libraries. Also, due to the constantly rising concern of antibiotic resistance, the development of new antibiotic drugs is becoming a priority of global importance. Hence, the study and the understanding of defence phenomena occurring in the immune system may inspire the development of novel antibiotic compound libraries and set the stage to overcome drug-resistant pathogens. Here, we provide an overview of the importance of peptide-based antibacterial sources, focusing on accurately selected molecular structures, their SARs including recently introduced modifications, their latest biotechnology applications, and their potential against multi-drug resistant pathogens. Last, we provide cues to describe how antibacterial peptides show a better scope of action selectivity than several anti-infective agents, which are characterized by non-selective activities and non-targeted actions toward pathogens.  相似文献   

2.
In crustaceans, various physiological events, such as molting, vitellogenesis, and sex differentiation, are regulated by peptide hormones. To understanding the functional sites of these hormones, many structure–activity relationship (SAR) studies have been published. In this review, the author focuses the SAR of crustacean hyperglycemic hormone-family peptides and androgenic gland hormone and describes the detailed results of our and other research groups. The future perspectives will be also discussed.  相似文献   

3.
We have previously shown that simple N-acyl or N-alkyl polyamines bind to and sequester Gram-negative bacterial lipopolysaccharide, affording protection against lethality in animal models of endotoxicosis. Several iterative design-and-test cycles of SAR studies, including high-throughput screens, had converged on compounds with polyamine scaffolds which have been investigated extensively with reference to the number, position, and length of acyl or alkyl appendages. However, the polyamine backbone itself had not been explored sufficiently, and it was not known if incremental variations on the polymethylene spacing would affect LPS-binding and neutralization properties. We have now systematically explored the relationship between variously elongated spermidine [NH2–(CH2)3–NH–(CH2)4–NH2] and norspermidine [NH2–(CH2)3–NH–(CH2)3–NH2] backbones, with the N-alkyl group being held constant at C16 in order to examine if changing the spacing between the inner secondary amines may yield additional SAR information. We find that the norspermine-type compounds consistently showed higher activity compared to corresponding spermine homologues.  相似文献   

4.
A novel series of compounds derived from the previously reported N-type calcium channel blocker NP118809 (1-(4-benzhydrylpiperazin-1-yl)-3,3-diphenylpropan-1-one) is described. Extensive SAR studies resulted in compounds with IC50 values in the range of 10–150 nM and selectivity over the L-type channels up to nearly 1200-fold. Orally administered compounds 5 and 21 exhibited both anti-allodynic and anti-hyperalgesic activity in the spinal nerve ligation model of neuropathic pain.  相似文献   

5.
The toxicity of Gram-negative bacterial endotoxin (lipopolysaccharide, LPS) resides in its structurally highly conserved glycolipid component called lipid A. Our major goal has been to develop small-molecules that would sequester LPS by binding to the lipid A moiety, so that it could be useful for the prophylaxis or adjunctive therapy of Gram-negative sepsis. We had previously identified in rapid-throughput screens several guanylhydrazones as potent LPS binders. We were desirous of examining if the presence of the guanylhydrazone (rather than an amine) functionality would afford greater LPS sequestration potency. In evaluating a congeneric set of guanylhydrazone analogues, we find that C16 alkyl substitution is optimal in the N-alkylguanylhydrazone series; a homospermine analogue with the terminal amine N-alkylated with a C16 chain with the other terminus of the molecule bearing an unsubstituted guanylhydrazone moiety is marginally more active, suggesting very slight, if any, steric effects. Neither C16 analogue is significantly more active than the N-C16-alkyl or N-C16-acyl compounds that we had characterized earlier, indicating that basicity of the phosphate-recognizing cationic group, is not a determinant of LPS sequestration activity.  相似文献   

6.
There is a great urgency in developing a new generation of antibiotics and antimicrobial agents since the bacterial resistance to antibiotics have increased dramatically. A series of overlapped peptide fragments of Ixosin-B, an antimicrobial peptide with amino acid sequence of QLKVDLWGTRSGIQPEQHSSGKSDVRRWRSRY, was designed, synthesized and examined for their antimicrobial activities against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. A potent 11-mer peptide TSG-8-1, WWSYVRRWRSR-amide, was developed, which exhibited antimicrobial activity against E. coli and S. aureus while very little hemolytic activity in human erythrocytes was observed at high dose level. This peptide could be further modified for the development of a potent antimicrobial agent in the future.  相似文献   

7.
The enzyme MurA performs an essential step in peptidoglycan biosynthesis and is therefore a target for the discovery of novel antibacterial compounds. We report here the inhibition of MurA by natural products from tulips (tulipalines and tuliposides), and the structure–activity relationships of various derivatives. The inhibition of MurA can be related to antibacterial activity, and MurA is probably one of the relevant molecular targets of the tulipaline derivatives. MurA inhibition by this class of compounds depends on the presence of the substrate UNAG, which indicates non-covalent suicide inhibition as observed previously for cnicin. With respect to selectivity, however, the reactivity against arbitrary sulfhydryl groups, such as in glutathione, could not yet be sufficiently separated from MurA inhibition in the present dataset.  相似文献   

8.
Tyrosinase inhibitors have become increasingly critical agents in cosmetic, agricultural, and medicinal products. Although a large number of tyrosinase inhibitors have been reported, almost all the inhibitors were unfortunately evaluated by using commercial available mushroom tyrosinase. Here, we examined the inhibitory effects of three isomers of thujaplicin (α, β, and γ) on human tyrosinase and analyzed their binding modes using homology model and docking studies. As the results, γ-thujaplicin was found to strongly inhibit human tyrosinase with the IC50 of 1.15 μM, extremely superior to a well-known tyrosinase inhibitor kojic acid (IC50 = 571.17 μM). MM-GB/SA binding free energy decomposition analyses suggested that the potent inhibitory activity of γ-thujaplicin may be due to the interactions with His367, Ile368, and Val377 (hot spot amino acid residues) in human tyrosinase. Furthermore, the binding mode of α-thujaplicin indicated that Val377 and Ser380 may cause van der Waals clashes with the isopropyl group of α-thujaplicin. These results provide a novel structural insight into the hot spot of human tyrosinase for the specific binding of γ-thujaplicin and a way to optimize not only thujaplicins but also other lead compounds as specific inhibitors for human tyrosinase in a rational manner.  相似文献   

9.
A diverse series of amides were evaluated for aquatic toxicity (IGC50) assessed in the Tetrahymena pyriformis population growth impairment assay and for reactivity (EC50) with the model soft nucleophile thiol in the form of the cysteine residue of the tripeptide glutathione. All alkylamides along with some halo-substituted amides are well predicted by the simple hydrophobicity (log K ow)–electrophilicity (E lumo) response-surface model [log(IGC−1 50) = 0.45(log K ow) − 0.342(E lumo) − 1.11]. However, 2-halo amides with the halogen at the end of the molecule and α,β-unsaturated primary amides are among those derivatives identified as being more toxic than predicted by the model. Amides, which exhibit excess toxicity, were capable of forming covalent bonds through an SN2 displacement or a Michael addition. Moreover, only those amides exhibiting excess toxicity were reactive with thiol, suggesting that the reactivity with model nucleophiles such as the thiol group may provide a means of accurately defining reactive toxicants.  相似文献   

10.
A series of 2-aminothiazoles was synthesized based on a HTS scaffold from a whole-cell screen against Mycobacterium tuberculosis (Mtb). The SAR shows the central thiazole moiety and the 2-pyridyl moiety at C-4 of the thiazole are intolerant to modification. However, the N-2 position of the aminothiazole exhibits high flexibility and we successfully improved the antitubercular activity of the initial hit by more than 128-fold through introduction of substituted benzoyl groups at this position. N-(3-Chlorobenzoyl)-4-(2-pyridinyl)-1,3-thiazol-2-amine (55) emerged as one of the most promising analogues with a MIC of 0.024 μM or 0.008 μg/mL in 7H9 media and therapeutic index of nearly ~300. However, 55 is rapidly metabolized by human liver microsomes (t1/2 = 28 min) with metabolism occurring at the invariant aminothiazole moiety and Mtb develops spontaneous low-level resistance with a frequency of ~10?5.  相似文献   

11.
The marine alkaloid norzoanthamine is a candidate drug for osteoporosis treatment. Due to its structural complexity, simplified analogues possessing similar biological activities are needed for further research. Recently, we found that the bisaminal unit, representing two-thirds of the original structure, is a bioactive equivalent. We synthesized three kinds of further truncated norzoanthamines and evaluated their collagen protection activities. No analog with collagen protection activity comparable to that of the bisaminal unit was found. Thus, we confirmed the importance of the bisaminal unit for the collagen protection activity. Furthermore, we found that the recognition tolerance of the substrate collagen is relatively large by comparing both enantiomers.  相似文献   

12.
tRNA anticodon damage inflicted by secreted ribotoxins such as Kluyveromyces lactis γ-toxin and bacterial colicins underlies a rudimentary innate immune system that distinguishes self from nonself species. The intracellular expression of γ-toxin (a 232-amino acid polypeptide) arrests the growth of Saccharomyces cerevisiae by incising a single RNA phosphodiester 3′ of the modified wobble base of tRNAGlu. Fungal γ-toxin bears no primary structure similarity to any known nuclease and has no plausible homologs in the protein database. To gain insight to γ-toxin''s mechanism, we tested the effects of alanine mutations at 62 basic, acidic, and polar amino acids on ribotoxin activity in vivo. We thereby identified 22 essential residues, including 10 lysines, seven arginines, three glutamates, one cysteine, and one histidine (His209, the only histidine present in γ-toxin). Structure–activity relations were gleaned from the effects of 44 conservative substitutions. Recombinant tag-free γ-toxin, a monomeric protein, incised an oligonucleotide corresponding to the anticodon stem–loop of tRNAGlu at a single phosphodiester 3′ of the wobble uridine. The anticodon nuclease was metal independent. RNA cleavage was abolished by ribose 2′-H and 2′-F modifications of the wobble uridine. Mutating His209 to alanine, glutamine, or asparagine abolished nuclease activity. We propose that γ-toxin catalyzes an RNase A-like transesterification reaction that relies on His209 and a second nonhistidine side chain as general acid–base catalysts.  相似文献   

13.
We previously demonstrated that dibenzoylhydrazines (DBHs) are not only P-glycoprotein (P-gp) substrates, but also inhibitors. In the present study, we evaluated the inhibition of P-gp-mediated quinidine transport by two series of DBHs and performed a classical QSAR analysis and docking simulation in order to investigate the mechanisms underlying P-gp substrate/inhibitor recognition. The results of the QSAR analysis identified the hydrophobic factor as the most important for inhibitory activities, while electronic and steric effects also influenced the activities. The different substituent effects observed in each series suggested the different binding modes of each series of DBHs, which was supported by the results of the docking simulation.  相似文献   

14.
Multifunctional bioactive peptides have a wider role in modulating physiological functions and possess multiple biological activities. Peptides from bovine milk with sequences QKALNEINQF [p10] and TKKTKLTEEEKNRL [p14] from α-S2 casein f (79–88) and α-S2 casein f (148–161) were identified to be having multifunctional biological activities and were synthesized. These synthesized peptides show various biological activities like angiotensin-converting enzyme inhibition, prolyl endopeptidase inhibition, antioxidant, and antimicrobial activities. The mode of antimicrobial mechanism was studied and p10 shows depolarization of cell membrane, whereas p14 was found to display DNA-binding activity. Structural studies envisaged backbone flexibility, for differences in their mode of action. Peptide structure function studies were correlated to understand their multifunctional biological activity.  相似文献   

15.
Fraxamoside, a macrocyclic secoiridoid glucoside featuring a hydroxytyrosol group, was recently identified as a xanthine oxidase inhibitor (XOI) comparable in potency in vitro to the standard antigout drug allopurinol. However, this activity and its considerably higher value than its derivatives oleuropein, oleoside 11-methyl ester, and hydroxytyrosol are not explained by structure–activity relationships (SARs) of known XOIs. To exclude allosteric mechanisms, we first determined the inhibition kinetic of fraxamoside. The resulting competitive mechanism prompted a computational SAR characterization, combining molecular docking and dynamics, which fully explained the behavior of fraxamoside and its derivatives, attributed the higher activity of the former to conformational properties of its macrocycle, and showed a substantial contribution of the glycosidic moiety to binding, in striking contrast with glycoside derivatives of most other XOIs. Overall, fraxamoside emerged as a lead compound for a new class of XOIs potentially characterized by reduced interference with purine metabolism.  相似文献   

16.
Hederagenin saponins are largely represented in nature and possess many biological activities such as haemolytic, antiviral, fungicidal, molluscicidal or cytotoxic, partially due to their interaction with the cell membrane. The lysis of erythrocytes (haemolysis) is a simple test to evaluate this adsorption, and this activity has been linked to the structure of the aglycone and also depends on the sugar moiety of the saponin. To further complete our study of the structure–activity relationships of triterpenoid saponins, α-hederin and related hederagenin diglycosides were synthesized to better understand the influence of the second sugar (α-l-rhamnose, β-d-xylose or β-d-glucose) and the substitution of this sugar on α-l-arabinose (position 2, 3 or 4). Haemolysis and cytotoxic activity on KB cells were tested. These compounds probably interact with membrane cholesterol and produce destabilization of the membrane inducing haemolysis. Cytotoxicity could involve the same mechanism, although some saponins induce an apoptotic process. The nuclear structure of the KB cell was thus investigated by confocal microscopy. The cytotoxic activity of a second group of hederagenin glucoside saponins was also evaluated. Our results showed that cytotoxicity was a result of both the sugar part and the structure of genin (carboxylic acid or methyl ester).  相似文献   

17.
GS10 [cyclo-(VKLdYPVKLdYP)] is a synthetic analog of the naturally occurring antimicrobial peptide gramicidin (GS) in which the two positively charged ornithine (Orn) residues are replaced by two positively charged lysine (Lys) residues and the two less polar aromatic phenylalanine (Phe) residues are replaced by the more polar tyrosine (Tyr) residues. In this study, we examine the effects of these seemingly conservative modifications to the parent GS molecule on the physical properties of the peptide, and on its interactions with lipid bilayer model and biological membranes, by a variety of biophysical techniques. We show that although GS10 retains the largely β-sheet conformation characteristic of GS, it is less structured in both water and membrane-mimetic solvents. GS10 is also more water soluble and less hydrophobic than GS, as predicted, and also exhibits a reduced tendency for self-association in aqueous solution. Surprisingly, GS10 associates more strongly with zwitterionic and anionic phospholipid bilayer model membranes than does GS, despite its greater water solubility, and the presence of anionic phospholipids and cholesterol (Chol) modestly reduces the association of both GS10 and GS to these model membranes. The strong partitioning of both peptides into lipid bilayers is driven by a large favorable entropy change opposed by a much smaller unfavorable enthalpy change. However, GS10 is also less potent than GS at inducing inverted cubic phases in phospholipid bilayer model membranes and at inhibiting the growth of the cell wall-less bacterium Acholeplasma laidlawii B. These results are discussed in terms of the comparative antibiotic and hemolytic activities of these peptides.  相似文献   

18.
Hedychenone, a plant-derived labdane diterpenoid, showed potent in vitro cytotoxic activity against cancerous cells. In the present study, a series of analogues have been synthesized by modification of the furanoid ring, double bond and the vinylic methyl functionality of this natural product lead and evaluated for their cytotoxic activities against human cancer cell lines. The structures of the target compounds were established by IR, 1H NMR and mass spectral analysis. Majority of the analogues displayed potent activity than the parent compound, hedychenone. Preliminary structure–activity relationship studies indicated that furanoid ring has a greater impact on cytotoxicity than that of the decalone nucleus. However, dimerization through C-8 significantly enhanced the cytotoxic activity of the hedychenone.  相似文献   

19.
A series of aromatic disulfonamide (1-8) derivatives and 4-methylbenzenesulfonyl hydrazide (9) were synthesized and characterized. All compounds were evaluated in vitro for their antimicrobial activity against Staphylococcus aureus ATCC 25953, Bacillus cereus ATCC 6633, Bacillus magaterium RSKK 5117, Escherichia coli ATCC 11230, Salmonella enterititis ATCC 13076 by microdilution and disc diffusion methods. Antimicrobial activity of the aromatic disulfonamides decreased as the length of the carbon chain increased. An analysis of the structure- activity relationship (SAR) along with computational studies showed that the most active compound (9) possessed low lipophilicity (AlogP=0.59) and high solubility (logS = -1.33).  相似文献   

20.
Idiopathic or immune thrombocytopenia (ITP) is a serious clinical disorder involving the destruction of platelets by macrophages. Small molecule therapeutics are highly sought after to ease the burden on current therapies derived from human sources. Earlier, we discovered that dimers of five-membered heterocycles exhibited potential to inhibit phagocytosis of human RBCs by macrophages. Here, we reveal a structure–activity relationship of the bis-pyrazole class of molecules with –C–C–, –C–N– and –C–O– linkers, and their evaluation as inhibitors of phagocytosis of antibody-opsonized human RBCs as potential therapeutics for ITP. We have uncovered three potential candidates, 37, 47 and 50, all carrying a different linker connecting the two pyrazole moieties. Among these compounds, hydroxypyrazole derivative 50 is the most potent compound with an IC50 of 14 ± 9 μM for inhibiting the phagocytosis of antibody-opsonized human RBCs by macrophages. None of the compounds exhibited significant potential to induce apoptosis in peripheral blood mononuclear cells (PBMCs). Current study has revealed specific functional features, such as up to 2-atom spacer arm and alkyl substitution at one of the N1 positions of the bivalent pyrazole core to be important for the inhibitory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号