首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To explain the recruitment and coexistence of species which establish after fire, this study predicted that each species would have different germination cues as a component of different regeneration niches. Furthermore, for species subject to natural fire frequencies of 10–20 years, fire-related cues, seed dormancy, extended longevity and fire-related germination cues might be predicted. However, results indicated broadly similar germination requirements. Seeds subjected to two heat treatments and a charcoal extract failed to show significantly enhanced germination. Instead, highest germination successes were achieved under alternating diurnal temperatures which implied an indirect fire cue, viz. the removal of insulating vegetation. Leachate solution inhibited germination in two species suggesting allelopathic effects during inter-fire periods. Only two species showed dormancy and three species did not have extended longevity but showed declining germinability after three years. Finally, in order to determine the potential germination from a soil-stored seed bank, data analysis simulated a seed bank comprising three years' accumulation of seeds. In each species the proportion of germinable seeds varied each year over the three years. Also, the germinability in response to ageing varied for each year's seed production. This would explain the variation in densities of the six species after different fire events, and hence offers a better explanation for species' coexistence.  相似文献   

2.
3.
Intraspecific variation in the ability of individuals to tolerate environmental perturbations is often neglected when considering the impacts of climate change. Yet this information is potentially crucial for mitigating deleterious effects of climate change on threatened species. Here we assessed patterns of intraspecific variation in desiccation tolerance in the frog Pseudophryne guentheri, a terrestrial-breeding species experiencing a drying climate. Adult frogs were collected from six populations across a rainfall gradient and their dehydration and rehydration rates were assessed. We also compared desiccation tolerance of embryos and hatchlings originating from within-population parental crosses from four of the populations. Embryos were reared on soil at three soil–water potentials and their desiccation tolerance was assessed across a range of traits. We found significant and strong patterns of intraspecific variation in almost all traits, both in adults and first-generation offspring. Adult frogs exhibited clinal variation in their water balance responses, with populations from drier sites both dehydrating and rehydrating more slowly compared to frogs from more mesic sites. Similarly, desiccation tolerance of first-generation offspring was significantly greater in populations from xeric sites. Our findings suggest that populations within this species will respond differently to the regional reduction in rainfall predicted by climate change models.  相似文献   

4.
Mediterranean-type climate regions are highly biodiverse and predicted to be particularly sensitive to climate change. Shrubs of the mediterranean-type climate region of South Africa are highly threatened, and their response to water stress has been comparatively little studied. Resistance to water stress induced xylem cavitation (P(50)) and xylem specific hydraulic conductivity (K(s)) were measured in 15 shrub species from fynbos and succulent karoo communities of South Africa. Species displayed a fivefold variation in cavitation resistance (P(50) of -1.9 to -10.3 MPa) with succulent karoo species displaying greater interspecific variability in P(50) than fynbos species. Principal components analysis (including P(50), minimum seasonal water potential, K(s), and xylem density) showed the response to water stress in fynbos species to be similar to chaparral species from the mediterranean-type climate region of California. The data suggest convergence of community and species-specific water stress "strategies" between these mediterranean-type climate regions with respect to their xylem traits. On the basis of the current study and reported plant death and dieback in these regions, woody species within the fynbos may be more susceptible to climate warming and drying than those within the succulent karoo that appear to be utilizing more diverse xylem strategies in response to water stress.  相似文献   

5.
6.
Acquisition of desiccation tolerance in soybeans   总被引:10,自引:0,他引:10  
The entry into a desiccation-tolerant state is a major developmental component of seed maturation. Development of desiccation tolerance of embryonic axes of soybean [Glycine max (L.) Merrill cv. Chippewa 64] was studied by measuring changes in electrolyte leakage. germination and relative growth rate after axes were rapidly air-dried to various water contents. Axes acquired the full capacity for germination at 34 days after flowering (DAF). and reached physiological maturity (maximum dry weight) at 48 DAF. When dried to water content h = 0. 08 (g water g−1 dry weight). few axes germinated before 42 DAF. but more than 90% germinated after 48 DAF. However, electrolyte leakage of rehydrated axes showed a linear decline from 30 to 55 DAF. For developing axes there was a critical water content or desiccation threshold. which could be estimated by using the electrolyte leakage method. The threshold of desiccation tolerance decreased gradually from h = 1. 10 to 0. 18 as axes matured from 28 to 55 DAF. The development of desiccation tolerance continued after physiological maturity at 48 DAF. We conclude that the acquisition of desiccation tolerance of soybean axes is a gradual event, rather than an abrupt transition.  相似文献   

7.
8.
9.
Desiccation tolerance is the capacity to survive complete drying. It is an ancient trait that can be found in prokaryotes, fungi, primitive animals (often at the larval stages), whole plants, pollens and seeds. In the dry state, metabolism is suspended and the duration that anhydrobiotes can survive ranges from years to centuries. Whereas genes induced by drought stress have been successfully enumerated in tissues that are sensitive to cellular desiccation, we have little knowledge as to the adaptive role of these genes in establishing desiccation tolerance at the cellular level. This paper reviews postgenomic approaches in a variety of desiccation tolerant organisms in which the genetic responses have been investigated when they acquire the capacity of tolerating extremes of dehydration or when they are dry. Accumulation of non-reducing sugars, LEA proteins and a coordinated repression of metabolism appear to be the essential and universal attributes that can confer desiccation tolerance. The protective mechanisms of these attributes are described. Furthermore, it is most likely that other mechanisms have evolved since the function of about 30% of the genes involved in desiccation tolerance remains to be elucidated. The question of the overlap between desiccation tolerance and drought tolerance is briefly addressed.  相似文献   

10.
Recombinant sucrose-6-phosphate synthase (SpsA) was synthesized in Escherichia coli BL21DE3 by using the spsA gene of the cyanobacterium Synechocystis sp. strain PCC 6803. Transformants exhibited a 10,000-fold increase in survival compared to wild-type cells following either freeze-drying, air drying, or desiccation over phosphorus pentoxide. The phase transition temperatures and vibration frequencies (P==O stretch) in phospholipids suggested that sucrose maintained membrane fluidity during cell dehydration.  相似文献   

11.
Sugars and desiccation tolerance in seeds   总被引:37,自引:9,他引:28       下载免费PDF全文
Soluble sugars have been shown to protect liposomes and lobster microsomes from desiccation damage, and a protective role has been proposed for them in several anhydrous systems. We have studied the relationship between soluble sugar content and the loss of desiccation tolerance in the axes of germinating soybean (Glycine max L. Merr. cv Williams), pea (Pisum sativum L. cv Alaska), and corn (Zea mays L. cv Merit) axes. The loss of desiccation tolerance during imbibition was monitored by following the ability of seeds to germinate after desiccation following various periods of preimbibition and by following the rates of electrolyte leakage from dried, then rehydrated axes. Finally, we analyzed the soluble sugar contents of the axes throughout the transition from desiccation tolerance to intolerance. These analyses show that sucrose and larger oligosaccharides were consistently present during the tolerant stage, and that desiccation tolerance disappeared as the oligosaccharides were lost. The results support the idea that sucrose may serve as the principal agent of desiccation tolerance in these seeds, with the larger oligosaccharides serving to keep the sucrose from crystallizing.  相似文献   

12.
Environmental change often requires evolutionary responses, and therefore understanding the genetic architecture of susceptible populations is essential for predicting their capacity to respond adaptively. However, quantitative genetic studies are rarely targeted at populations considered vulnerable to such environmental perturbations. Here, we assess the level of heritable variation in the ability of embryos to tolerate desiccation stress in Pseudophryne guentheri, a terrestrial-breeding frog that is currently experiencing a drying climate. We applied a North Carolina II breeding design to identify sources of genetic and environmental variance, and genotype-by-environment interactions (GEIs), underlying the expression of embryo survival, hatching times, hatchling mass, size, and shape. Our analysis revealed highly significant effects of water potential and maternal effects on all measured traits, while additive genetic effects were significant for hatchling shape, and nonadditive effects were observed for embryo survival. Interestingly, GEIs, including for some traits complex three-way sire-by-dam-by-environment interactions, were significant, indicating that progeny from certain male-female crosses were more tolerant to water stress than others. These findings suggest a limited capacity of P. guentheri to respond to a drying climate, but also reveal that the detrimental effects of nonviable male-female crosses (i.e., genetic incompatibility) can be masked in benign environments.  相似文献   

13.
Plant species in Mediterranean-type climate regions have a diversity of traits that facilitate their persistence under a given fire regime. Obligate resprouters (OR) are dependent on resprouting to persist through a burn episode, as their seeds are killed by fire. Facultative seeders (FS) combine strategies by resprouting and recruiting new seedlings after fire. We hypothesised that these life history differences would lead to differential resprout success and we predicted that OR would be more successful than FS. We performed a 2-year study to assess resprout success of co-occurring Western Cape mountain fynbos FS and OR species, and to determine predictors of resprout success following a wildfire. All the FS species recruited seedlings postfire, whereas the OR did not. OR demonstrated near complete (99 %) survival after 2 years and all resprouted within 4 months postfire. In contrast, only 81 % of FS resprouted with only 65 % surviving 2 years postfire. Numerous factors were linked to resprout success: decreased lignotuber exposure and pre-fire vigour (number of pre-fire shoots) were significantly associated with postfire resprouting, while early resprouting (days to first resprout) and growth rate were significant predictors of post-resprout survival. The difference in resprout survival between the FS and OR may also be partially due to phylogenetic differences. These findings confirm the heterogeneity and complexity of postfire resprouting and support the distinction of OS and FS life history types.  相似文献   

14.
Mechanisms of plant desiccation tolerance.   总被引:16,自引:0,他引:16  
Anhydrobiosis ("life without water") is the remarkable ability of certain organisms to survive almost total dehydration. It requires a coordinated series of events during dehydration that are associated with preventing oxidative damage and maintaining the native structure of macromolecules and membranes. The preferential hydration of macromolecules is essential when there is still bulk water present, but replacement by sugars becomes important upon further drying. Recent advances in our understanding of the mechanism of anhydrobiosis include the downregulation of metabolism, dehydration-induced partitioning of amphiphilic compounds into membranes and immobilization of the cytoplasm in a stable multicomponent glassy matrix.  相似文献   

15.
Glass formation and desiccation tolerance in seeds   总被引:27,自引:3,他引:24       下载免费PDF全文
Koster KL 《Plant physiology》1991,96(1):302-304
The formation of intracellular glass may help protect embryos from damage due to desiccation. Soluble sugars similar to those found in desiccation tolerant embryos were studied with differential scanning calorimetry. Those sugars from desiccation tolerant embryos can form glasses at ambient temperatures, whereas those from embryos that do not tolerate desiccation only form glasses at subzero temperatures. It is concluded that tolerant embryo cells probably contain sugar glasses at storage temperatures and water contents, but intolerant embryo cells probably do not.  相似文献   

16.
The involvement of ubiquitin in vegetative desiccation tolerance   总被引:12,自引:0,他引:12  
  相似文献   

17.
The study of desiccation tolerance in bryophytes avoids thecomplications of higher-plant vascular systems and complex leaf structures, butremains a multifaceted problem. Some of the pertinent questions have at leastpartial analogues in seed biology – events during a drying-rewettingcyclewith processes in seed maturation and germination, and the gradual loss ofviability on prolonged desiccation, and the relation of this to intensity ofdesiccation and temperature, with parallel questions in seed storage. Pastresearch on bryophyte desiccation tolerance is briefly reviewed. Evidence ispresented from chlorophyll-fluorescence measurements and experiments withmetabolic inhibitors that recovery of photosynthesis in bryophytes followingdesiccation depends mainly on rapid reactivation of pre-existing structures andinvolves only limited de novo protein synthesis. Followinginitial recovery, protein synthesis is demonstrably essential to themaintenanceof photosynthetic function in the light, but the rate of maintenance turnoverinthe dark appears to be slow. Factors leading to long-term desiccation damagearediverse; indications are that desiccation tolerant species often survive bestinthe range –100 to –200 MPa.  相似文献   

18.
Desiccation tolerance has evolved recurrently across diverse land plant lineages as an adaptation for survival in regions where seasonal rainfall drives periodic drying of vegetative tissues. Growing interest in this phenomenon has fueled recent physiological, biochemical, and genomic insights into the mechanistic basis of desiccation tolerance. Although, desiccation tolerance is often viewed as binary and monolithic, substantial variation exists in the phenotype and underlying mechanisms across diverse lineages, heterogeneous populations, and throughout the development of individual plants. Most studies have focused on conserved responses in a subset desiccation-tolerant plants under laboratory conditions. Consequently, the variability and natural diversity of desiccation-tolerant phenotypes remains largely uncharacterized. Here, we discuss the natural variation in desiccation tolerance and argue that leveraging this diversity can improve our mechanistic understanding of desiccation tolerance. We summarize information collected from ~600 desiccation-tolerant land plants and discuss the taxonomic distribution and physiology of desiccation responses. We point out the need to quantify natural diversity of desiccation tolerance on three scales: variation across divergent lineages, intraspecific variation across populations, and variation across tissues and life stages of an individual plant. We conclude that this variability should be accounted for in experimental designs and can be leveraged for deeper insights into the intricacies of desiccation tolerance.  相似文献   

19.
20.
Summary Sphagnum fallax (Klinggr.) Klinggr., a moss growing in hollows close to the water table, is more desiccation tolerant than S. nemoreum Scop., a hummock former distributed high above the hollows. Sphagnum fallax recovered to a greater proportion of its predesiccation photosynthetic rate after one and five days of tissue dryness. Further, a greater percentage of S. fallax plants survived five and ten day periods at low tissue water contents. Longer desiccated periods and lower water contents during these periods decreased both photosynthetic recovery and survival.Water contents measured in Bloomingdale Bog (Adirondack Mountains, NY, USA) showed that S. fallax probably dries more frequently and for longer periods than S. nemoreum. These results support previous findings that the greater ability of S. nemoreum to remain moist in the field is the most important character in its success as a hummock former. Greater tolerance of desiccation helps S. fallax to compensate for its greater tendency to become dry, and is a key physiological feature enabling it to dominate hollows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号