首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective:The present study aimed to: i) determine the contractile properties of the major lower limb muscles in female soccer players using tensiomyography; ii) investigate inter-limb differences; and iii) compare inter-limb differences between different selections and playing positions.Methods:A total of 52 female soccer players (A team; U19 and U17) were recruited. The vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), biceps femoris (BF), gastrocnemius medialis (GM), lateralis (GL) and tibialis anterior (TA) of both lower limbs were evaluated.Results:When the entire sample was assessed regardless of selection or playing position, there were significant inter-limb differences in all measured muscles except BF. Compared to the non-dominant limb, the dominant limb had higher delay time in VL (p=0.008), while showing lower values in VM (p=0.023), GL (p=0.043) and GM (p=0.006). Contraction time was lower in the RF of the dominant limb (p=0.005) and VM (p=0.047), while showing higher values in VL (p=0.036) and TA (p<0.001) as compared to the non-dominant limb.Conclusion:Given the differences found between the limbs in the whole sample studied, it is necessary to examine both limbs to gather a more in-depth understanding of underlying mechanisms related to neuromuscular functions in female soccer players.Level of evidence:Prognostic study, Level II.  相似文献   

2.
Tensiomyography (TMG) is a relatively novel technique to assess muscle mechanical response based on radial muscle belly displacement consecutive to a single electrical stimulus. Although intra-session reliability has been found to be good, inter-rater reliability and the influence of sensor repositioning and electrodes placement on TMG measurements is unknown. The purpose of this study was to analyze the inter-rater reliability of vastus medialis muscle contractile property measurements obtained with TMG as well as the effect of inter-electrode distance (IED). Five contractile parameters were analyzed from vastus medialis muscle belly displacement–time curves: maximal displacement (Dm), contraction time (Tc), sustain time (Ts), delay time (Td), and half-relaxation time (Tr). The inter-rater reliability and IED effect on these measurements were evaluated in 18 subjects. Intra-class correlation coefficients, standard errors of measurement, Bland and Altman systematic bias and random error as well as coefficient of variations were used as measures of reliability. Overall, a good to excellent inter-rater reliability was found for all contractile parameters, except Tr, which showed insufficient reliability. Alterations in IED significantly affected Dm with a trend for all the other parameters. The present results legitimate the use of TMG for the assessment of vastus medialis muscle contractile properties, particularly for Dm and Tc. It is recommended to avoid Tr quantification and IED modifications during multiple TMG measurements.  相似文献   

3.
Lengths of muscle tendon complexes of the quadriceps femoris muscle and some of its heads, biceps femoris and gastrocnemius muscles, were measured for six limbs of human cadavers as a function of knee and hip-joint angles. Length-angle curves were fitted using second degree polynomials. Using these polynomials the relationships between knee and hip-joint angles and moment arms were calculated. The effect of changing the hip angle on the biceps femoris muscle length is much larger than that of changing the knee angle. For the rectus femoris muscle the reverse was found. The moment arm of the biceps femoris muscle was found to remain constant throughout the whole range of knee flexion as was the case for the medial part of the vastus medialis muscle. Changes in the length of the lateral part of the vastus medialis muscle as well as the medial part of the vastus lateralis muscle are very similar to those of vastus intermedius muscle to which they are adjacent, while those changes in the length of the medial part of the vastus medialis muscle and the lateral part of the vastus lateralis muscle, which are similar to each other, differ substantially from those of the vastus intermedius muscle. Application of the results to jumping showed that bi-articular rectus femoris and biceps femoris muscles, which are antagonists, both contract eccentrically early in the push off phase and concentrically in last part of this phase.  相似文献   

4.
Tensiomyography detects the contraction time (Tc) and amplitude (Dm) of muscle belly thickening during maximal isometric twitch contraction. The assessment of both parameters is highly reliable; however, it seems that their calculation depends on the measurement point. The aim of the study was to determine spatial relative error distribution of Tc and/or Dm within a two-dimensional array of 27 (3 × 9) measurement points in comparison to the reference point (RP) in 12 male participants (22.5 ± 3.1 years). The RPs were determined as follows: in the biceps brachii (BB) at 50% of the humerus length; in the erector spinae (ES) at the height of the iliac crest; in the vastus lateralis (VL), vastus medalis (VM), and rectus femoris (RF) at 30%, 20%, and 50% of femur length above the patella, respectively. The surface area under the 3% relative error in Dm (BB: 4.0; VL: 3.8; VM; 8.2; RF: 6.2; ES: 2.4 cm2) was lower than in Tc (BB: 6.9; VL: 3.8; VM; 4.6; RF: 9.5; ES: 3.7 cm2), yielding merged values (BB: 3.9; VL: 3.7; VM; 4.8; RF: 5.1; ES: 2.4 cm2). Dm show twice as steep relative error rate when moving away from the RP in comparison to Tc, which seems to be less sensitive to spatial sensor positioning.  相似文献   

5.
Muscle-specific atrophy of the quadriceps femoris with aging.   总被引:6,自引:0,他引:6  
We examined the size of the four muscles of the quadriceps femoris in young and old men and women to assess whether the vastus lateralis is an appropriate surrogate for the quadriceps femoris in human studies of aging skeletal muscle. Ten young (24 +/- 2 yr) and ten old (79 +/- 7 yr) sedentary individuals underwent magnetic resonance imaging of the quadriceps femoris after 60 min of supine rest. Volume (cm3) and average cross-sectional area (CSA, cm2) of the rectus femoris (RF), vastus lateralis (VL), vastus intermedius (VI), vastus medialis (VM), and the total quadriceps femoris were decreased (P < 0.05) in older compared with younger women and men. However, percentage of the total quadriceps femoris taken up by each muscle was similar (P > 0.05) between young and old (RF: 10 +/- 0.3 vs. 11 +/- 0.4; VL: 33 +/- 1 vs. 33 +/- 1; VI: 31 +/- 1 vs. 31 +/- 0.4; VM: 26 +/- 1 vs. 25 +/- 1%). These results suggest that each of the four muscles of the quadriceps femoris atrophy similarly in aging men and women. Our data support the use of vastus lateralis tissue to represent the quadriceps femoris muscle in aging research.  相似文献   

6.
The purpose of this study was to investigate the effects of a single bout of whole-body vibration on isometric squat (IS) and countermovement jump (CMJ) performance. Nine moderately resistance-trained men were tested for peak force (PF) during the IS and jump height (JH) and peak power (PP) during the CMJ. Average integrated electromyography (IEMG) was measured from the vastus medialis, vastus lateralis, and biceps femoris muscles. Subjects performed the 2 treatment conditions, vibration or sham, in a randomized order. Subjects were tested for baseline performance variables in both the IS and CMJ, and were exposed to either a 30-second bout of whole-body vibration or sham intervention. Subjects were tested immediately following the vibration or sham treatment, as well as 5, 15, and 30 minutes posttreatment. Whole-body vibration resulted in a significantly higher (p < or = 0.05) JH during the CMJ immediately following vibration, as compared with the sham condition. No significant differences were observed in CMJ PP; PF during IS or IEMG of the vastus medialis, vastus lateralis, or biceps femoris during the CMJ; or IS between vibration and sham treatments. Whole-body vibration may be a potential warm-up procedure for increasing vertical JH. Future research is warranted addressing the influence of various protocols of whole-body vibration (i.e., duration, amplitude, frequency) on athletic performance.  相似文献   

7.
The aim of this study was to investigate the reliability of peak torque and surface electromyography (EMG) variable's root mean square (RMS) and mean frequency (MNF) during an endurance test consisting of repetitive maximum concentric knee extensions. Muscle fatigue has been quantified in several ways, and in isokinetic testing it is based on a set of repetitive contractions. To assess test-retest reliability, two sets of 100 dynamic maximum concentric knee extensions were performed using an isokinetic dynamometer. The two series were separated by 7-8 days. The subjects relaxed during the passive flexion phase. Twenty (10 men and 10 women) clinically healthy subjects volunteered.Peak torque and EMG from rectus femoris, vastus medialis, vastus lateralis and biceps femoris were recorded. RMS and MNF were calculated from the EMG signal. The reliability was calculated with intraclass correlation coefficient ICC (1.1) and standard error of measurements (SEM). The reliability of peak torque was good (ICC=0.93) and SEM showed low values. ICC was good for absolute RMS of rectus femoris (ICC>/=0.80), vastus medialis (ICC>/=0.88) and vastus lateralis (ICC>/=0.82) and MNF of rectus femoris (ICC>/=0.82) and vastus medialis (ICC>/=0.83). Peak torque, and MNF and RMS of rectus femoris and vastus medialis are reliable variables obtained from an isokinetic endurance test of the knee extensors.  相似文献   

8.
PurposeThe purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ).MethodsFifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM),vastus lateralis(VL)}, {vastus medialis(VM),hamstring medialis(HM)}, {hamstring medialis(HM),hamstring lateralis(HL)} and the {vastus lateralis(VL),hamstring lateralis(HL)}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping.ResultsThe peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (p<0.05). Small peak knee flexion angles were significantly associated with higher HM amplitudes during the preparatory and initial contact phase (p<0.001). The amplitudes of the {VM,VL} and {VL,HL} were significantly positively associated with the peak hip flexion angle during the peak loading phase (p<0.05). Small peak hip flexion angles were significantly associated with higher VL amplitudes during the peak loading phase (p = 0.001). Higher external knee abduction and flexion moments were found in participants landing with less flexed knee and hip joints (p<0.001).ConclusionThis study demonstrated clear associations between neuromuscular activation patterns and landing kinematics in the sagittal plane during specific parts of the landing. These findings have indicated that an erect landing pattern, characterized by less hip and knee flexion, was significantly associated with an increased medial and posterior neuromuscular activation (dominant hamstrings medialis activity) during the preparatory and initial contact phase and an increased lateral neuromuscular activation (dominant vastus lateralis activity) during the peak loading phase.  相似文献   

9.
The aim of this study was to investigate the effects of concurrent training on endurance capacity and dynamic neuromuscular economy in elderly men. Twenty-three healthy men (65 ± 4 years) were divided into 3 groups: concurrent (CG, n = 8), strength (SG, n = 8), and aerobic training group (EG, n = 7). Each group trained 3 times a week for 12 weeks, strength training, aerobic training, or both types of training in the same session. The maximum aerobic workload (Wmax) and peak oxygen uptake (VO2peak) of the subjects were evaluated on a cycle ergometer before and after the training period. Moreover, during the maximal test, muscle activation was measured at each intensity by means of electromyographic signals from the vastus lateralis (VL), rectus femoris (RF), biceps femoris long head, and gastrocnemius lateralis to determine the dynamic neuromuscular economy. After training, significant increases in VO2peak and Wmax were only found in the CG and EG (p < 0.05), with no difference between groups. Moreover, there was a significant decrease in myoelectric activity of the RF muscle at 50 (EG), 75 and 100 W (EG and CG) and in the VL for the 3 groups at 100 W (p < 0.05). No change was seen in the electrical signal from the lateral gastrocnemius muscle and biceps femoris. The results suggest specificity in adaptations investigated in elderly subjects, because the most marked changes in the neuromuscular economy occurred in the aerobically trained groups.  相似文献   

10.
The aim of this study was to investigate the kinematic, kinetic, and electromyographic pattern before, during and after downward squatting when the trunk movement is restricted in the sagittal plane. Eight healthy subjects performed downward squatting at two different positions, semisquatting (40 degrees knee flexion) and half squatting (70 degrees knee flexion). Electromyographic responses of the vastus medialis oblique, vastus medialis longus, rectus femoris, vastus lateralis, biceps femoris, semitendineous, gastrocnemius lateralis, and tibialis anterior were recorded. The kinematics of the major joints were reconstructed using an optoelectronic system. The center of pressure (COP) was obtained using data collected from one force plate, and the ankle and knee joint torques were calculated using inverse dynamics. In the upright position there were small changes in the COP and in the knee and ankle joint torques. The tibialis anterior provoked the disruption of this upright position initiating the squat. During the acceleration phase of the squat the COP moved posteriorly, the knee joint torque remained in flexion and there was no measurable muscle activation. As the body went into the deceleration phase, the knee joint torque increased towards extension with major muscle activities being observed in the four heads of the quadriceps. Understanding these kinematic, kinetic and EMG strategies before, during and after the squat is expected to be beneficial to practitioners for utilizing squatting as a task for improving motor function.  相似文献   

11.
This study was undertaken to quantify the effect of motor collateral sprouting in an end-to-side repair model allowing end organ contact. Besides documentation of the functional outcome of muscle reinnervation by end-to-side neurorrhaphy, this experimental work was performed to determine possible downgrading effects to the donor nerve at end organ level. In 24 female New Zealand White rabbits, the motor nerve branch to the rectus femoris muscle of the right hindlimb was dissected, cut, and sutured end-to-side to the motor branch to the vastus medialis muscle after creating an epineural window. The 24 rabbits were divided into two groups of 12 each, with the second group receiving additional crush injury of the vastus branch. After a period of 8 months, maximum tetanic tension in the reinnervated rectus femoris and the vastus medialis muscles was determined. The contralateral healthy side served as control. The reinnervated rectus femoris muscle showed an average maximum tetanic force of 24.9 N (control 26.2 N, p = 0.7827), and the donor- vastus medialis muscle 11.0 N (control 7.3 N, p = 0.0223). There were no statistically significant differences between the two experimental groups (p = 0.9914). The average number of regenerated myelinated nerve fibers in the rectus femoris motor branch was 1,185 +/- 342 (control, 806 +/- 166), and the mean diameter was 4.6 +/- 0.6 microm (control, 9.4 +/- 1.0 microm). In the motor branch to the vastus medialis muscle, the mean fiber number proximal to the coaptation site was 1227 (+/-441), and decreased distal to the coaptation site to 795 (+/-270). The average difference of axon counts in the donor nerve proximal to distal regarding the repair site was 483.7 +/- 264.2. In the contralateral motor branch to the vastus medialis muscle, 540 (+/- 175) myelinated nerve fibers were counted. In nearly all cross-section specimens of the motor branch to the vastus medialis muscle, altered nerve fibers could be identified in one fascicle distal and proximal to the repair site. The results show a relevant functional reinnervation by end-to-side neurorrhaphy without functional impairment of the donor muscle. It seems to be evident that most axons in the attached segment were derived from collateral sprouts. Nonetheless, the present study confirms that end-to-side neurorrhaphy is a reliable method of reconstruction for damaged nerves, which should be applied clinically in a more extended manner.  相似文献   

12.
The present study examined knee and arm extensor muscle activation patterns displayed by 12 elderly female rheumatoid arthritic patients (mean age = 65.5 +/- 8.6 yr) rising from an instrumented Eser ejector chair under four conditions: high seat (540 mm), low seat (450 mm), with and without ejector assistance. Electromyographic (EMG) signals were sampled (1000 Hz) for vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF) and triceps brachii (TB) using a Noraxon Telemyo System (bandwidth 0-340 Hz). Muscle onset, offset and peak activity relative to loss of seat contact (SS), and integrated EMG, were calculated for each muscle burst before SS. A high seat significantly (p < or = 005) decreased VL and TB intensity but did not change muscle activation patterns compared with rising from a low seat. Ejector assistance significantly increased VM and RF burst duration and RF intensity but had no effect on vastii muscle intensity. It was concluded that concerns pertaining to muscle disuse when rising with ejector assistance were unfounded in the present study. However, further research is required to investigate the effects of habitual use of a mechanical ejector device on muscle activation patterns.  相似文献   

13.
ObjectiveTo investigate neuromuscular activation of quadriceps bellies during different tasks in patients before and after total knee arthroplasty (TKA).MethodsTwenty-six patients scheduled for TKA and 16 control subjects performed three isometric tasks: knee extension (KE), hip flexion (HF), hip flexion with contralateral hip extension (HFE). Surface electromyography signals of rectus femoris, vastus medialis and vastus lateralis were collected the day before (T0), at one (T1) and three (T2) days after surgery, whereas control subjects underwent a single evaluation. The Root Mean Square peak normalized for its highest value during the three tasks (nRMS-peak) was used as index of maximum neuromuscular activation for each belly. Sixteen patients performed the postoperative assessment, due to the placement of an elastomeric pump aimed at reducing pain in 10 patients.ResultsPatients showed lower rectus femoris nRMS-peak during KE compared to HF and HFE before and after surgery (p < 0.001), as occurred in control subjects. Differently from control subjects, patients showed higher vastus medialis and vastus lateralis nRMS-peak during HF compared to KE at T1 (p = 0.008) and T2 (p = 0.039).ConclusionTKA modified quadriceps neuromuscular activation during different tasks performed the same biomechanical condition. These findings may be considered in planning physiotherapy interventions after TKA.  相似文献   

14.
This study examined whether lower limb muscle synchrony during abrupt landings was affected by gender, thereby predisposing females to a higher incidence of non-contact anterior cruciate ligament (ACL) injuries than males. Seven males and 11 females landed in single-limb stance on a force platform after receiving a chest-height netball pass and decelerating abruptly. Ground reaction force and electromyographic data for rectus femoris, vastus lateralis, vastus medialis, semimembranosus (SM), biceps femoris, and gastrocnemius were sampled (1000 Hz) during landing. Subjects' sagittal plane motion was also filmed (200 Hz). Knee joint reaction forces and sagittal planar net moments of force were estimated using Newtonian equations of motion and inverse dynamics. Tibiofemoral shear forces (F(s)) were obtained and muscle bursts temporally analysed with respect to initial foot-ground contact (IC) and peak F(s) times. Males displayed significantly delayed SM onset relative to IC (113+/-46 ms) compared to females (173+/-54 ms; p=0.03), and significantly delayed SM peak activity relative to peak F(s) (54+/-27 ms) compared to females (77+/-15 ms; p=0.03). Delayed SM activity during landing was suggested to allow peak muscle activity to better coincide with high anterior F(s), thereby acting as an ACL synergist via increased joint compression and posterior tibial drawer. It was concluded that females displayed muscle synchrony less protective of the ACL than males, possibly increasing their susceptibility to non-contact ACL injuries.  相似文献   

15.
We examined the effects of 35 and 90 days of simulated microgravity with or without resistance-exercise (RE) countermeasures on the content of the general skeletal muscle protein fractions (mixed, sarcoplasmic, and myofibrillar) and specific proteins that are critical for muscle function (myosin, actin, and collagen). Subjects from two studies, using either unilateral lower limb suspension (ULLS) or bed rest (BR), comprised four separate groups: 35 days ULLS (n =11), 35 days ULLS+RE (n = 10), 90 days BR (n = 9), and 90 days BR+RE (n = 8). RE consisted of four sets of seven maximal concentric and eccentric repetitions of the quadriceps femoris muscles that were performed 2 or 3 times per week. Pre- and post-simulated weightlessness muscle biopsies were analyzed from the vastus lateralis of all groups and the soleus of the 35-day ULLS and 90-day BR groups. The general protein fractions and the specific proteins myosin, actin, and collagen of the vastus lateralis were unchanged (P > 0.05) in both control and countermeasures groups over 35 and 90 days, despite large changes in quadriceps femoris muscle volume (35 days ULLS: -9%, 35 days ULLS+RE: +8%; and 90 days BR: -18%, 90 days BR+RE: -1%). The soleus demonstrated a decrease in mixed (35 days ULLS: -12%, P = 0.0001; 90 days BR: -12%, P = 0.004) and myofibrillar (35 days ULLS: -12%, P = 0.009; 90 days BR: -8%, P = 0.04) protein, along with large changes in triceps surae muscle volume (35 days ULLS: -11%; 90 days BR: -29%). Despite the loss of quadriceps femoris muscle volume or preservation with RE countermeasures during simulated microgravity, the quadriceps femoris muscles are able to maintain the concentrations of the general protein pools and the main contractile and connective tissue elements. Soleus muscle protein composition appears to be disproportionately altered during long-duration simulated weightlessness.  相似文献   

16.
Interlimb and sex-based differences in gait mechanics and neuromuscular control are common after anterior cruciate ligament reconstruction (ACLR). Following ACLR, individuals typically exhibit elevated co-contraction of knee muscles, which may accelerate knee osteoarthritis (OA) onset. While directed (medial/lateral) co-contractions influence tibiofemoral loading in healthy people, it is unknown if directed co-contractions are present early after ACLR and if they differ across limbs and sexes. The purpose of this study was to compare directed co-contraction indices (CCIs) of knee muscles in both limbs between men and women after ACLR. Forty-five participants (27 men) completed overground walking at a self-selected speed 3 months after ACLR during which quadriceps, hamstrings, and gastrocnemii muscle activities were collected bilaterally using surface electromyography. CCIs of six muscle pairs were calculated during the weight acceptance interval. The CCIs of the vastus lateralis/biceps femoris muscle pair (lateral musculature) was greater in the involved limb (vs uninvolved; p = 0.02). Compared to men, women exhibited greater CCIs in the vastus medialis/lateral gastrocnemius and vastus lateralis/lateral gastrocnemius muscle pairs (p < 0.01 and p = 0.01, respectively). Limb- and sex-based differences in knee muscle co-contractions are detectable 3 months after ACLR and may be responsible for altered gait mechanics.  相似文献   

17.
G Haralambie  A Berg 《Enzyme》1978,23(2):104-107
Creatine kinase (CPK) and hexose phosphate isomerase (PHI) activities were measured in surgically obtained skeletal muscle samples of healthy adult men (n = 45). Median values of 4,200 for CPK and 275 for PHI (U/g wet weight, 37 degrees C) were found. Duplicate determinations on 7 samples divided and treated separately gave a very good reproducibility. There is a significant relationship between the activity of the two enzymes (r = +0.798, p less than 0.001). The mean activity levels were for both enzymes higher in m. vastus medialis quadricipitis and m. triceps brachii, c. long., than in vastus lateralis quadric. and in deltoideus. PHI frequency distribution was not of the normal type but probably bimodal, suggesting muscle types with lower and higher glycolytic rate in man.  相似文献   

18.
While different studies showed that better fitness level adds to the efficiency of the thermoregulatory system, the relationship between muscular effort and skin temperature is still unknown. Therefore, the present study assessed the relationship between neuromuscular activation and skin temperature during cycle exercise. Ten physically active participants performed an incremental workload cycling test to exhaustion while neuromuscular activations were recorded (via surface electromyography – EMG) from rectus femoris, vastus lateralis, biceps femoris and gastrocnemius medialis. Thermographic images were recorded before, immediately after and 10 min after finishing the cycling test, at four body regions of interest corresponding to the muscles where neuromuscular activations were monitored. Frequency band analysis was conducted to assess spectral properties of EMG signals in order to infer on priority in recruitment of motor units. Significant inverse relationship between changes in skin temperature and changes in overall neuromuscular activation for vastus lateralis was observed (r<−0.5 and p<0.04). Significant positive relationship was observed between skin temperature and low frequency components of neuromuscular activation from vastus lateralis (r>0.7 and p<0.01). Participants with larger overall activation and reduced low frequency component for vastus lateralis activation presented a better adaptive response of their thermoregulatory system by showing fewer changes in skin temperature after incremental cycling test.  相似文献   

19.

Background

The aim of this study was to investigate the association between walking ability and muscle atrophy in the trunk and lower limbs.

Methods

Subjects in this longitudinal study were 21 elderly women who resided in nursing homes. The thicknesses of the following trunk and lower-limb muscles were measured using B-mode ultrasound: rectus abdominis, external oblique, internal oblique, transversus abdominis, erector spinae, lumbar multifidus, psoas major, gluteus maximus, gluteus medius, gluteus minimus, rectus femoris, vastus lateralis, vastus intermedius, biceps femoris, gastrocnemius, soleus, and tibialis anterior. Maximum walking speed was used to represent walking ability. Maximum walking speed and muscle thickness were assessed before and after a 12-month period.

Results

Of the 17 measured muscles of the trunk and lower limbs, age-related muscle atrophy in elderly women was greatest in the erector spinae, rectus femoris, vastus lateralis, vastus intermedius, and tibialis anterior muscles. Correlation coefficient analyses showed that only the rate of thinning of the vastus lateralis was significantly associated with the rate of decline in maximum walking speed (r = 0.518, p < 0.05).

Conclusions

This longitudinal study suggests that reduced walking ability may be associated with muscle atrophy in the trunk and lower limbs, especially in the vastus lateralis muscle, among frail elderly women.  相似文献   

20.
The purpose of this study was to verify the difference between carrying a load on the sacrum (LOS) and on the lumbar vertebrae (LOL) in oxygen uptake, muscle activities, heart rate, cadence, and subjective response. Nine males (26.7 +/- 3.1 years old), each carrying a 7.5 kg carrier frame and a 40 kg load, walked on a treadmill at a speed of 50 m/min. EMGs were recorded from the trapezius, rectus abdominis, erector spinae, vastus lateralis, rectus femoris, vastus medialis, biceps femoris long head, tibial anterior, soleus, medial head of gastrocnemius, and the lateral head of gastrocnemius. For each subject the integrated EMG (IEMG) was normalized by dividing the IEMG in the LOL and LOS by the IEMG in a no-load condition (NL) for each investigated muscle. The following was significantly higher in LOL than in LOS: oxygen uptake; IEMG of the tibial anterior, soleus, and medial head of gastrocnemius; cadence; and rated perceived exertion. However, IEMG of the erector spinae was significantly lower in LOL than in LOS. These results suggest that seita-fitting in LOS causes a decrease of leg muscle activities, which causes oxygen uptake to decrease beyond the increase of the erector spinae activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号