首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total respiratory system compliance (Crs) at volumes above the tidal volume (VT) was studied by use of the expiratory volume clamping (EVC) technique in 10 healthy sleeping unsedated newborn infants. Flow was measured with a pneumotachograph attached to a face mask and integrated to yield volume. Volume changes were confirmed by respiratory inductance plethysmography. Crs measured by EVC was compared with Crs during tidal breathing determined by the passive flow-volume (PFV) technique. Volume increases of approximately 75% VT were achieved with three to eight inspiratory efforts during expiratory occlusions. Crs above VT was consistently greater than during tidal breathing (P less than 0.0005). This increase in Crs likely reflects recruitment of lung units that are closed or atelectatic in the VT range. Within the VT range, Crs measured by PFV was compared with that obtained by the multiple-occlusion method (MO). PFV yielded greater values of Crs than MO (P less than 0.01). This may be due to braking of expiratory airflow after the release of an occlusion or nonlinearity of Crs. Thus both volume recruitment and airflow retardation may affect the measurement of Crs in unsedated newborn infants.  相似文献   

2.
In patients with adult respiratory distress syndrome (ARDS) we studied the effect of positive end-expiratory pressure (PEEP) on respiratory mechanics. We used the technique of rapid airway occlusion during constant flow (V) inflation to partition the total respiratory system resistance (Rrs) into the interrupter resistance (Rint,rs) and the additional resistance (delta Rrs) due to viscoelastic pressure dissipations and time constant inequalities. We also measured static (Est,rs) and dynamic (Edyn,rs) elastance of the respiratory system. The procedure was carried out in nine ARDS patients at different inspiratory V and inflation volumes (delta V) at PEEP of 0, 5, 10, and 15 cmH2O. We found that during baseline ventilation (delta V = 0.7 liter and V = 1 l/s), Est,rs, Edyn,rs, and Rint,rs did not change significantly with PEEP, whereas delta Rrs and Rrs increased significantly only with PEEP of 15 cmH2O. The increase of delta Rrs and Rrs with PEEP was positively correlated with the concomitant changes in end-expiratory lung volume (P < 0.001). At all levels of PEEP, under iso-delta V conditions, delta Rrs decreased with increasing V, whereas at a fixed V, delta Rrs increased with increasing delta V. A four-parameter model of the respiratory system failed to fully describe respiratory dynamics in the ARDS patients, probably due to nonlinearities.  相似文献   

3.
Accurate mechanics measurements during high-frequency oscillatory ventilation (HFOV) facilitate optimizing ventilator support settings. Yet, these are influenced substantially by endotracheal tube (ETT) contributions, which may dominate when leaks around uncuffed ETT are present. We hypothesized that 1) the effective removal of ETT leaks may be confirmed via direct comparison of measured vs. model-predicted mean intratracheal pressure [mPtr (meas) vs. mPtr (pred)], and 2) reproducible respiratory system resistance (Rrs) and compliance (Crs) may be derived from no-leak oscillatory Ptr and proximal flow. With the use of ETT test-lung models, proximal airway opening (Pao) and distal (Ptr) pressures and flows were measured during slow-cuff inflations until leaks are removed. These were repeated for combinations of HFOV settings [frequency, mean airway pressure (Paw), oscillation amplitudes (ΔP), and inspiratory time (%t(I))] and varying test-lung Crs. Results showed that leaks around the ETT will 1) systematically reduce the effective distending pressures and lung-delivered oscillatory volumes, and 2) derived mechanical properties are increasingly nonphysiologic as leaks worsen. Mean pressures were systematically reduced along the ventilator circuit and ETT (Paw > Pao > Ptr), even for no-leak conditions. ETT size-specific regression models were then derived for predicting mPtr based on mean Pao (mPao), ΔP, %t(I), and frequency. Next, in 10 of 11 studied preterm infants (0.77 ± 0.24 kg), no-to-minimal leak was confirmed based on excellent agreement between mPtr (meas) and mPtr (pred), and consequently, their oscillatory respiratory mechanics were evaluated. Infant resistance at the proximal ETT (R(ETT); resistance airway opening = R(ETT) + Rrs; P < 0.001) and ETT inertance (P = 0.014) increased significantly with increasing ΔP (50%, 100%, and 150% baseline), whereas Rrs showed a modest, nonsignificant increase (P = 0.14), and Crs was essentially unchanged (P = 0.39). We conclude that verifying no-leak conditions is feasible by comparison of model-derived vs. distending mPtr (meas). This facilitated the reliable and accurate assessment of physiologic respiratory mechanical properties that can objectively guide ventilatory management of HFOV-treated preterm infants.  相似文献   

4.
Effect of compression pressure on forced expiratory flow in infants   总被引:3,自引:0,他引:3  
The effect of the force of compression on expiratory flow was evaluated in 19 infants (2-13 mo of age) with respiratory illnesses of varying severity. An inflatable cuff was used to compress the chest and abdomen. Expiratory flow and volume, airway occlusion pressure, cuff pressure (Pc), and functional residual capacity were measured. Transmission of pressure from cuff to pleural space was assessed by a noninvasive occlusion technique. Close correlations (P less than 0.001) were found between Pc and the change in pleural pressure with cuff inflation (delta Ppl,c). Pressure transmission was found to vary between two cuffs of different design and between infants. Several forced expirations were then performed on each infant at various levels of delta Ppl,c. Infants with low maximal expiratory flows at low lung volumes required relatively gentle compression to achieve flow limitation and showed decreased flow for firmer compressions. Flow-volume curves in each infant tended to become more concave as delta Ppl,c increased. These findings underline the importance of knowledge of delta Ppl,c in interpreting expiratory flow-volume curves in infants.  相似文献   

5.
We used respiratory inductance plethysmography to record tidal respiration in 27 healthy unsedated infants and children 1 mo to 8 yr of age during sleep. Rib cage and abdominal outputs were present at approximately equal gains and summed to obtain an estimate of volume. Flow-volume curves were generated from the uncalibrated volume signal and its flow derivative. Expiratory time constants (tau) were obtained by visually drawing a line through the linear portion of the expiratory flow-volume relationship. tau increased significantly during the first 10 mo of life. After 10 mo, the estimated rate of increase of tau for older children was less than 5% of the estimated initial rate and not significantly different from zero. Prolongation of tau was paralleled by an increase in expiratory time (Te), and no changes in Te/tau were observed in the first 2 yr of life. These changes in tau likely reflect the increase in lung compliance induced by rapid alveolar growth during infancy. After the first year, expiratory time constants appear to remain relatively constant and may be consistent with balanced changes in compliance and resistance beyond infancy.  相似文献   

6.
Recent studies have suggested a close association between total respiratory compliance (Crs) and tidal volume in anesthetized paralyzed infants who are being artificially ventilated. To investigate this further, the multiple occlusion technique was used to measure Crs in 20 anesthetized infants and young children (aged 1-25 mo) before elective surgery. Measurements were made after intubation 1) during spontaneous breathing (SB), 2) after administration of a non-depolarizing muscle relaxant with tidal volume and frequency mimicking that during SB, and 3) with the child still paralyzed but tidal volume approximately double that during SB. Compared with values obtained during SB, there was no significant change in Crs after paralysis when ventilation matched the child's own pattern (P greater than 0.2). When ventilated with the larger tidal volumes, the infants showed a highly significant increase in Crs (mean 62%, range 14-158%, P less than 0.0001). These results may have implications not only for studies performed during anesthesia but also when infants were monitored in the intensive care setting. Values of Crs obtained in ventilated infants may reflect both the mechanical behavior of the respiratory system and the pattern of ventilation at the time of measurement.  相似文献   

7.
Maturation of the respiratory pattern and the active and passive mechanical properties of the respiratory system were assessed in 19 tracheotomized rabbits (postnatal age range: 1-26 days) placed in a body plethysmograph. With maturation both minute ventilation and tidal volume significantly increased, whereas respiratory frequency decreased. When normalized for body weight (kg) both the passive (Rrs X kg) and active (R'rs X kg) resistances of the respiratory system significantly increased with age, whereas the corresponding passive (Crs X kg-1) and active (C'rs X kg-1) compliances significantly decreased. At any given age R'rs X kg only slightly exceeded Rrs X kg, whereas C'rs X kg-1 was significantly lower than Crs X kg-1. Moreover, the maturational increases in Rrs X kg and R'rs X kg exceeded the corresponding decreases in Crs X kg-1 and C'rs X kg-1, resulting in significant age-related increases in both the passive (tau rs) and active (tau'rs) time constants of the respiratory system. Due to the age-related increases in tau'rs, producing a delayed volume response to any given inspiratory driving pressure, the relative volume loss obtained at any time during inspiration was greater in the maturing rabbit. On the other hand, because of concomitant compensatory changes in respiratory pattern, evidenced by increases in inspiratory duration with age, the end-inspiratory tidal volume loss in the maturing animal was maintained generally less than 10% at all postnatal ages. Thus maturational changes in respiratory pattern appear coupled to changes in the active mechanical properties of the respiratory system. The latter coupling serves to optimize the transduction of inspiratory pressure into volume change in a manner consistent with establishing the minimum inspiratory work of breathing during postnatal development.  相似文献   

8.
Neonatal calves develop airflow limitation due to chronic hypobaric hypoxia   总被引:1,自引:0,他引:1  
Neonates and infants presenting with pulmonary hypertension and chronic hypoxia often exhibit airway obstruction. To investigate this association, we utilized a system in which neonatal calves are exposed to chronic hypobaric hypoxia and develop severe pulmonary hypertension. For the present study, one of each pair of six age-matched pairs of neonatal calves was continuously exposed to hypobaric hypoxia at 4,500 m (CH); the other remained at 1,500 m. At 2 wk of age, mean pulmonary arterial pressure (MPAP), dynamic lung compliance (Cdyn), resistance (RL), and static respiratory system compliance (Crs) were measured at 4,500 m in both CH and control calves exposed acutely to hypoxia (C). These measurements were repeated after cumulative administrations of nebulized methacholine (MCh). Tissues were removed for histological examination and assessment of bronchial ring contractility to MCh and KCl. After 2 wk of hypobaric hypoxia, MPAP (C 35 +/- 1.7 vs. CH 120 +/- 7 mmHg, P less than 0.001) and RL (C 2.64 +/- 0.16 vs CH 4.99 +/- 0.47 cmH2O.l-1s, P less than 0.001) increased. Cdyn (C 0.100 +/- 0.01 vs. CH 0.082 +/- 0.007 l/cmH2O) and Crs (CH 0.46 +/- 0.003 vs. C 0.59 +/- 0.009 l/cmH2O) were not significantly different. Compared with airways of C calves, airways of CH animals did not exhibit in vivo or in vitro MCh hyperresponsiveness; however, in vitro contractility to KCl of airways from CH animals was significantly increased. Histologically, airways from the CH calves showed increases in airway fibrous tissue and smooth muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Our aim was to measure the compliance of the liquid-filled lungs (CL), and the compliance of the chest wall (CW) in fetal sheep in utero. CL and CW were measured in 6 fetuses. The compliance of the lungs and chest wall combined (respiratory system, Crs) was measured in 9 fetuses. Pressure differences across the lungs (PL), chest wall (PW) and respiratory system (Prs) were measured while the lungs were deflated and inflated with liquid from their resting lung liquid volume (V1). V1 was measured using an indicator dilution technique. Specific compliance values were obtained by normalizing the values of CL, CW and Crs with respect to values of V1. From values obtained during stepwise inflation from V1, specific compliances (ml/cm H2O/ml of lung liquid) were: lungs, 0.22 +/- 0.02; chest wall, 0.41 +/- 0.07; respiratory system, 0.13 +/- 0.01. Specific compliances of the lungs, chest wall and respiratory system did not change significantly with advancing gestational age from 120 to 143 days. Our baseline data will be valuable in assessing the in utero progress of the structural development of the lungs following manipulations known to cause altered lung growth.  相似文献   

10.
Dynamics of breathing in the hypoxic awake lamb   总被引:1,自引:0,他引:1  
Newborn mammals respond to hypoxia with an immediate hyperventilation that is rapidly dampened. Changes in mechanical properties of the respiratory system during hypoxia have been considered an important reason for this fall in minute ventilation (VE). We have studied the dynamic mechanical behavior of the respiratory system in eight unanesthetized intact newborn lambs (mean age 2 days) during normoxia and hypoxia (FIO2 = 0.08). Mouth pressure (P), airflow (V), and volume (V) were recorded while lambs were breathing through a leak-proof face mask and a pneumotachograph. Active compliance (C') and resistance (R') of the respiratory system were computed from P developed during an inspiratory effort against airway closure at end expiration and V and V of the preceding breaths. Tidal expiratory V-V curves were analyzed to estimate the elevation in functional residual capacity (FRC) over resting volume (Vr). After hypoxia, there was an immediate increase in VE in the first 2 min, from 0.49 to 1.13 l.kg-1.min-1, followed by a rapid decrease to 0.80. After 8 min of hypoxia, C' was unchanged. The inspiratory R' decreased during hypoxia, probably reflecting a drop in inspiratory laryngeal resistance. The expiratory V-V curves during hypoxia showed considerable braking, often with a double peak in expiratory V. This pattern was only occasionally seen during normoxia. In animals with a linear segment of the expiratory V-V curves the FRC-Vr difference could be calculated and averaged 1.93 ml/kg during normoxia and 3.47 during hypoxia. The recoil P of the respiratory system at end expiration was 0.75 cmH2O during normoxia vs. 1.63 cmH2O during hypoxia (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In the current study, we hypothesize that senescent-dependent changes between airway and lung parenchymal tissues of C57BL/6J (B6) mice are not synchronized with respect to altered lung mechanics. Furthermore, aging modifications in elastin fiber and collagen content of the airways and lung parenchyma are remodeling events that differ with time. To test these hypotheses, we performed quasi-static pressure-volume (PV) curves and impedance measurements of the respiratory system in 2-, 20-, and 26-mo-old B6 mice. From the PV curves, the lung volume at 30 cmH(2)O pressure (V(30)) and respiratory system compliance (Crs) were significantly (P < 0.01) increased between 2 and 20 mo of age, representing about 80-84% of the total increase that occurred between 2 and 26 mo of age. Senescent-dependent changes in tissue damping and tissue elastance were analogous to changes in V(30) and Crs; that is, a majority of the parenchymal alterations in the lung mechanics occurred between 2 and 20 mo of age. In contrast, significant decreases in airway resistance (R) occurred between 20 and 26 mo of age; that is, the decrease in R between 2 and 20 mo of age represented only 29% (P > 0.05) of total decrease occurring through 26 mo. Morphometric analysis of the elastic fiber content in lung parenchyma was significantly (P < 0.01) decreased between 2 and 20 mo of age. To the contrary, increased collagen content was significantly delayed until 26 mo of age (P < 0.01, 2 vs. 26 mo). In conclusion, our data demonstrate that senescent-dependent changes in airway and lung tissue mechanics are not synchronized in B6 mice. Moreover, the reduction in elastic fiber content with age is an early lung remodeling event, and the increased collagen content in the lung parenchyma occurs later in senescence.  相似文献   

12.
The effects of inspiratory flow (V) and inflation volume (delta V) on the mechanical properties of the respiratory system in eight ARDS patients were investigated using the technique of rapid airway occlusion during constant-flow inflation. We measured interrupter resistance (Rint,rs), which in humans represents airway resistance, the additional resistance (delta Rrs) due to viscoelastic pressure dissipations and time constant inequalities, and static (Est,rs) and dynamic (Edyn,rs) elastance. The results were compared with a previous study on 16 normal anesthetized paralyzed humans (D'Angelo et al. J. Appl. Physiol. 67: 2556-2564, 1989). We observed that 1) resistance and elastance were higher in ARDS patients; 2) with increasing V, Rint,rs and Est,rs did not change, delta Rrs decreased progressively, and Edyn,rs increased progressively; 3) with increasing delta V, Rint,rs decreased slightly, delta Rrs increased progressively, and Est,rs and Edyn,rs showed an initial decrease followed by a secondary increase noted only in the ARDS patients. The above findings could be explained in terms of a model incorporating a standard resistance in parallel with a standard elastance and a series spring-and-dashpot body that represents the stress adaptation units within the tissues of the respiratory system.  相似文献   

13.
In spontaneously breathing subjects, intrathoracic expiratory flow limitation can be detected by applying a negative expiratory pressure (NEP) at the mouth during tidal expiration. To assess whether NEP might increase upper airway resistance per se, the interrupter resistance of the respiratory system (Rint,rs) was computed with and without NEP by using the flow interruption technique in 12 awake healthy subjects, 6 nonsnorers (NS), and 6 nonapneic snorers (S). Expiratory flow (V) and Rint,rs were measured under control conditions with V increased voluntarily and during random application of brief (0.2-s) NEP pulses from -1 to -7 cmH(2)O, in both the seated and supine position. In NS, Rint,rs with spontaneous increase in V and with NEP was similar [3.10 +/- 0.19 and 3.30 +/- 0.18 cmH(2)O x l(-1) x s at spontaneous V of 1.0 +/- 0.01 l/s and at V of 1.1 +/- 0.07 l/s with NEP (-5 cmH(2)O), respectively]. In S, a marked increase in Rint,rs was found at all levels of NEP (P < 0.05). Rint,rs was 3.50 +/- 0.44 and 8.97 +/- 3.16 cmH(2)O x l(-1) x s at spontaneous V of 0.81 +/- 0.02 l/s and at V of 0.80 +/- 0.17 l/s with NEP (-5 cmH(2)O), respectively (P < 0.05). With NEP, Rint,rs was markedly higher in S than in NS both seated (F = 8.77; P < 0.01) and supine (F = 9.43; P < 0.01). In S, V increased much less with NEP than in NS and was sometimes lower than without NEP, especially in the supine position. This study indicates that during wakefulness nonapneic S have more collapsible upper airways than do NS, as reflected by the marked increase in Rint,rs with NEP. The latter leads occasionally to an actual decrease in V such as to invalidate the NEP method for detection of intrathoracic expiratory flow limitation.  相似文献   

14.
The passive mechanical time constant (tau pass) of the respiratory system is relatively similar among newborn mammalian species, approximately 0.15-0.2 s. However, breathing rate (f) is higher in smaller species than larger species in order to accommodate the relatively larger metabolic demands. Since tidal volume per kilogram is an interspecies constant, in the fastest breathing species the short expiratory time should determine a substantial dynamic elevation of the functional residual capacity (FRC). We examined the possibility of a difference in expiratory time constant between dynamic and passive conditions by analyzing the expiratory flow pattern of nine newborn unanesthetized species during resting breathing. In most newborns the late portion of the expiratory flow-volume curve was linear, suggesting muscle relaxation. The slope of the curve, which represents the dynamic expiratory time constant of the respiratory system (tau exp), varied considerably among animals (from 0.1 to 0.7 s), being directly related to the inspiratory time and inversely proportional to f. In relatively slow-breathing newborns, such as infants and piglets, tau exp is longer than tau pass most likely due to an increase in the expiratory laryngeal resistance and FRC is substantially elevated. On the contrary, in the fastest breathing newborns (such as rats and mice) tau exp is similar or even less than tau pass, because at these high rates dynamic lung compliance is lower than its passive value and the dynamic elevation of FRC is small. In dynamic conditions, therefore, the product of tau exp and f is maintained within narrow limits.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Endotheline-1 (ET-1) has been shown to enhance tachykinin-induced airway constriction. This study was designed to test whether ET-1 is involved in citric acid-induced bronchoconstriction. Forty-eight anesthetized-paralyzed guinea pigs were divided into six groups of 8 animals each: saline control; citric acid; ET-1; ET-1 + citric acid; BQ123 + ET-1 + citric acid; and BQ788 + ET-1 + citric acid. BQ123 and BQ788 are specific ETA and ETB receptor antagonists, respectively. Each animal in the saline control group received 50 breaths of 4 ml saline aerosol and in all citric acid-treated groups was given 50 breaths of 4 ml aerosol generated from 0.6 M citric acid. In all ET-1-treated groups, each animal was exposed to aerosol generated from 10(-8) M ET-1. The animal in the ET-1 + citric acid group was exposed to ET-1 5 min prior to the citric acid. For the last two groups, each animal was first exposed to aerosol generated from either 10(-5) M BQ123 or 10(-5) M BQ788. Five min later, the animal was exposed to ET-1; and then 5 min later was followed by citric acid. Dynamic respiratory compliance (Crs), forced expiratory volume in 0.1 sec (FEV(0.1)), and maximal expiratory flow at 30% total lung capacity (Vmax 30) were obtained before and 3-15 min after citric acid. Either citric acid or ET-1 inhalation caused significant decreases in Crs, FEV(0.1), and Vmax 30, indicating airway constriction. Citric acid-induced airway constriction, for most cases, was not significantly augmented by ET-1. However, either BQ123 or BQ 788 significantly attenuated the airway constriction induced by the combination of ET-1 and citric acid. Also, in an additional study, either BQ123 or BQ788 significantly attenuated citric acid-induced airway constriction. These data suggest that endogenous ET-1 plays an important role in citric acid aerosol-induced airway constriction in guinea pigs.  相似文献   

16.
To further investigate the effects of airway cartilage softening on static and dynamic lung mechanics, 11 rabbits were treated with 100 mg/kg iv papain, whereas 9 control animals received no pretreatment. Lung mechanics were studied 24 h after papain injection. There was no significant difference in lung volumes, lung pressure-volume curves, or chest wall compliance. Papain-treated rabbits showed increased lung resistance: 91 +/- 63 vs. 39 +/- 22 cmH2O X l-1 X s (mean +/- SD; P less than 0.05), decreased maximal expiratory flows at all lung volumes, and preserved density dependence of maximal expiratory flows. We conclude that increased airway wall compliance is probably the mechanism that limited maximal expiratory flow in this animal model. In addition the increased lung resistance suggests that airway cartilage plays a role in the regulation of airway caliber during quiet tidal breathing.  相似文献   

17.
18.
A mathematical model was developed to analyze the mechanisms of expiratory asynchrony during pressure support ventilation (PSV). Solving the model revealed several results. 1) Ratio of the flow at the end of patient neural inspiration to peak inspiratory flow (VTI/V(peak)) during PSV is determined by the ratio of time constant of the respiratory system (tau) to patient neural inspiratory time (TI) and the ratio of the set pressure support (Pps) level to maximal inspiratory muscle pressure (Pmus max). 2) VTI/V(peak) is affected more by tau/TI than by Pps/Pmus max. VTI/V(peak) increases in a sigmoidal relationship to tau/TI. An increase in Pps/Pmus max slightly shifts the VTI/V(peak)-tau/TI curve to the right, i.e., VTI/V(peak) becomes lower as Pps/Pmus max increases at the same tau/TI. 3) Under the selected adult respiratory mechanics, VTI/V(peak) ranges from 1 to 85% and has an excellent linear correlation with tau/TI. 4) In mechanical ventilators, single fixed levels of the flow termination criterion will always have chances of both synchronized termination and asynchronized termination, depending on patient mechanics. An increase in tau/TI causes more delayed and less premature termination opportunities. An increase in Pps/Pmus max narrows the synchronized zone, making inspiratory termination predisposed to be in asynchrony. Increasing the expiratory trigger sensitivity of a ventilator shifts the synchronized zone to the right, causing less delayed and more premature termination. Automation of expiratory trigger sensitivity in future mechanical ventilators may also be possible. In conclusion, our model provides a useful tool to analyze the mechanisms of expiratory asynchrony in PSV.  相似文献   

19.
The effects of inspiratory flow rate and inflation volume on the resistive properties of the chest wall were investigated in six anesthetized paralyzed cats by use of the technique of rapid airway occlusion during constant flow inflation. This allowed measurement of the intrinsic resistance (Rw,min) and overall dynamic inspiratory impedance (Rw,max), which includes the additional pressure losses due to time constant inequalities within the chest wall tissues and/or stress adaptation. These results, together with our previous data pertaining to the lung (Kochi et al., J. Appl. Physiol. 64: 441-450, 1988), allowed us to determine Rmin and Rmax of the total respiratory system (rs). We observed that 1) Rw,max and Rrs,max exhibited marked frequency dependence; 2) Rw,min was independent of flow (V) and inspired volume (delta V), whereas Rrs,min increased linearly with V and decreased with increasing delta V; 3) Rw,max decreased with increasing V, whereas Rrs,max exhibited a minimum value at a flow rate substantially higher than the resting range of V; 4) both Rw,max and Rrs,max increased with increasing delta V. We conclude that during resting breathing, flow resistance of the chest wall and total respiratory system, as conventionally measured, includes a significant component reflecting time constant inequalities and/or stress adaptation phenomena.  相似文献   

20.
Although the Hering-Breuer inflation reflex (HBIR) is active within tidal breathing range in the neonatal period, there is no information regarding whether a critical volume has to be exceeded before any effect can be observed. To explore this, effects of multiple airway occlusions on inspiratory and expiratory timing were measured throughout tidal breathing range using a face mask and shutter system. In 20 of the 22 healthy infants studied, there was significant shortening of inspiration because the volume at which occlusion occurred rose from functional residual capacity (FRC) to end-inspiratory volume [14.9% reduction in inspiratory time (per ml/kg increase in lung volume at occlusion)]. All infants showed a significant increase in expiratory time [17.1% increase (per ml/kg increase in lung volume at occlusion)]. Polynomial regression analyses revealed a progressive increase in strength of HBIR from FRC to approximately 4 ml/kg above FRC. Eighteen infants showed no further shortening of inspiratory time and 10 infants no further lengthening of expiratory time with increasing occlusion volumes, indicating maximal stimulation of the reflex had been achieved. There was a significant relationship between strength of HBIR and respiratory rate, suggesting that HBIR modifies the breathing pattern in the neonatal period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号