首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The urokinase receptor urokinase-type plasminogen activator receptor (uPAR) is a surface receptor capable of not only focalizing urokinase-type plasminogen activator (uPA)-mediated fibrinolysis to the pericellular micro-environment but also promoting cell migration and chemotaxis. Consistent with this multifunctional role, uPAR binds several extracellular ligands, including uPA and vitronectin. Structural studies suggest that uPAR possesses structural flexibility. It is, however, not clear whether this flexibility is an inherent property of the uPAR structure per se or whether it is induced upon ligand binding. The crystal structure of human uPAR in its ligand-free state would clarify this issue, but such information remains unfortunately elusive. We now report the crystal structures of a stabilized, human uPAR (H47C/N259C) in its ligand-free form to 2.4 Å and in complex with amino-terminal fragment (ATF) to 3.2 Å. The structure of uPARH47C/N259C in complex with ATF resembles the wild-type uPAR·ATF complex, demonstrating that these mutations do not perturb the uPA binding properties of uPAR. The present structure of uPARH47C/N259C provides the first structural definition of uPAR in its ligand-free form, which represents one of the biologically active conformations of uPAR as defined by extensive biochemical studies. The domain boundary between uPAR DI–DII domains is more flexible than the DII–DIII domain boundary. Two important structural features are highlighted by the present uPAR structure. First, the DI–DIII domain boundary may face the cell membrane. Second, loop 130–140 of uPAR plays a dynamic role during ligand loading/unloading. Together, these studies provide new insights into uPAR structure–function relationships, emphasizing the importance of the inter-domain dynamics of this modular receptor.  相似文献   

2.
Physiological concentrations of urokinase plasminogen activator (uPA) stimulated a chemotactic response in human monocytic THP-1 through binding to the urokinase receptor (uPAR). The effect did not require the protease moiety of uPA, as stimulation was achieved also with the N-terminal fragment (ATF), while the 33 kDa low molecular weight uPA was ineffective. Co-immunoprecipitation experiments showed association of uPAR with intracellular kinase(s), as demonstrated by in vitro kinase assays. Use of specific antibodies identified p56/p59hck as a kinase associated with uPAR in THP-1 cell extracts. Upon addition of ATF, p56/p59hck activity was stimulated within 2 min and returned to normal after 30 min. Since uPAR lacks an intracellular domain capable of interacting with intracellular kinase, activation of p56/p59hck must require a transmembrane adaptor. Evidence for this was strongly supported by the finding that a soluble form of uPAR (suPAR) was capable of inducing chemotaxis not only in THP-1 cells but also in cells lacking endogenous uPAR (IC50, 5 pM). However, activity of suPAR require chymotrypsin cleavage between the N-terminal domain D1 and D2 + D3. Chymotrypsin-cleaved suPAR also induced activation of p56/p59hck in THP-1 cells, with a time course comparable with ATF. Our data show that uPA-induced signal transduction takes place via uPAR, involves activation of intracellular tyrosine kinase(s) and requires an as yet undefined adaptor capable of connecting the extracellular ligand binding uPAR to intracellular transducer(s).  相似文献   

3.
Abstract

Urokinase type plasminogen activator (uPA) converts plasminogen to plasmin and is highly chemotactic for many cell types. We examined, using recombinant wild type and mutated forms of uPA, the extent to which its proteolytic properties, its growth-like domain (GFD) and/or interactions with the specific receptor (uPAR) contribute to the chemotactic activity towards vascular smooth muscle cells (SMC). Recombinant wild type uPA (r-uPA) stimulated cell migration nearly 5,8-fold, inactive r-uPA, with a mutation in the catalitic domain (r-uPA(H/Q)), 3-fold, uPA without growth factor like domain (r-uPA(GFD)), 2.6-fold, and a form containing both mutations (r-uPA(H/Q, GFD), 3.3-fold. All recombinant forms of uPA, wild type and those with mutations were equally and highly effective (IC5~20 nM) in displacing 125I-r-uPA bound to SMC. These results indicate that additional mechanisms, not dependent on uPA's proteolytic activity or the binding ability of its GFD to uPAR, are the major contributors to its chemotactic action on SMC  相似文献   

4.
Tumors frequently express urokinase (uPA) receptor (uPAR). To investigate whether uPAR can efficiently target cancerous cells using amphotropic retroviral vectors, we generated a retrovirus displaying the amino-terminal fragment (ATF) of uPA as an N-terminal extension of viral envelope protein. We also made use of a "two-step strategy" by inserting a uPA cleavage site between the ATF moiety and the envelope. We measured the ability of ATF-bearing chimeric envelopes to infect huPAR-overexpressing Madin-Darby canine kidney (MDCK) and control MDCK II cells. The ATF-viruses infected both MDCK cell lines with an equivalent efficiency, suggesting that the chimeric viruses were not sequestered by uPAR and infect cells preferentially via the Pit-2 receptor. The addition of a uPA cleavage site increased the infection level of huPAR-MDCK cells by 2-fold when uPA was present in the infection medium. Surprisingly, ATF-env viruses infected huPAR-MDCK cells 5.5-fold more efficiently in the presence of exogenous uPA. This stimulatory effect of uPA on infection of huPAR-MDCK cells by the ATF-env virus was completely abolished by methyl-beta-cyclodextrin, suggesting that this effect involves the caveolar endocytosis pathway.  相似文献   

5.
Urokinase-type plasminogen activator (uPA) induces cell adhesion and chemotactic movement. uPA signaling requires its binding to uPA receptor (uPAR/CD87), but how glycosylphosphatidylinositol-anchored uPAR mediates signaling is unclear. uPAR is a ligand for several integrins (e.g. alpha 5 beta 1) and supports cell-cell interaction by binding to integrins on apposing cells (in trans). We studied whether binding of uPAR to alpha 5 beta 1 in cis is involved in adhesion and migration of Chinese hamster ovary cells in response to immobilized uPA. This process was temperature-sensitive and required mitogen-activated protein kinase activation. Anti-uPAR antibody or depletion of uPAR blocked, whereas overexpression of uPAR enhanced, cell adhesion to uPA. Adhesion to uPA was also blocked by deletion of the growth factor domain (GFD) of uPA and by anti-GFD antibody, whereas neither the isolated uPA kringle nor serine protease domain supported adhesion directly. Interestingly, anti-alpha 5 antibody, RGD peptide, and function-blocking mutations in alpha 5 beta 1 blocked adhesion to uPA. uPA-induced cell migration also required GFD, uPAR, and alpha 5 beta 1, but alpha 5 beta 1 alone did not support uPA-induced adhesion and migration. Thus, binding of uPA causes uPAR to act as a ligand for alpha 5 beta 1 to induce cell adhesion, intracellular signaling, and cell migration. We demonstrated that uPA induced RGD-dependent binding of uPAR to alpha 5 beta 1 in solution. These results suggest that uPA-induced adhesion and migration of Chinese hamster ovary cells occurs as a consequence of (a) uPA binding to uPAR through GFD, (b) the subsequent binding of a uPA.uPAR complex to alpha 5 beta 1 via uPAR, and (c) signal transduction through alpha 5 beta 1.  相似文献   

6.
Endothelial cells (ECs) degrade the extracellular matrix of vessel walls and contact surrounding cells to facilitate migration during angiogenesis, leading to formation of an EC-tubular network (ETN). Mesenchymal stromal cells (MSC) support ETN formation when co-cultured with ECs, but the mechanism is incompletely understood. We examined the role of the urokinase-type plasminogen activator (uPA) system, i.e. the serine protease uPA, its inhibitor PAI-1, receptor uPAR/CD87, clearance by the low-density lipoprotein receptor-related protein (LRP1) and their molecular partners, in the formation of ETNs supported by adipose tissue-derived MSC. Co-culture of human umbilical vein ECs (HUVEC) with MSC increased mRNA expression levels of uPAR, MMP14, VEGFR2, TGFβ1, integrin β3 and Notch pathway components (Notch1 receptor and ligands: Dll1, Dll4, Jag1) in HUVECs and uPA, uPAR, TGFβ1, integrin β3, Jag1, Notch3 receptor in MSC. Inhibition at several steps in the activation process indicates that uPA, uPAR and LRP1 cross-talk with αv-integrins, VEGFR2 and Notch receptors/ligands to mediate ETN formation in HUVEC-MSC co-culture. The urokinase system mediates ETN formation through the coordinated action of uPAR, uPA's catalytic activity, its binding to uPAR and its nuclear translocation. These studies identify potential targets to help control aberrant angiogenesis with minimal impact on healthy vasculature.  相似文献   

7.
Plasminogen activators are implicated in the pathogenesis of several diseases such as inflammatory diseases and cancer. Beside their serine-protease activity, these agents trigger signaling pathways involved in cell migration, adhesion and proliferation. We previously reported a role for the sphingolipid pathway in the mitogenic effect of plasminogen activators, but the signaling mechanisms involved in neutral sphingomyelinase-2 (NSMase-2) activation (the first step of the sphingolipid pathway) are poorly known. This study was carried out to investigate how urokinase plasminogen activator (uPA) activates NSMase-2. We report that uPA, as well as its catalytically inactive N-amino fragment ATF, triggers the sequential activation of MMP-2, NSMase-2 and ERK1/2 in ECV304 cells that are required for uPA-induced ECV304 proliferation, as assessed by the inhibitory effect of Marimastat (a MMP inhibitor), MMP-2-specific siRNA, MMP-2 defect, and NSMase-specific siRNA. Moreover, upon uPA stimulation, uPAR, MT1-MMP, MMP-2 and NSMase-2 interacted with integrin αvβ3, evidenced by co-immunoprecipitation and immunocytochemistry experiments. Moreover, the αvβ3 blocking antibody inhibited the uPA-triggered MMPs/uPAR/integrin αvβ3 interaction, NSMase-2 activation, Ki67 expression and DNA synthesis in ECV304. In conclusion, uPA triggers interaction between integrin αvβ3, uPAR and MMPs that leads to NSMase-2 and ERK1/2 activation and cell proliferation. These findings highlight a new signaling mechanism for uPA, and suggest that, upon uPA stimulation, uPAR, MMPs, integrin αvβ3 and NSMase-2 form a signaling complex that take part in mitogenic signaling in ECV304 cells.  相似文献   

8.
ATF-PAI2CD融合蛋白的生物学功能   总被引:1,自引:1,他引:0  
为了解尿激酶型纤溶酶激活物 (urokinase typeplaminogenactivator,uPA)的氨基末端片段 (amino terminalfrag ment,ATF)和纤溶酶激活物抑制剂 2 (plasminogenactivatorinhibitortype 2 ,PAI 2 )突变体PAI 2CD融合蛋白在大肠杆菌的表达情况及进一步研究其生物学活性、将ATF PAI2CD融合基因与大肠杆菌表达载体pLY 4重组得到表达质粒pZWE ATF PAI2CD ,以其转化大肠杆菌JF112 5 ,经温度诱导 ,ATF PAI2CD获得较高水平表达 ,融合蛋白质以包涵体形式存在 ,占菌体总蛋白质的 15 %。包涵体经洗涤、8mol L尿素溶解、稀释复性及离子交换色谱一步分离 ,纯度达 90 % ,分子量与理论值相符。每升发酵液得重组融合蛋白质 5 0mg。经牛奶板法检测具有纤溶抑制活性 ,比活性达 12 0 0 0IU mg ;应用放射竞争法证实融合蛋白质能与肿瘤细胞表面的uPA受体特异性结合。双功能融合蛋白质的纤溶抑制活性与野生型PAI 2 (或PAI 2突变体 ,PAI 2CD)基本一致 ,与肿瘤细胞表面的uPA受体的结合能力同pro uPA。  相似文献   

9.
Pulmonary metastasis is the major untreatable complication of osteosarcoma (OS) resulting in 10–20% long-term survival. The factors and pathways regulating these processes remain unclear, yet their identification is crucial in order to find new therapeutic targets. In this study we used a multi-omics approach to identify molecules in metastatic and non-metastatic OS cells that may contribute to OS metastasis, followed by validation in vitro and in vivo. We found elevated levels of the urokinase plasminogen activator (uPA) and of the uPA receptor (uPAR) exclusively in metastatic OS cells. uPA was secreted in soluble form and as part of the protein cargo of OS-secreted extracellular vesicles, including exosomes. In addition, in the tumour microenvironment, uPA was expressed and secreted by bone marrow cells (BMC), and OS- and BMC-derived uPA significantly and specifically stimulated migration of metastatic OS cells via uPA-dependent signaling pathways. Silencing of uPAR in metastatic OS cells abrogated the migratory response to uPA in vitro and decreased metastasis in vivo. Finally, a novel small-molecule inhibitor of uPA significantly (P = 0.0004) inhibited metastasis in an orthotopic mouse model of OS. Thus, we show for the first time that malignant conversion of OS cells to a metastatic phenotype is defined by activation of the uPA/uPAR axis in both an autocrine and paracrine fashion. Furthermore, metastasis is driven by changes in OS cells as well as in the microenvironment. Finally, our data show that pharmacological inhibition of the uPA/uPAR axis with a novel small-molecule inhibitor can prevent the emergence of metastatic foci.  相似文献   

10.
Compared with other nanomaterials, surface-modified iron oxide nanoparticles (IONPs) have gained attraction for cancer therapy applications due to its low toxicity, and long retention time. An innocuous targeting strategy was developed by generation of fluorescein isothiocyanate (FITC)-labeled peptide (growth factor domain (GFD) and somatomedin B domain (SMB)) functionalized, chitosan-coated IONPs (IONPs/C). It can be used to target urokinase plasminogen activator receptor (uPAR), which is a surface biomarker, in ovarian cancer. Binding affinity between uPAR and peptides (GFD and SMB) were revealed by in-silico docking studies. The biophysical characterizations of IONPs, IONPs/C, and IONPs/C/GFD-FITC or SMB-FITC nanoprobes were assessed via Vibrating Sample Magnetometer (VSM), Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), and Fourier Transform Infrared Spectroscopy (FT-IR). Prussian Blue staining, fluorescence spectroscopy, and fluorescence imaging were performed to confirm the targeting of nanoprobes with the surface receptor uPAR. The combination of IONPs/C/GFD+SMB showed efficient targeting of uPAR in the tumor microenvironment, and thus can be implemented as a molecular magnetic nanoprobe for cancer cell imaging and targeting.  相似文献   

11.
Myofibroblasts (Mfs) that persist in a healing wound promote extracellular matrix (ECM) accumulation and excessive tissue contraction. Increased levels of integrin αvβ5 promote the Mf phenotype and other fibrotic markers. Previously we reported that maintaining uPA (urokinase plasminogen activator) bound to its cell-surface receptor, uPAR prevented TGFβ-induced Mf differentiation. We now demonstrate that uPA/uPAR controls integrin β5 protein levels and in turn, the Mf phenotype. When cell-surface uPA was increased, integrin β5 levels were reduced (61%). In contrast, when uPA/uPAR was silenced, integrin β5 total and cell-surface levels were increased (2-4 fold). Integrin β5 accumulation resulted from a significant decrease in β5 ubiquitination leading to a decrease in the degradation rate of internalized β5. uPA-silencing also induced α-SMA stress fiber organization in cells that were seeded on collagen, increased cell area (1.7 fold), and increased integrin β1 binding to the collagen matrix, with reduced activation of β1. Elevated cell-surface integrin β5 was necessary for these changes after uPA-silencing since blocking αvβ5 function reversed these effects. Our data support a novel mechanism by which downregulation of uPA/uPAR results in increased integrin αvβ5 cell-surface protein levels that regulate the activity of β1 integrins, promoting characteristics of the persistent Mf.  相似文献   

12.
The effect of denaturants on the structural fluctuation of M80-containing Ω-loop of ferrocytochrome c was determined by measuring the rate coefficient of CO-association with ferrocytochrome c under varying concentrations of urea and alkylureas (methylurea (MU), N,N'-dimethylurea (DMU), ethylurea (EU), tetramethylurea (TMU)) at pH 7.0, 25 °C. As denaturant concentration is increased within the subdenaturing limit, the CO-association reaction is decelerated indicating that subdenaturing concentrations of denaturant reduce the structural fluctuation of the Ω-loop. Structural fluctuation of the Ω-loop is reduced more for urea and least for TMU. Intermolecular docking between horse cytochrome c and denaturant molecule (urea, MU, DMU, EU and TMU) reveals that polyfunctional interactions between the denaturant and different groups of Ω-loop and other part of protein decrease with an increase of alkyl group on urea molecule, which suggests that the decrease in the extent of restricted dynamics of Ω-loop with a corresponding increase of alkyl groups on urea molecule is due to the decrease of denaturant-mediated cross-linking interactions. These denaturant-mediated interactions are expected to reduce the conformational entropy of protein. Analysis of rate-temperature data shows a progressive decrease in conformational entropy of protein in the native to subdenaturing region. Thermodynamic analysis of denaturant (urea, MU, DMU, EU, TMU) effects on the thermal unfolding of ferrocytochrome c reveals that (i) thermodynamic stability of protein decreases with increasing concentration of denaturant or hydrophobicity of urea derivatives, (ii) water activity plays an important role in stabilization of ferrocytochrome c, and (iii) destabilization of ferrocytochrome c by denaturant occurs through the disturbance of hydrophobic interactions and hydrogen-bonding.  相似文献   

13.
14.

Background  

In human pancreatic cancer progression, the α6β1-integrin is expressed on cancer cell surface during invasion and metastasis formation. In this study, we investigated whether interleukin (IL)-1α induces the alterations of integrin subunits and urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) expression in pancreatic cancer cells. We hypothesize that the alterations of integrin subunits and uPA/uPAR expression make an important role in signaling pathways responsible for biological behavior of pancreatic cancer cells.  相似文献   

15.
Urokinase type plasminogen activator (uPA) converts plasminogen to plasmin and is highly chemotactic for many cell types. We examined, using recombinant wild type and mutated forms of uPA, the extent to which its proteolytic properties, its growth-like domain (GFD) and/or interactions with the specific receptor (uPAR) contribute to the chemotactic activity towards vascular smooth muscle cells (SMC). Recombinant wild type uPA (r-uPA) stimulated cell migration nearly 5.8-fold, inactive r-uPA, with a mutation in the catalitic domain (r-uPA(H/Q)), 3-fold, uPA without growth factor like domain (r-uPA(GFD )), 2.6-fold, and a form containing both mutations (r-uPA(H/Q, GFD ), 3.3-fold. All recombinant forms of uPA, wild type and those with mutations were equally and highly effective (IC50 approximately 20 nM) in displacing 125I-r-uPA bound to SMC. These results indicate that additional mechanisms, not dependent on uPA's proteolytic activity or the binding ability of its GFD to uPAR, are the major contributors to its chemotactic action on SMC.  相似文献   

16.
17.
The causative agent of Lyme borreliosis, the spirochete Borrelia burgdorferi, has been shown to induce expression of the urokinase receptor (uPAR); however, the role of uPAR in the immune response against Borrelia has never been investigated. uPAR not only acts as a proteinase receptor, but can also, dependently or independently of ligation to uPA, directly affect leukocyte function. We here demonstrate that uPAR is upregulated on murine and human leukocytes upon exposure to B. burgdorferi both in vitro as well as in vivo. Notably, B. burgdorferi-inoculated C57BL/6 uPAR knock-out mice harbored significantly higher Borrelia numbers compared to WT controls. This was associated with impaired phagocytotic capacity of B. burgdorferi by uPAR knock-out leukocytes in vitro. B. burgdorferi numbers in vivo, and phagocytotic capacity in vitro, were unaltered in uPA, tPA (low fibrinolytic activity) and PAI-1 (high fibrinolytic activity) knock-out mice compared to WT controls. Strikingly, in uPAR knock-out mice partially backcrossed to a B. burgdorferi susceptible C3H/HeN background, higher B. burgdorferi numbers were associated with more severe carditis and increased local TLR2 and IL-1β mRNA expression. In conclusion, in B. burgdorferi infection, uPAR is required for phagocytosis and adequate eradication of the spirochete from the heart by a mechanism that is independent of binding of uPAR to uPA or its role in the fibrinolytic system.  相似文献   

18.
High molecular weight urokinase-type plasminogen activator (uPA) in which proteolytic activity was inactivated (diisopropyl fluorophosphate (DFP)-uPA), its amino-terminal fragment (ATF, amino acids (aa) 1-143), and fucosylated and defucosylated growth factor domains (GFD, aa 4-43) were tested for growth-promoting effects and binding in human SaOS-2 osteosarcoma cells and U-937 lymphoma cells. DFP-uPA, ATF, and both the fucosylated and defucosylated GFD were capable of competing with 125I-ATF for binding to both SaOS-2 and U-937 cells. DFP-uPA, ATF, and fucosylated GFD were also mitogenic in SaOS-2 cells and increased cell numbers. However, defucosylated GFD was nonmitogenic in SaOS-2 cells and did not stimulate cell proliferation, even though it bound to these cells in a manner equivalent to the fucosylated GFD. A nonglycosylated high molecular weight uPA expressed and purified from Escherichia coli inhibited 125I-ATF binding to SaOS-2 cells but was also nonmitogenic. No mitogenic activity was observed in U-937 cells treated with the uPA forms capable of eliciting a mitogenic response in SaOS-2 cells. Proteolytically prepared kringle domain (aa 47-135) and low molecular weight uPA (aa 144-411) did not compete for 125I-ATF binding and did not elicit any mitogenic response in either of the cell lines tested. In addition, tissue plasminogen activator (tPA), which has been shown to be homologous to uPA in its growth factor domain and is also fucosylated, did not inhibit 125I-ATF binding nor elicit any mitogenic response. These results demonstrate that the GFD, implicated in binding to the uPA receptor, is also responsible for growth factor like activity in SaOS-2 cells and that the fucosylation at Thr18 within this domain may serve as a molecular trigger in eliciting this response.  相似文献   

19.
Recent studies indicate that binding of the urokinase-type plasminogen activator (uPA) to its high-affinity receptor (uPAR) orchestrates uPAR interactions with other cellular components that play a pivotal role in diverse (patho-)physiological processes, including wound healing, angiogenesis, inflammation, and cancer metastasis. However, notwithstanding the wealth of biochemical data available describing the activities of uPAR, little is known about the exact mode of uPAR/uPA interactions or the presumed conformational changes that accompany uPA/uPAR engagement. Here, we report the crystal structure of soluble urokinase plasminogen activator receptor (suPAR), which contains the three domains of the wild-type receptor but lacks the cell-surface anchoring sequence, in complex with the amino-terminal fragment of urokinase-type plasminogen activator (ATF), at the resolution of 2.8 A. We report the 1.9 A crystal structure of free ATF. Our results provide a structural basis, represented by conformational changes induced in uPAR, for several published biochemical observations describing the nature of uPAR/uPA interactions and provide insight into mechanisms that may be responsible for the cellular responses induced by uPA binding.  相似文献   

20.
Conformations of three pairs of dehydropeptides with the opposite configuration of the ΔPhe residue, Boc-Gly-ΔZ/EPhe-Phe-p-NA (Z- p -NA and E- p -NA), Boc-Gly-ΔZ/EPhe-Phe-OMe (Z-OMe and E-OMe), and Boc-Gly-ΔZ/EPhe-Phe-OH (Z-OH and E-OH) were compared on the basis of CD and NMR studies in MeOH, TFE, and DMSO. The CD results were used as the additional input data for the NMR-based calculations of the detailed solution conformations of the peptides. It was found that Z- p -NA, E- p -NA, Z-OMe, and Z-OH adopt the β-turn conformations and E-OMe and E-OH are unordered. There are two overlapping type III β-turns in Z- p -NA, type II’ β-turn in E- p -NA, and type II β-turn in Z-OMe and Z-OH. The results obtained indicate that in the case of methyl esters and peptides with a free carboxyl group, ΔZPhe is a much stronger inducer of ordered conformations than ΔEPhe. It was also found that temperature coefficients of the amide protons are not reliable indicators of intramolecular hydrogen bonds donors in small peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号