首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycosylphosphatidylinositols (GPIs) are the major glycoconjugates in intraerythrocytic stage Plasmodium falciparum. Several functional proteins including merozoite surface protein 1 are anchored to the cell surface by GPI modification, and GPIs are vital to the parasite. Here, we studied the developmental stage-specific biosynthesis of GPIs by intraerythrocytic P. falciparum. The parasite synthesizes GPIs exclusively during the maturation of early trophozoites to late trophozoites but not during the development of rings to early trophozoites or late trophozoites to schizonts and merozoites. Mannosamine, an inhibitor of GPI biosynthesis, inhibits the growth of the parasite specifically at the trophozoite stage, preventing further development to schizonts and causing death. Mannosamine has no effect on the development of either rings to early trophozoites or late trophozoites to schizonts and merozoites. The analysis of GPIs and proteins synthesized by the parasite in the presence of mannosamine demonstrates that the effect is because of the inhibition of GPI biosynthesis. The data also show that mannosamine inhibits GPI biosynthesis by interfering with the addition of mannose to an inositol-acylated GlcN-phosphatidylinositol (PI) intermediate, which is distinctively different from the pattern seen in other organisms. In other systems, mannosamine inhibits GPI biosynthesis by interfering with either the transfer of a mannose residue to the Manalpha1-6Manalpha1-4GlcN-PI intermediate or the formation of ManN-Man-GlcN-PI, an aberrant GPI intermediate, which cannot be a substrate for further addition of mannose. Thus, the parasite GPI biosynthetic pathway could be a specific target for antimalarial drug development.  相似文献   

2.
Toxoplasmosis, a disease that affects humans and a wide variety of mammals is caused by Toxoplasma gondii, the obligate intracellular coccidian protozoan parasite. Most T. gondii research has focused on the rapidly growing invasive form, the tachyzoite, which expresses five major surface proteins attached to the parasite membrane by glycosylphosphatidylinositol (GPI) anchors. We have recently reported the purification and partial characterization of candidate precursor glycolipids (GPIs) from metabolically labeled parasites and have presented evidence that these GPIs have a linear glycan backbone sequence indistinguishable from the GPI core glycan of the major tachyzoite surface protein, P30. In this report, we describe a cell-free system derived from tachyzoite membranes which is capable of catalyzing GPI biosynthesis. Incubation of the membrane preparations with radioactive sugar nucleotides (GDP-[3H]mannose or UDP-[3H]GlcNAc) resulted in incorporation of radiolabeled into numerous glycolipids. By using a combination of chemical/enzymatic tests and chromatographic analysis, a series of incompletely glycosylated lipid species and mature GPIs have been identified. We have also established the involvement of Dol-P-mannose in the synthesis of T. gondii GPIs by demonstrating that the incorporation of [3H]mannose into the mannosylated GPIs is stimulated by dolichylphosphate and inhibited by amphomycin. In addition, increasing the concentration of nonradioactive GDP mannose resulted in a loss of radiolabel from the first easily detectable GPI precursor, GlcN-PI, and a concomittant appearance of the radio-activity into mannosylated glycolipids. Altogether, our data suggest that the GPI core glycan in T. gondii is assembled via sequential glycosylation of phosphatidylinositol, as proposed for the biosynthesis of GPIs in Trypanosoma brucei. In contrast to T. brucei, preliminary experiments indicate that the core glycan of some GPIs synthesized by the T. gondii cell-free system is modified by N-acetylgalactosamine similar to the situation for mammalian Thy-1.  相似文献   

3.
Glycosyl phosphoinositol (GPI) anchors on proteins can be modified by palmitoylation of their inositol residue, which makes such anchors resistant to cleavage by phosphatidylinositol-specific phospholipase C (PI-PLC) (Roberts, W. L., Myher, J. J., Kuksis, A., Low, M. G., and Rosenberry, T.L. (1988) J. Biol. Chem. 263, 18766-18775). Mannosylated GPI lipids made in trypanosomal and mammalian cells can also be inositol-acylated, indicating that inositol acylation may be a normal step in GPI anchor synthesis. We find that Saccharomyces cerevisiae mutants blocked in dolichyl phosphate mannose synthesis accumulate a lipid that can be radiolabeled in vivo with [3H]myo-inositol, [3H]GlcN, and [3H]palmitic acid. This lipid is resistant to PI-PLC, yet sensitive to mild alkaline hydrolysis, and has been characterized as GlcN-phosphatidylinositol (PI), fatty acylated on its inositol residue. When yeast membranes are incubated with UDP-[14C] GlcNAc, 14C-labeled GlcNAc-PI and GlcN-PI are made. Addition of ATP and CoA, or of palmitoyl-CoA to incubations results in the synthesis of [14C]GlcN-(acyl-inositol)PI. This lipid is also made when membranes are incubated with [1-14C]palmitoyl-CoA and UDP-GlcNAc. We propose that acyl CoA is the donor in inositol acylation of GlcN-PI, and that GlcN-(acyl-inositol)PI is an obligatory intermediate in GPI synthesis.  相似文献   

4.
The identification of free glycoinositol phospholipids (GPIs) following biosynthetic labeling with [3H]glucosamine in cultured cells has been reported by several laboratories. We applied this procedure to two of the cell types used in these studies, H4IIE hepatoma cells and isolated hepatocytes, but were unable to detect a [3H]glucosamine-containing lipid that met any of the criteria for GPIs, including sensitivity to phosphatidylinositol-specific phospholipase C (PIPLC) or GPI-specific phospholipase D. Part of the difficulty in radiolabeling a GPI by this procedure was the rapid metabolic conversion of [3H]glucosamine to galactosamine and neutral or anionic derivatives. A PIPLC-sensitive radiolabeled lipid was detected only after 16 h of labeling. The water-soluble fragments released from this lipid by PIPLC corresponded largely to myo-inositol 1,2-cyclic phosphate and myo-inositol 1-phosphate, products expected from PIPLC cleavage of phosphatidylinositol or lyso-phosphatidylinositol. In an alternative approach that we introduce here, free GPIs in lipid extracts from rat liver plasma membranes were labeled by reductive radiomethylation. This procedure, which radiomethylates primary and secondary amines, has been shown to label a glucosamine residue adjacent to inositol in all GPIs characterized to date. The labeled extracts were fractionated by two-dimensional thin-layer chromatography, and a cluster of polar labeled lipids were assigned as GPIs based upon the following observations. 1) They were cleaved by PIPLC, 2) after hydrolysis in 6 N HCl, both radiomethylated glucosamine and a glucosamine-inositol conjugate were identified by cation exchange chromatography, and 3) hydrolysis in 4 M trifluoroacetic acid generated a fragment consistent with glucosamine-inositol-phosphate. These results illustrate new criteria for the identification of GPIs. The labeled GPIs also contained radiomethylated ethanolamine, another component found in GPI anchors of proteins and in mature lipid precursors of GPI anchors, suggesting that the liver plasma membrane GPIs retained considerable structural homology to GPI anchors.  相似文献   

5.
Synthetic analogues of D-GlcNalpha1-6D-myo-inositol-1-HPO(4)-3(sn-1, 2-diacylglycerol) (GlcN-PI), with the 2-position of the inositol residue substituted with an O-octyl ether [D-GlcNalpha1-6D-(2-O-octyl)myo-inositol-1-HPO(4)-3-sn-1, 2-dipalmitoylglycerol; GlcN-(2-O-octyl) PI] or O-hexadecyl ether [D-GlcNalpha1-6D-(2-O-hexadecyl)myo-inositol-1-HPO(4)-3-sn-1, 2-dipalmitoylglycerol; GlcN-(2-O-hexadecyl)PI], were tested as substrates or inhibitors of glycosylphosphatidylinositol (GPI) biosynthetic pathways using cell-free systems of the protozoan parasite Trypanosoma brucei (the causative agent of human African sleeping sickness) and human HeLa cells. Neither these compounds nor their N-acetyl derivatives are substrates or inhibitors of GPI biosynthetic enzymes in the HeLa cell-free system but are potent inhibitors of GPI biosynthesis in the T.brucei cell-free system. GlcN-(2-O-hexadecyl)PI was shown to inhibit the first alpha-mannosyltransferase of the trypanosomal GPI pathway. The N-acetylated derivative GlcNAc-(2-O-octyl)PI is a substrate for the trypanosomal GlcNAc-PI de-N-acetylase and this compound, like GlcN-(2-O-octyl)PI, is processed predominantly to Man(2)GlcN-(2-O-octyl)PI by the T.brucei cell-free system. Both GlcN-(2-O-octyl)PI and GlcNAc(2-O-octyl)PI also inhibit inositol acylation of Man(1-3)GlcN-PI and, consequently, the addition of the ethanolamine phosphate bridge in the T.brucei cell-free system. The data establish these substrate analogues as the first generation of in vitro parasite GPI pathway-specific inhibitors.  相似文献   

6.
Many cell surface proteins are anchored to a membrane via a glycosylphosphatidylinositol (GPI), which is attached to the C termini in the endoplasmic reticulum. The inositol ring of phosphatidylinositol is acylated during biosynthesis of GPI. In mammalian cells, the acyl chain is added to glucosaminyl phosphatidylinositol at the third step in the GPI biosynthetic pathway and then is usually removed soon after the attachment of GPIs to proteins. The mechanisms and roles of the inositol acylation and deacylation have not been well clarified. Herein, we report derivation of human and Chinese hamster mutant cells defective in inositol acylation and the gene responsible, PIG-W. The surface expressions of GPI-anchored proteins on these mutant cells were greatly diminished, indicating the critical role of inositol acylation. PIG-W encodes a 504-amino acid protein expressed in the endoplasmic reticulum. PIG-W is most likely inositol acyltransferase itself because the tagged PIG-W affinity purified from transfected human cells had inositol acyltransferase activity and because both mutant cells were complemented with PIG-W homologs of Saccharomyces cerevisiae and Schizosaccharomyces pombe. The inositol acylation is not essential for the subsequent mannosylation, indicating that glucosaminyl phosphatidylinositol can flip from the cytoplasmic side to the luminal side of the endoplasmic reticulum.  相似文献   

7.
The cell surface of the parasitic protozoan Leishmania mexicana is coated by glycosylphosphatidylinositol (GPI)-anchored glycoproteins, a GPI-anchored lipophosphoglycan and a class of free GPI glycolipids. To investigate whether the anchor or free GPIs are required for parasite growth we cloned the L.mexicana gene for dolichol-phosphate-mannose synthase (DPMS) and attempted to create DPMS knockout mutants by targeted gene deletion. DPMS catalyzes the formation of dolichol-phosphate mannose, the sugar donor for all mannose additions in the biosynthesis of both the anchor and free GPIs, except for a alpha1-3-linked mannose residue that is added exclusively to the free GPIs and lipophosphoglycan anchor precursors. The requirement for dolichol-phosphate-mannose in other glycosylation pathways in L.mexicana is minimal. Deletion of both alleles of the DPMS gene (lmdpms) consistently resulted in amplification of the lmdpms chromosomal locus unless the promastigotes were first transfected with an episomal copy of lmdpms, indicating that lmdpms, and possibly GPI biosynthesis, is essential for parasite growth. As evidence presented in this and previous studies indicates that neither GPI-anchored glycoproteins nor lipophosphoglycan are required for growth of cultured parasites, it is possible that the abundant and functionally uncharacterized free GPIs are essential membrane components.  相似文献   

8.
Using hypotonically permeabilized Toxoplasma gondii tachyzoites, we investigated the topology of the free glycosylphosphatidylinositols (GPIs) within the endoplasmic reticulum (ER) membrane. The morphology and permeability of parasites were checked by electron microscopy and release of a cytosolic protein. The membrane integrity of organelles (ER and rhoptries) was checked by protease protection assays. In initial experiments, GPI biosynthetic intermediates were labeled with UDP-[6-(3)H]GlcNAc in permeabilized parasites, and the transmembrane distribution of the radiolabeled lipids was probed with phosphatidylinositol-specific phospholipase C (PI-PLC). A new early intermediate with an acyl modification on the inositol was identified, indicating that inositol acylation also occurs in T. gondii. A significant portion of the early GPI intermediates (GlcN-PI and GlcNAc-PI) could be hydrolyzed following PI-PLC treatment, indicating that these glycolipids are predominantly present in the cytoplasmic leaflet of the ER. Permeabilized T. gondii parasites labeled with either GDP-[2-(3)H]mannose or UDP-[6-(3)H]glucose showed that the more mannosylated and side chain (Glc-GalNAc)-modified GPI intermediates are also preferentially localized in the cytoplasmic leaflet of the ER.  相似文献   

9.
2-Palmitoylation of the inositol residue occurs during biosynthesis of glycosylphosphatidylinositol (GPI) anchors, but the enzymology of this step has been enigmatic. With endogenously synthesized glucosamine-PI (GlcN-PI; a GPI intermediate), a CoA-dependent palmitoyl-CoA-independent acyltransfer activity (AT-1) has been reported in rodent preparations. In contrast, a palmitoyl-CoA-dependent GlcN-PI acyltransferase activity (AT-2) was reported in both rodent and yeast preparations with a novel water-soluble dioctanoyl GlcN-PI analogue, GlcN-PI(C8). We report that AT-1, as well as AT-2, can be detected in rodent microsomes with GlcN-PI(C8), thus demonstrating the coexistence of these activities in a single membrane preparation and the general utility of GlcN-PI(C8) for studying the GPI pathway. Unexpectedly, AT-2 was peripherally associated with microsomes, a property atypical for GPI biosynthetic enzymes.  相似文献   

10.
Many eukaryotic surface glycoproteins, including the variant surface glycoproteins (VSGs) of Trypanosoma brucei, are synthesized with a carboxyl-terminal hydrophobic peptide extension that is cleaved and replaced by a complex glycosylphosphatidylinositol (GPI) membrane anchor within 1-5 min of the completion of polypeptide synthesis. We have reported the purification and partial characterization of candidate precursor glycolipids (P2 and P3) from T. brucei. P2 and P3 contain ethanolamine-phosphate-Man alpha 1-2Man alpha 1-6Man alpha 1-GlcN linked glycosidically to an inositol residue, as do all the GPI anchors that have been structurally characterized. The anchors on mature VSGs contain a heterogenously branched galactose structure attached alpha 1-3 to the mannose residue adjacent to the glucosamine. We report the identification of free GPIs that appear to be similarly galactosylated. These glycolipids contain diacylglycerol and alpha-galactosidase-sensitive glycan structures which are indistinguishable from the glycans derived from galactosylated VSG GPI anchors. We discuss the relevance of these galactosylated GPIs to the biosynthesis of VSG GPI anchors.  相似文献   

11.
A large number of mammalian proteins are anchored to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor. Biosynthetic intermediates of the GPI anchor have been identified in mammalian cells. The early GPI precursors are sensitive to phosphatidylinositol (PI)-specific phospholipase C (PLC). However, all of the later GPI precursors, which contain 1 or more mannose residues, are PI-PLC-resistant, suggesting that there is another unidentified precursor. Here, we report the identification of this missing link. This GPI precursor can only be labeled with glucosamine and inositol, and is resistant to PI-PLC but sensitive to GPI-phospholipase D. It accumulates in large quantity only in mutants which are defective in the addition of the first mannose residue to the elongating GPI core. Thus, fatty acylation of glucosaminylphosphatidylinositol, to render it PI-PLC-resistant, is an obligatory step in the biosynthesis of mammalian GPI anchor precursors.  相似文献   

12.
Glycosylphosphatidyl-inositols (GPIs) are vital major glycoconjugates in intraerythrocytic stages of Plasmodium. Here, we report on the biosynthesis and the characterization of GPIs synthesized by the murine malarial parasite P. yoelii yoelii YM. Parasitized erythrocytes were labeled in vivo and in vitro with either radioactive nucleotide sugar precursors, ethanolamine or glucosamine. The pathway leading to the formation of GPI precursors was found to resemble that described for P. falciparum; however, in P. yoelii, the formation of an additional hydrophilic precursor containing an acid-labile modification was detected. The data suggest that this modification is linked to the fourth mannose attached to the trimannosyl backbone in an alpha1-2 linkage. The modification was susceptible to hydrofluoric acid (HF), but not to nitrous acid (HNO(2)). Data obtained from size-exclusion chromatography on Bio-Gel P4, and Mono Q analysis of the fragments generated by HNO(2) deamination suggest that the modification is due to the presence of an additional ethanolamine linked to the fourth mannose via a phosphodiester bond.  相似文献   

13.
Güther ML  Prescott AR  Ferguson MA 《Biochemistry》2003,42(49):14532-14540
Glycosylphosphatidylinositol (GPI) membrane anchors are ubiquitous among the eukaryotes. In most organisms, the pathway of GPI biosynthesis involves inositol acylation and inositol deacylation as discrete steps at the beginning and end of the pathway, respectively. The bloodstream form of the protozoan parasite Trypanosoma brucei is unusual in that these reactions occur on multiple GPI intermediates and that it can express side chains of up to six galactose residues on its mature GPI anchors. An inositol deacylase gene, T. brucei GPIdeAc, has been identified. A null mutant was created and shown to be capable of expressing normal mature GPI anchors on its variant surface glycoprotein. Here, we show that the null mutant synthesizes galactosylated forms of the mature GPI precursor, glycolipid A, at an accelerated rate (2.8-fold compared to wild type). These free GPIs accumulate at the cell surface as metabolic end products. Using continuous and pulse-chase labeling experiments, we show that there are two pools of glycolipid A. Only one pool is competent for transfer to nascent variant surface glycoprotein and represents 38% of glycolipid A in wild-type cells. This pool rises to 75% of glycolipid A in the GPIdeAc null mutant. We present a model for the pathway of GPI biosynthesis in T. brucei that helps to explain the complex phenotype of the GPIdeAc null mutant.  相似文献   

14.
The protozoan parasite Trypanosoma brucei is coated by glycosylphosphatidylinositol (GPI)-anchored proteins. During GPI biosynthesis, inositol in phosphatidylinositol becomes acylated. Inositol is deacylated prior to attachment to variant surface glycoproteins in the bloodstream form, whereas it remains acylated in procyclins in the procyclic form. We have cloned a T. brucei GPI inositol deacylase (GPIdeAc2). In accordance with the acylation/deacylation profile, the level of GPIdeAc2 mRNA was 6-fold higher in the bloodstream form than in the procyclic form. Knockdown of GPIdeAc2 in the bloodstream form caused accumulation of an inositol-acylated GPI, a decreased VSG expression on the cell surface and slower growth, indicating that inositol-deacylation is essential for the growth of the bloodstream form. Overexpression of GPIdeAc2 in the procyclic form caused an accumulation of GPI biosynthetic intermediates lacking inositol-linked acyl chain and decreased cell surface procyclins because of release into the culture medium, indicating that overexpression of GPIdeAc2 is deleterious to the surface coat of the procyclic form. Therefore, the GPI inositol deacylase activity must be tightly regulated in trypanosome life cycle.  相似文献   

15.
Toxoplasma gondii is a ubiquitous parasitic protozoan that invades nucleated cells in a process thought to be in part due to several surface glycosylphosphatidylinositol (GPI)-anchored proteins, like the major surface antigen SAG1 (P30), which dominates the plasma membrane. The serine protease inhibitors phenylmethylsulfonyl fluoride and diisopropyl fluoride were found to have a profound effect on the T. gondii GPI biosynthetic pathway, leading to the observation and characterization of novel inositol-acylated mannosylated GPI intermediates. This inositol acylation is acyl-CoA-dependent and takes place before mannosylation, but uniquely for this class of inositol-acyltransferase, it is inhibited by phenylmethylsulfonyl fluoride. The subsequent inositol deacylation of fully mannosylated GPI intermediates is inhibited by both phenylmethylsulfonyl fluoride and diisopropyl fluoride. The use of these serine protease inhibitors allows observations as to the timing of inositol acylation and subsequent inositol deacylation of the GPI intermediates. Inositol acylation of the non-mannosylated GPI intermediate D-GlcNalpha1-6-D-myo-inositol-1-HPO4-sn-lipid precedes mannosylation. Inositol deacylation of the fully mannosylated GPI intermediate allows further processing, i.e. addition of GalNAc side chain to the first mannose. Characterization of the phosphatidylinositol moieties present on both free GPIs and GPI-anchored proteins shows the presence of a diacylglycerol lipid, whose sn-2 position contains almost exclusively an C18:1 acyl chain. The data presented here identify key novel inositol-acylated mannosylated intermediates, allowing the formulation of an updated T. gondii GPI biosynthetic pathway along with identification of the putative genes involved.  相似文献   

16.
Glycosylphosphatidylinositol (GPI) represents a mechanism for the attachment of proteins to the plasma membrane found in all eukaryotic cells. GPI biosynthesis has been mainly studied in parasites, yeast, and mammalian cells. Aspergillus fumigatus, a filamentous fungus, produces GPI-anchored molecules, some of them being essential in the construction of the cell wall. An in vitro assay was used to study the GPI biosynthesis in the mycelium form of this organism. In the presence of UDP-GlcNAc and coenzyme A, the cell-free system produces the initial intermediates of the GPI biosynthesis: GlcNAc-PI, GlcN-PI, and GlcN-(acyl)PI. Using GDP-Man, two types of mannosylation are observed. First, one or two mannose residues are added to GlcN-PI. This mannosylation, never described in fungi, does not require dolichol phosphomannoside (Dol-P-Man) as the monosaccharide donor. Second, one to five mannose residues are added to GlcN-(acyl)PI using Dol-P-Man as the mannose donor. The addition of ethanolamine phosphate groups to the first, second, and third mannose residue is also observed. This latter series of GPI intermediates identified in the A. fumigatus cell-free system indicates that GPI biosynthesis in this filamentous fungus is similar to the mammalian or yeast systems. Thus, these biochemical data are in agreement with a comparative genome analysis that shows that all but 3 of the 21 genes described in the Saccharomyces cerevisiae GPI pathways are found in A. fumigatus.  相似文献   

17.
Glycosylphosphatidylinositol (GPI) is a post-translational modification that anchors cell surface proteins to the plasma membrane, and GPI modifications occur in all eukaryotes. Biosynthesis of GPI starts on the cytoplasmic face of the endoplasmic reticulum (ER) membrane, and GPI precursors flip from the cytoplasmic side to the luminal side of the ER, where biosynthesis of GPI precursors is completed. Gwt1p and PIG-W are inositol acyltransferases that transfer fatty acyl chains to the inositol moiety of GPI precursors in yeast and mammalian cells, respectively. To ascertain whether flipping across the ER membrane occurs before or after inositol acylation of GPI precursors, we identified essential residues of PIG-W and Gwt1p and determined the membrane topology of Gwt1p. Guided by algorithm-based predictions of membrane topology, we experimentally identified 13 transmembrane domains in Gwt1p. We found that Gwt1p, PIG-W, and their orthologs shared four conserved regions and that these four regions in Gwt1p faced the luminal side of the ER membrane. Moreover, essential residues of Gwt1p and PIG-W faced the ER lumen or were near the luminal edge of transmembrane domains. The membrane topology of Gwt1p suggested that inositol acylation occurred on the luminal side of the ER membrane. Rather than stimulate flipping of the GPI precursor across the ER membrane, inositol acylation of GPI precursors may anchor the precursors to the luminal side of the ER membrane, preventing flip-flops.  相似文献   

18.
Glycosylphosphatidylinositol (GPI) is a conserved post-translational modification to anchor cell surface proteins to plasma membrane in all eukaryotes. In yeast, GPI mediates cross-linking of cell wall mannoproteins to beta1,6-glucan. We reported previously that the GWT1 gene product is a target of the novel anti-fungal compound, 1-[4-butylbenzyl]isoquinoline, that inhibits cell wall localization of GPI-anchored mannoproteins in Saccharomyces cerevisiae (Tsukahara, K., Hata, K., Sagane, K., Watanabe, N., Kuromitsu, J., Kai, J., Tsuchiya, M., Ohba, F., Jigami, Y., Yoshimatsu, K., and Nagasu, T. (2003) Mol. Microbiol. 48, 1029-1042). In the present study, to analyze the function of the Gwt1 protein, we isolated temperature-sensitive gwt1 mutants. The gwt1 cells were normal in transport of invertase and carboxypeptidase Y but were delayed in transport of GPI-anchored protein, Gas1p, and were defective in its maturation from the endoplasmic reticulum to the Golgi. The incorporation of inositol into GPI-anchored proteins was reduced in gwt1 mutant, indicating involvement of GWT1 in GPI biosynthesis. We analyzed the early steps of GPI biosynthesis in vitro by using membranes prepared from gwt1 and Deltagwt1 cells. The synthetic activity of GlcN-(acyl)PI from GlcN-PI was defective in these cells, whereas Deltagwt1 cells harboring GWT1 gene restored the activity, indicating that GWT1 is required for acylation of inositol during the GPI synthetic pathway. We further cloned GWT1 homologues in other yeasts, Cryptococcus neoformans and Schizosaccharomyces pombe, and confirmed that the specificity of acyl-CoA in inositol acylation, as reported in studies of endogenous membranes (Franzot, S. P., and Doering, T. L. (1999) Biochem. J. 340, 25-32), is due to the properties of Gwt1p itself and not to other membrane components.  相似文献   

19.
Four major glycolipids were extracted from Toxoplasma gondii tachyzoites which were metabolically labeled with tritiated glucosamine, mannose, palmitic and myristic acid, ethanolamine, and inositol. Judging from their sensitivity to a set of enzymatic and chemical tests, these glycolipids share the following properties with the glycolipid moiety of the glycosylphosphatidylinositol anchor (GPI anchor) of the major surface protein, P30, of T. gondii: 1) a nonacetylated glucosamine-inositol phosphate linkage; 2) sensitivity toward phosphatidylinositol-specific phospholipase C and nitrous acid; 3) identity of HF-dephosphorylated GPI glycan backbone between three glycolipids and the HF-dephosphorylated core glycan of the GPI anchor of the major surface protein P30; 4) the presence of a linear core glycan structure blocked by an ethanolamine phosphate residue(s). Taken together with the nature of radiolabeled precursors incorporated into these glycolipids, the data indicate that these GPIs are involved in the biosynthesis of the GPI-membrane anchors of T. gondii.  相似文献   

20.
The glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum are believed to contribute to the pathogenesis of malaria by inducing the secretion of proinflammatory cytokines by macrophages. Previous studies have shown that P. falciparum GPIs elicit toxic immune responses by protein tyrosine kinase (PTK)- and protein kinase C (PKC)-mediated cell signaling pathways, which are activated by the carbohydrate and acyl moieties of the intact GPIs, respectively. In this study, we show that induction of TNF-alpha by P. falciparum GPIs in macrophages is mediated by the recognition of the distal fourth mannose residue. This event is critical but not sufficient for the productive cell signaling; interaction by the acylglycerol moiety of GPIs is also required. These novel interactions are coupled to previously demonstrated PTK and PKC pathways, since the specific inhibitors of these kinases effectively blocked the GPI-induced TNF-alpha production. Surprisingly, sn-2 lyso-GPIs were also able to elicit TNF-alpha secretion. Contrary to the prevailing notion, GPIs are neither inserted to the plasma membranes nor endocytosized. Thus, this study defines the GPI structural requirements and reveals a novel mechanism for the outside-in activation of cell signaling by P. falciparum GPIs in inducing proinflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号