首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
We present the cloning and sequencing of the ptsI gene, encoding enzyme I (EI) of the phosphoenolpyruvate (PEP): sugar phosphotransferase (PTS) transport system from Streptococcus salivarius. The ptsI gene corresponds to an open reading frame of 1731 nucleotides, which translates into a putative 577-amino acid (aa) protein with a M(r) of 62,948 and a pI of 4.49. The EI was produced in Escherichia coli under the control of its own promoter located immediately upstream of ptsI, a situation never previously reported for any other gene coding for an EI. The deduced aa sequence of the S. salivarius EI shows a high degree of similarity with the E. coli EI and the EI moiety of the multiphosphoryl transfer protein from Rhodobacter capsulatus. The S. salivarius EI also shares a highly conserved aa cluster with a non-PTS protein, the maize pyruvate:orthophosphate dikinase. The conserved cluster is located in a domain which is hypothesized to be the PEP-binding site.  相似文献   

3.
Kim JW  Kim HJ  Kim Y  Lee MS  Lee HS 《Molecules and cells》2001,11(2):220-225
The metC gene encoding the cystathionine beta-lyase, the third enzyme in the methionine biosynthetic pathway, was isolated from Corynebacterium glutamicum by heterologous complementation of the Escherichia coli metC mutant. A DNA-sequence analysis of the cloned DNA identified two open-reading frames (ORFs) of ORF1 and ORF2 that consisted of 1,107 and 978 bp, respectively. A SDS-PAGE analysis identified a putative cystathionine beta-lyase band with approximate Mr of 41,000 that consisted of 368 amino acids encoded from ORF1. The translational product of the gene showed no significant homology with that of the metC gene from other organisms. Introduction of the plasmid containing the metC gene into C. glutamicum resulted in a 5-fold increase in the activity of the cystathionine beta-lyase. The putative protein product of ORF2, encoding a protein product of 35,574 Da, consisted of 325 amino acids and was identical to the previously reported aecD gene product, except for the existence of two different amino acids. Like the aecD gene, when present in multiple copies, the metC gene conferred resistance to S-(betaaminoethyl)-cysteine, which is a toxic lysine analog. However, genetic and biochemical evidence suggests that the natural activity of the metC gene product is to mediate methionine biosynthesis in C. glutamicum. Mutant strains of metC were constructed, and the strains showed methionine prototrophy. The mutant strains completely lost their ability to show resistance to the S-(beta-aminoethyl)-cysteine. These results suggest that, in addition to the transsulfuration, other biosynthetic pathway(s), such as a direct sulfhydrylation pathway, may be functional in C. glutamicum as a parallel biosynthetic route for methionine.  相似文献   

4.
The argF gene encoding ornithine carbamoyl-transferase (OTCase; EC2.1.3.3) has been cloned from Corynebacterium glutamicum by transforming the Escherichia coli arginine auxotroph with the genomic DNA library. The cloned DNA also complements the E. coli argG mutant, suggesting a clustered organization of the genes in the genome. We have determined the DNA sequence of the minimal fragment complementing the E. coli argF mutant. The coding region of the cloned gene is 957 nucleotides long with a deduced molecular mass of about 35 kDa polypeptide. The enzyme activity and size of the expressed protein in the E. coli auxotroph carrying the argF gene revealed that the cloned gene indeed codes for OTCase. Analysis of the amino acid sequence of the predicted protein revealed a strong similarity to the corresponding protein of other bacteria.  相似文献   

5.
In this review, we describe the phosphotransferase system (PTS) of Corynebacterium glutamicum and discuss genes for putative global carbon regulation associated with the PTS. C. glutamicum ATCC 13032 has PTS genes encoding the general phosphotransferases enzyme I, HPr and four enzyme II permeases, specific for glucose, fructose, sucrose and one yet unknown substrate. C. gluamicum has a peculiar sugar transport system involving fructose efflux after hydrolyzing sucrose transported via sucrose EII. Also, in addition to their primary PTS, fructose and glucose are each transported by a second transporter, glucose EII and a non-PTS permease, respectively. Interestingly, C. glutamicum does not show any preference for glucose, and thus co-metabolizes glucose with other sugars or organic acids. Studies on PTS-mediated sugar uptake and its related regulation in C. glutamicum are important because the production yield of lysine and cell growth are dependent on the PTS sugars used as substrates for fermentation. In many bacteria, the PTS is also involved in several regulatory processes. However, the detailed molecular mechanism of global carbon regulation associated with the PTS in this organism has not yet been revealed.  相似文献   

6.
7.
To assess the mechanism and function of the glutamate uptake system of gram-positive Corynebacterium glutamicum, a mutant deficient in glutamate uptake was isolated and was then used to isolate a DNA fragment restoring this deficiency. In a low-copy-number vector, this fragment resulted in an increased glutamate uptake rate of 4.9 nmol/min/mg (wild type, 1.5 nmol/min/mg). In addition, carbon source-dependent regulation of the glutamate uptake system was determined with the fragment, showing that the entire structures required for expression and control reside on the fragment isolated. Sequencing of 3,977 bp revealed the presence of a four-gene cluster (gluABCD) with deduced polypeptide sequences characteristic of a nucleotide-binding protein (GluA), a periplasmic binding protein (GluB), and integral membrane proteins (GluC and GluD), identifying the glutamate transporter as a binding protein-dependent system (ABC transporter). This identification was confirmed by the kinetic characteristics obtained for cells grown in the presence of globomycin, which exhibited an increased Km of 1,400 microM (without globomycin, the Km was 1.5 microM) but a nearly unaltered maximum velocity. By applying gene-directed mutagenesis, a strain with the entire cluster deleted was constructed. With this mutant, the glutamate uptake rate was reduced from 1.4 to less than 0.1 nmol/min/mg, which is proof that this system is the only relevant one for glutamate uptake. With this strain, the glutamate excretion rate was unaffected (18 nmol/min/mg), showing that no component of gluABCD is involved in export but rather that a specific machinery functions for the latter purpose.  相似文献   

8.
Many bacteria take up carbohydrates by membrane‐integral sugar specific phosphoenolpyruvate‐dependent carbohydrate:phosphotransferase systems (PTS). Although the PTS is centrally involved in regulation of carbon metabolism in different bacteria, little is known about localization and putative oligomerization of the permease subunits (EII). Here, we analyzed localization of the fructose specific PtsF and the glucose specific PtsG transporters, as well as the general components EI and HPr from Corynebacterium glutamicum using widefield and single molecule localization microscopy. PtsF and PtsG form membrane embedded clusters that localize in a punctate pattern. Size, number and fluorescence of the membrane clusters change upon presence or absence of the transported substrate, and a direct influence of EI and HPr was not observed. In presence of the transport substrate, EII clusters significantly increased in size. Photo‐activated localization microscopy data revealed that, in presence of different carbon sources, the number of EII proteins per cluster remains the same, however, the density of these clusters reduces. Our work reveals a simple mechanism for efficient membrane occupancy regulation. Clusters of PTS EII transporters are densely packed in absence of a suitable substrate. In presence of a transported substrate, the EII proteins in individual clusters occupy larger membrane areas.  相似文献   

9.
Abstract The complete nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II (EIIMan) was determined. The gene consisted of 2052 base pairs encoding a protein of 683 amino acid residues; the molecular mass of the protein subunit was calculated to be 72570 Da. The N-terminal hydrophilic domain of EIIMan showed 39.7% homology with a C-terminal hydrophilic domain of Escherichia coli glucose-specific enzyme II (EIIGlc). Similar homology was shown between the C-terminal sequence of EIIMan and the E. coli glucose-specific enzyme III (EIIIGlc), or the EIII-like domain of Streptococcus mutans sucrose-specific enzyme II. Sequence comparison with other EIIs showed that EIIMan contained residues His-602 and Cys-28 which were homologous to the potential phosphorylation sites of EIIIGlc, or EIII-like domains, and hydrophilic domains (IIB) of several EIIs, respectively.  相似文献   

10.
本研究以谷氨酸棒杆菌(Corynebacterium glutamicum)标准菌株ATCC 13032染色体为模板,设计引物PCR扩增高丝氨酸脱氢酶编码基因(hom),在hom基因内部插入一段来源于质粒pET28a的卡那霉素抗性基因(Km),得到基因元件hom::Km;通过电击转化法将hom::Km转入出发菌株替换原菌株的hom,在含卡那霉素的平板上挑取阳性转化子,通过PCR验证得到高丝氨酸脱氢酶缺陷的重组菌。发酵结果表明重组菌C.g- hom::Km -8发酵60小时赖氨酸产量达到4.7 g/L,是出发菌株谷氨酸棒杆菌ATCC 13032(0.7 g/L)的6.7倍。  相似文献   

11.
By using appropriate Corynebacterium glutamicum-Escherichia coli shuttle plasmids, the gene encoding the fibronectin-binding protein 85A (85A) from Mycobacterium tuberculosis was expressed in C. glutamicum, also an actinomycete and nonsporulating gram-positive rod bacterium, which is widely used in industrial amino acid production. The 85A gene was weakly expressed in C. glutamicum under the control of the ptac promoter from E. coli, but it was produced efficiently under the control of the promoter of the cspB gene encoding PS2, one of the two major secreted proteins from C. glutamicum. The 85A protein was produced in various forms, with or without its own signal sequence and with or without the signal sequence and the NH2-terminal (18-amino-acid) mature sequence of PS2. Western blot analysis with monoclonal antibodies raised against the M. tuberculosis antigen 85 complex showed that recombinant 85A protein was present in the corynebacterial cell wall extract and also released in extracellular culture medium. NH2-terminal microsequencing of recombinant 85A secreted by C. glutamicum showed that signal peptide was effectively cleaved off at the predicted site. The recombinant 85A protein was biologically active in vitro, inducing significant secretion of Th1 T-cell cytokines, particularly interleukin-2 and gamma interferon, in spleen cell cultures from mice vaccinated with live Mycobacterium bovis BCG. Heterologous expression of mycobacterial antigens in C. glutamicum now offers a potent tool for further immunological characterization and large scale preparation of these recombinant proteins.  相似文献   

12.
Fine genetic mapping of the pts region coding for general components of PTS was performed. Over 30 spontaneous pts mutations were investigated. By means of the complementation test using the F'trp+ purC+ ptsI episome, both ptsI and ptsH mutations were revealed among them. With the help of reciprocal three point transduction crosses, 8 of them were situated in the pts region. Two of them were in ptsH gene, the rest being in ptsI gene. The lysogenic strain was obtained with lambda inserted in the pts region. Heat curing of the lysogene led to a number of deletions and insertions. Six of them were mapped with the help of the point mutations studied.  相似文献   

13.
The aroB gene encoding dehydroquinate synthase of Corynebacterium glutamicum has been cloned by complementation of an aro auxotrophic mutant of Escherichia coli with the genomic DNA library. The recombinant plasmid contained a 1.4-kb fragment that complemented the Escherichia coli dehydroquinate-synthase-deficient mutant. The nucleotide sequences of the subcloned DNA has been determined. The sequences contain an open reading frame of 360 codons, from which a protein with a molecular mass of about 38 kDa could be predicted. This is consistent with the size of the AroB protein expressed in E. coli. Alignment of different prokaryotic and eukaryotic aroB gene products reveals an overall identity ranging from 29 to 57% and the presence of several highly conserved regions.  相似文献   

14.
利用生物信息学手段,在GenBank数据库进行氨基酸的同源性检索分析,发现来自谷氨酸棒杆茵(Corynebacterium glutamicum)一功能未确定的ORF序列被注释为假设的海藻糖酶(putative trehalose sesynthase),它与已报道的海藻糖合成酶的氨基酸序列有60%以上的同源性。本研究把这段ORF克隆到大肠杆茵进行表达及进行功能鉴定。实验表明这段ORF序列为一新的海藻糖合成酶基因,其表达产物能将麦芽糖分子转化成海藻糖分子。重组酶性质的初步研究表明重组酶在pH7.0~7.5,30℃转化麦芽糖效率最高。  相似文献   

15.
16.
Isocitrate lyase is a key enzyme in the glyoxylate cycle and is essential as an anaplerotic enzyme for growth on acetate as a carbon source. It is assumed to be of major importance in carbon flux control in the amino acid-producing organism Corynebacterium glutamicum. In crude extracts of C. glutamicum, the specific activities of isocitrate lyase were found to be 0.01 U/mg of protein after growth on glucose and 2.8 U/mg of protein after growth on acetate, indicating tight regulation. The isocitrate lyase gene, aceA, was isolated, subcloned, and characterized. The predicted gene product of aceA consists of 432 amino acids (M(r), 47,228) and shows up to 57% identity to the respective enzymes from other organisms. Downstream of aceA, a gene essential for thiamine biosynthesis was identified. Overexpression of aceA in C. glutamicum resulted in specific activities of 0.1 and 7.4 U/mg of protein in minimal medium containing glucose and acetate, respectively. Inactivation of the chromosomal aceA gene led to an inability to grow on acetate and to the absence of any detectable isocitrate lyase activity. Isocitrate lyase was purified to apparent homogeneity and subjected to biochemical analysis. The native enzyme was shown to be a tetramer of identical subunits, to exhibit an ordered Uni-Bi mechanism of catalysis, and to be effectively inhibited by 3-phosphoglycerate, 6-phosphogluconate, phosphoenolpyruvate, fructose-1,6-bisphosphate, and succinate.  相似文献   

17.
Cloning vector system for Corynebacterium glutamicum.   总被引:26,自引:8,他引:18       下载免费PDF全文
A protoplast transformation system has been developed for Corynebacterium glutamicum by using a C. glutamicum-Bacillus subtilis chimeric vector. The chimera was constructed by joining a 3.0-kilobase cryptic C. glutamicum plasmid and the B. subtilis plasmid pBD10. The neomycin resistance gene on the chimera, pHY416, was expressed in C. glutamicum, although the chloramphenicol resistance gene was not. The various parameters in the transformation protocol were analyzed separately and optimized. The resulting transformation system is simple and routinely yields 10(4) transformants per microgram of plasmid DNA.  相似文献   

18.
Enzyme I of the bacterial phosphoenolpyruvate: glycose phosphotransferase system has 2 tryptophan residues/monomer, as determined spectrophotometrically. The tryptophan fluorescence has been investigated with the aid of nanosecond time-resolved techniques. The decay of the fluorescence intensity was analyzed in terms of a biexponential function. The contribution of the emission associated with the shorter decay constant increases from 17-19% at 1 degree C to 43-44% at room temperature. Decay-associated spectra obtained with Enzyme I indicate different spectral distributions associated with the two decay constants. The measurement of tumbling of Enzyme I as a function of temperature revealed a transition of rotational rates between 5 and 15.5 degrees C. Global analysis allowed decomposition of the anisotropy decay into a formulation consistent with monomer and dimer rotational contributions.  相似文献   

19.
Malic enzyme is one of at least five enzymes, known to be present in Corynebacterium glutamicum, capable of carboxylation and decarboxylation reactions coupling glycolysis and the tricarboxylic acid cycle. To date, no information is available concerning the physiological role of the malic enzyme in this bacterium. The malE gene from C. glutamicum has been cloned and sequenced. The protein encoded by this gene has been purified to homogeneity, and the biochemical properties have been established. Biochemical characteristics indicate a decarboxylation role linked to NADPH generation. Strains of C. glutamicum in which the malE gene had been disrupted or overexpressed showed no detectable phenotype during growth on either acetate or glucose, but showed a significant modification of growth behavior during lactate metabolism. The wild type showed a characteristic brief period of exponential growth on lactate followed by a linear growth period. This growth pattern was further accentuated in a malE-disrupted strain (Delta malE). However, the strain overexpressing malE maintained exponential growth until all lactate had been consumed. This strain accumulated significantly larger amounts of pyruvate in the medium than the other strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号