首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
本文研究了高粱细胞质雄性不育花药、可育花药不同发育时期的COD、PPO、MDH及游离组蛋白变化特征,结果表明,在花粉母细胞减数分裂期,COD、PPO未呈现差异,但到了小孢子单核期,不育花药与可育花药间COD、PPO出现明显差异,并且这种差异一直保持至花粉粒双核—三核期。COD、PPO的变化时期与花粉败育的关键时期(小孢子单核期)相一致。不育花药与可育花药的MDH两者相同,但游离组蛋白在花药发育的不同时期均呈现明显差异。本文作者将不育花药、可育花药的COD、PPO及游离组蛋白中出现的差异归因于不育花药中的细胞质不育基因对核基因表达的调控作用。  相似文献   

2.
太谷核不育小麦,从小孢子母细胞减数分裂期开始,不育株花药的核酸代谢就有明显异常,核糖核酸(RNA)含量很低,仅为可育株花药的22%,而游离单磷酸尿苷(UMP)含量则高于可育花药4倍左右。不同育性花药中RNA聚合酶活力无明显差别。RNA水解酶活力表现异常,如其组成酶中新酶n带的出现和原有各组成酶相对活力不同程度的提高等。可育株和不育株旗叶的核酸含量无明显差别。  相似文献   

3.
白菜细胞核雄性不育花药的细胞化学观察   总被引:1,自引:0,他引:1  
对一种由一对隐性基因控制的白菜细胞核雄性不育和可育株的花药进行了细胞学和组织化学研究。种子播种后,有1/4植株为不育株,其余的为可育株。通过对不育株和可育株花药发育的细胞学观察,确认不育花粉的败育发生在小孢子发育时期。用组织化学的方法研究了可育株和不育株花药发育过程中的多糖和脂类的分布动态,发现在减数分裂前,可育花药和不育花药的药隔细胞中都储藏了大量的淀粉粒。二者的差异仅是不育花药的绒毡层细胞液泡化明显。在减数分裂后的小孢子发育时期,可育花药的绒毡层细胞具有将药隔细胞中的淀粉粒多糖吸收并转化成脂类的功能,小孢子及以后的二胞花粉中也积累了大量的脂类储藏物质在不育花药中,虽然减数分裂后药隔细胞中的淀粉粒也都消失,但绒毡层细胞中的脂类物质相比很少,同时绒毡层细胞显示了明显的多糖反应,表明不育花药的绒毡层细胞将糖类转化为脂类的功能受阻。在小孢子的表面有些脂类物质,但在细胞质中却没有脂类积累。这一结果暗示在该种白菜细胞核雄性不育株中,由于花药绒毡层细胞转换多糖为脂类的功能失常,导致了小孢子的败育。  相似文献   

4.
为探讨高羊茅雄性不育株A22013189的小孢子发育过程及其败育的生理学机理,以可育株189为对照,对其结实能力、花粉活力、花粉母细胞减数分裂进程中的染色体行为及生理生化特征进行研究。结果表明:(1)不育株A22013189花粉数量少,花粉粒空瘪皱褶,自交不结实,在杂交中作父本获得杂交后代的可能性极小。(2)从减数分裂前期Ⅰ至四分体时期,不育株A22013189花粉母细胞存在大量落后染色体、染色体桥和断片、微核、单价染色体、不均等分离、染色体分裂不同步、游离染色体、三分体、60°纺锤体、染色体缺失等异常现象,初步分析这些小孢子异常分裂是导致高羊茅花粉败育的细胞学原因之一。(3)不育株A22013189的可溶性蛋白质、可溶性糖含量在整个发育时期都显著低于同期可育株189;苗期至造孢细胞期,A22013189游离脯氨酸含量与可育株189无显著差异,但减数分裂期至花粉成熟期,A22013189游离脯氨酸含量却显著低于同期可育株189;苗期至造孢细胞期,A22013189丙二醛含量显著低于同期可育株189,但小孢子进入减数分裂期后,A22013189丙二醛的增加速度和积累量明显高于同期可育株189。研究发现,高羊茅雄性不育株花粉母细胞减数分裂染色体行为异常,生长发育过程存在物质能量代谢降低,有害物质积累现象。研究结果对于高羊茅败育机理研究及杂交育种亲本选择有重要的理论指导意义。  相似文献   

5.
白菜细胞核雄性不育花药的细胞化学观察   总被引:12,自引:1,他引:11  
对一种由一对隐性基因控制的白菜细胞核雄性不育和可育株的花药进行了细胞学和组织化学研究。种子播种后,有1/4植株为不育株,其余的为可育株。通过对不育株和可育株花药发育的细胞学观察,确认不育花粉的败育发生在小孢子发育时期。用组织化学的方法研究了可育株和不育株花药发育过程中的多糖和脂类的分布动态,发现在减数分裂前,可育花药和不育花药的药隔细胞中都储藏了大量的淀粉粒。二者的差异仅是不育花药的绒毡层细胞液泡化明显。在减数分裂后的小孢子发育时期,可育花药的绒毡层细胞具有将药隔细胞中的淀粉粒多糖吸收并转化成脂类的功能,小孢子及以后的二胞花粉中也积累了大量的脂类储藏物质。在不育花药中,虽然减数分裂后药隔细胞中的淀粉粒也都消失,但绒毡层细胞中的脂类物质相比很少,同时绒毡层细胞显示了明显的多糖反应,表明不育花药的绒毡层细胞将糖类转化为脂类的功能受阻。在小孢子的表面有些脂类物质,但在细胞质中却没有脂类积累。这一结果暗示在该种白菜细胞核雄性不育株中,由于花药绒毡层细胞转换多糖为脂类的功能失常,导致了小孢子的败育。  相似文献   

6.
用焦锑酸盐沉淀法研究了温敏雄性核不育水稻在减数分裂时期和单核早期可育花药与不育花药的钙分布.结果表明:在减数分裂时期,可育花药小孢子母细胞和药室内的钙颗粒很少,而不育花药小孢子母细胞中分布许多的钙颗粒,特别是药室中的钙颗粒异常丰富,小孢子母细胞减数分裂异常,细胞质收缩退化.在单核早期,可育花药花粉内的钙颗粒极少,花粉表面分布许多钙颗粒,而不育花药花粉内分布许多钙颗粒,药室内的钙颗粒仍然非常丰富.可育花药维管束鞘细胞体积大且形状规则,细胞内的钙颗粒很少,而不育花药维管束鞘细胞体积小且形状不规则,细胞内的钙颗粒较多.  相似文献   

7.
芝麻(Sesamum indicum)核雄性不育系ms86-1姊妹交后代表现为可育、部分不育(即微粉)及完全不育(简称不育)3种类型。不同育性类型的花药及花粉粒形态差异明显。Alexander染色实验显示微粉植株花粉粒外壁为蓝绿色, 内部为不均一洋红色, 与可育株及不育株花粉粒的染色特征均不相同。为探明芝麻微粉发生机理, 在电子显微镜下比较观察了可育、微粉、不育类型的小孢子发育过程。结果表明, 可育株小孢子母细胞减数分裂时期代谢旺盛, 胞质中出现大量脂质小球; 四分体时期绒毡层细胞开始降解, 单核小孢子时期开始出现乌氏体, 成熟花粉时期花粉囊腔内及花粉粒周围分布着大量乌氏体, 花粉粒外壁有11–13个棱状凸起, 表面存在大量基粒棒, 形成紧密的覆盖层。不育株小孢子发育异常显现于减数分裂时期, 此时胞质中无脂质小球出现, 细胞壁开始积累胼胝质; 四分体时期绒毡层细胞未见降解; 单核小孢子时期无乌氏体出现; 成熟花粉时期花粉囊腔中未发现正常的乌氏体, 存在大量空瘪的败育小孢子, 外壁积累胼胝质, 缺乏基粒棒。微粉株小孢子在减数分裂时期可见胞质内有大量脂质小球, 四分体时期部分绒毡层发生变形, 单核小孢子时期有部分绒毡层开始降解; 绒毡层细胞降解滞后为少量发育进程迟缓的小孢子提供了营养物质, 部分小孢子发育为正常花粉粒; 这些花粉粒比较饱满, 表面有少量颗粒状突起, 但未能形成覆盖层, 花粉囊腔中及小孢子周围存在少量的乌氏体。小孢子形成的育性类型与绒毡层降解是否正常有关。  相似文献   

8.
采用石蜡切片方法,对甘蓝型油菜隐性上位互作核不育材料1665的可育株与不育株花药进行细胞学观察.结果显示:(1)不育株花药在花粉母细胞减数分裂时期出现异常,部分花粉母细胞细胞分裂相不均等分裂或分裂异常.导致部分四分体形状异常.(2)不育株绒毡层细胞在四分体时期开始生长膨大,单核花粉时期出现液泡化和巨型化,侵占药室,使得小孢子不能正常释放或无法继续发育;部分释放出的小孢子未及时形成花粉壁,阻碍花粉继续发育.不能发育形成二核期和三核期花粉,导致花药败育.  相似文献   

9.
从小麦幼苗和花药中提取的二氢吡咯-5-羧酸(P5C)还原酶,在可育花药中活性很高,约为幼苗中活性的7~13倍,表明花药有很高的脯氨酸合成能力。从减数分裂期到单核靠边期酶活性逐渐升高,到双核初期明显降低。在不育花药中,减数分裂期酶活性高于可育花药,到单核初期酶活明显下降,仅为可育花药活性的一半。 初步纯化的小麦幼苗P5C还原酶的最适pH为7.2左右。对P5C和NADH的K_m值分别为400μmol/L和370/μmol/L。以NADPH为供氢体,其酶活性为NADH的35%。NADP~+、NAD~+、ATP、ADP对酶活性均有强烈的抑制作用。脯氨酸浓度在10m mol/L以上对酶活有轻微抑制作用。  相似文献   

10.
太谷核不育小麦营养体内的游离脯氨酸能迅速地运入并积累于花药中,花药有将谷氨酸转化成脯氨酸的能力。脯氨酸向花药内以主动运输为主,能被DNP所抑制,与旗叶的功能密切相关。在发育阶段Ⅰ(小孢子释放前后),脯氨酸已不能由营养体运入不育花药,运输的障碍在花丝或花药中,不育花药缺乏游离脯氨酸可能是主要原因。发育阶段Ⅰ的可育花药内,脯氨酸是合成蛋白质或其他大分子物质的原料。因而,脯氨酸的缺乏可能是加速不育花药小孢子败育和小孢子释放后急剧解体的重要原因。  相似文献   

11.
Biochemical analyses were made on anthers and pistils at various developmental stages of both male-sterne and fertile plants of Taigu wheat. Analyses ineluded total free amino aeids and free proline. The following results were obtained: 1. There was no significant difference between the content of free proline in anthers of male-sterile and fertile plants at reduction division of mierospore mother cells. 2. In anthers with early uninucleate miorospores, the content of free proline of fertile plants was remarkably higher than that of male-sterile plants. It is interesting to note that at this stage the content of free proline in fertile plants rose to 1.65% of the dry weight of the anther, constituting 50% of the total free amino acids, and amounted to 7-fold of that in male-sterile plants. This result is in line with the results obtained with most cytoplasmic malesterile plants reported by other workers, although malesterility in Taigu wheat is controlled by the nueleus. 3. In pistils, at the stages eorresponding to the early uninneleate and the binueleate stages of the pollen, the free proline content of fertile plants was twice as much as that of the male-sterile plants. This differenee disappeared gradually after fertilization. 4. Tile content of total free amino aoids did not fluetuate as much as the free proline content. There was no differenee in anthers of both types of plants during reduction division of mierospore mother cells. In anthers with early uninueleate pollen grains, total free amino acid content of fertile plants exceeded that of male-sterile plant, the difference levelled off at latter stages. In pistils, before fertilization, the content of total free amino acids of the fertile phmts was slightly higher than that of the male-sterile plants. After fertilization t}fis difference was no nmre noticeable.  相似文献   

12.
水稻雄性不育与花药中类脂褐素的积累   总被引:1,自引:0,他引:1  
细胞质雄性不育水稻不育系珍汕97A和其保持系珍汕97B,处于不育期的光(温)敏核不育水稻W6154s和培矮64s的花药中类脂褐素(LFLP)含量随花粉发育或败育而增高.不育花药中LFLP的形成速率比可育花药快,三核期的珍汕97A和不育期W6154s的花药,其LFLP比相应具育性花药高24%.用抗氧化剂GSH、BHT和N2处理离体的单核期花药,发现GSH可降低珍汕97A和不育期的W6154s的LFLP含量.结果认为,水稻雄性不育与膜脂过氧化作用的荧光产物类脂褐素的积累有关.  相似文献   

13.
Summary Development of anthers in cytoplasmic male sterile (CMS) Petunia diverges from the normal sequence of events early in meiosis. Quantitative and qualitative changes in morphology, proteins and free amino acid contents correlate with this divergence. In anthers of the fertile line (5719), total protein content increases, and SDS-PAGE protein patterns change as the anthers mature. Enhanced levels of three polypeptides with molecular weights of 64,000, 63,000 and 45,000 daltons characterize premeiosis in fertile anthers. Protein levels and patterns from anthers of the CMS line (5707) show little alteration during anther development. Protein synthesis seems to be at least partially blocked in the CMS microspore. The 63,000 and 45,000 dalton proteins are not present, and the absence of any unique protein(s) in the CMS line argues against a virus as the causal agent of CMS in Petunia. Analysis of free amino acids from anthers of the fertile line shows levels of proline and pipecolic acid 2–3 and 10–20 fold higher, respectively, than in the CMS line. The amino acids incorporated into proteins show no such differences; analysis of protein hydrolysates shows similar levels of each amino acid in both fertile and CMS lines at every developmental stage examined.  相似文献   

14.
棉花洞A型核雄性不育系花药败育过程中的生化变化   总被引:14,自引:0,他引:14  
研究了陆地棉洞A型核雄性不育系(抗A1,MA)不育和可育花药不同发育时期可溶性碳水化合物、游离氨基酸和IAA、GA3、ABA含量的动态变化。结果表明,不育花药中可溶性糖含量偏高,缺乏淀粉积累;有4种游离氨基酸含量在可育与不育花药问存在显著差异,其中不育花药天门冬氨酸含量偏高,这可能是其败育的原因之一,而脯氨酸、精氨酸、苯丙氨酸含量异常,则是不育花药败育的结果;在花药主要败育时期之前,不育花药中ABA含量极显著偏高,IAA、GA3含量极显著偏低。不育花药中IAA、GA3、ABA含量变化与洞A型核雄性不育系花药败育密切相关。  相似文献   

15.
The content of the carbohydrates glucose, fructose and sucrose was determined in spring barley anthers at different stages of maturity. During maturation the sucrose content of the anthers increased markedly. The following 17 free amino acids were detected in anthers of different stages of maturity: aspartic acid, glutamic acid, serine, alanine, arginine, leucine, isoleucine, lysine, α-aminobutyric acid, glutamine, proline, tyrosine, phenylalanine, valine, threonine, cystine and glycine. Quantitative analysis was only carried out in amino acids present in higher concentrations in the analysed samples. These were: aspartic acid, glutamic acid, α-aminobutyric acid, proline, serine, valine and glutamine, and a mixture of amino acids (leucine, isoleucine, valine and phenylalanine). The total content of free amino acids increased with increasing maturity of the anthers. However, not all amino acids followed contributed to this increase, but only proline, glutamic acid, aspartic acid and glutamine. A small difference was found in the variety Gopal in which the aspartic acid content did not increase significantly, but the content of the mixture of amino acids and serine did. With the exception of green anthers of the variety Firlbecks Union, proline was present in the highest concentration in all samples analysed.  相似文献   

16.
Summary The free amino acid contents in the anthers of male fertile, cytoplasmic male sterile (cms) and genic male sterile (gms) petunia lines were compared at different developmental stages of the male gametophyte. Quantitative differences in the amounts of free amino acids were found between the fertile and male sterile lines and between the cms and gms lines. The differences between the sterile lines were correlated with the different developmental stages at which the breakdown in microsporogenesis occurred. In the Rosy Morn (RM) cms line, where breakdown of microsporogenesis occurred at the end of prophase 1, there was an associated increase in asparagine and decrease in the other amino acids. In the RM gms line, in which breakdown occurred at the tetrad stage, an accumulation of asparagine in the anthers corresponded with an accumulation of glutamine beginning at prophase 1. Compared with fertile anthers, the sterile anthers accumulated much proline at the early meiotic stages, but no -aminobutyric acid. Comparison of the free amino acids of the fertile and the male sterile lines indicates that certain biochemical events leading to breakdown of microsporogenesis precede the observed cytological breakdown. The results from adding asparagine and glutamine to extracts of anthers at different developmental stages suggest that the amino acid balance may contribute to the changes in pH in the fertile and male sterile anthers which we observed previously.Contribution from the Volcani Center, Agricultural Research Organization Bet Dagan, Israel. 1972 Series, No. 2083 E.  相似文献   

17.
Summary The development of sporogenous and tapetal cells in the anthers of male-fertile and cytoplasmic male-sterile sugar beet (Beta vulgaris L.) plants was studied using light and transmission electron microscopy. In general, male-sterile anthers showed a much greater variability in developmental pattern than male-fertile anthers. The earliest deviation from normal anther development was observed to occur in sterile anthers at meiotic early prophase: there was a degeneration or irregular proliferation of the tapetal cells. Other early aberrant events were the occurrence of numerous small vesicles in the microspore mother cells (MMC) and a disorganized chromatin condensation. Deviations that occurred in sterile anthers at later developmental stages included: (1) less distinct inner structures in the mitochondria of both MMC and tapetal cells from middle prophase onwards. (2) dilated ER and nuclear membranes at MMC prophase, in some cases associated with the formation of protein bodies. (3) breakdown of cell walls in MMCs and tapetal cells at late meiotic prophase. (4) no massive increase in tapetal ER at the tetrad stage. (5) a general dissolution of membranes, first in the MMC, then in the tapetum. (6) abortion of microspores and the occurrence of a plasmodial tapetum in anthers reaching the microspore stage. (7) no distinct degeneration of tapetal cells after microspore formation. Thus, it seems that the factors that lead to abortive microsporogenesis are structurally expressed at widely different times during anther development. Aberrant patterns are not restricted to the tetrad stage but occur at early prophase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号