首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
14-3-3 proteins are important regulators of numerous cellular signaling circuits. They bind to phosphorylated protein ligands and regulate their functions by a number of different mechanisms. The C-terminal part of the 14-3-3 protein is known to be involved in the regulation of 14-3-3 binding properties. The structure of this region is unknown; however, a possible location of the C-terminal stretch within the ligand binding groove of the 14-3-3 protein has been suggested. To fully understand the role of the C-terminal stretch in the regulation of the 14-3-3 protein binding properties, we investigated the physical location of the C-terminal stretch and its changes upon the ligand binding. For this purpose, we have used Forster resonance energy transfer (FRET) measurements and molecular dynamics simulation. FRET measurements between Trp242 located at the end of the C-terminal stretch and a dansyl group attached at two different cysteine residues (Cys25 or Cys189) indicated that in the absence of the ligand, the C-terminal stretch occupies the ligand binding groove of 14-3-3 protein. Our data also showed that phosphopeptide binding displaces the C-terminal stretch from the ligand binding groove. Intramolecular distances calculated from FRET measurements fit well with distances obtained from molecular dynamics simulation of full-length 14-3-3zeta protein.  相似文献   

2.
Beside of the protein crystallography or NMR, another attractive option in protein structure analysis has recently appeared: computer modeling of the protein structure based on homology and similarity with proteins of already known structures. We have used the combination of computer modeling with spectroscopic techniques, such as steady-state or time-resolved fluorescence spectroscopy, and with molecular biology techniques. This method could provide useful structural information in the cases where crystal or NMR structure is not available. Molecular modeling of the ATP site within the H4-H5-loop revealed eight amino acids residues, namely besides the previously reported amino acids Asp443, Lys480, Lys501, Gly502 and Arg544, also Glu446, Phe475 and Gln482, which form the complete ATP recognition site. Moreover, we have proved that a hydrogen bond between Arg423 and Glu472 supports the connection of two opposite halves of the ATP-binding pocket. Similarly, the conserved residue Pro489 is important for the proper interaction of the third and fourth beta-strands, which both contain residues that take part in the ATP-binding. Alternatively, molecular dynamics simulation combined with dynamic fluorescence spectroscopy revealed that 14-3-3 zeta C-terminal stretch is directly involved in the interaction of 14-3-3 protein with the ligand. Phosphorylation at Thr232 induces a conformational change of the C-terminus, which is presumably responsible for observed inhibition of binding abilities. Phosphorylation at Thr232 induces more extended conformation of 14-3-3zeta C-terminal stretch and changes its interaction with the rest of the 14-3-3 molecule. This could explain negative regulatory effect of phosphorylation at Thr232 on 14-3-3 binding properties.  相似文献   

3.
Tyrosine hydroxylase (TH) catalyzes the first step in the biosynthesis of catecholamines. Regulation of TH enzyme activity is controlled through the posttranslational modification of its regulatory domain. The regulatory domain of TH can be phosphorylated at four serines (8, 19, 31, and 40) by a variety of protein kinases. Phosphorylation of Ser19 does not by itself increase TH activity but induces its binding to the 14-3-3 protein. That leads to the enhancement of TH activity with a still not fully understood mechanism. The main goal of this work was to investigate whether the 14-3-3 protein binding affects the conformation of the regulatory domain of human TH isoform 1 (TH1R). Site-directed mutagenesis was used to generate five single-tryptophan mutants of TH1R with the Trp residue located at five different positions within the domain (positions 14, 34, 73, 103, and 131). Time-resolved tryptophan fluorescence measurements revealed that phosphorylation of Ser19 and Ser40 does not itself induce any significant structural changes in regions surrounding inserted tryptophans. On the other hand, the interaction between the 14-3-3 protein and phosphorylated TH1R decreases the solvent exposure of tryptophan residues at positions 14 and 34 and induces distinct structural change in the vicinity of Trp73. The 14-3-3 protein binding also reduces the sensitivity of phosphorylated TH1R to proteolysis by protecting its N-terminal part (first 33 residues). Circular dichroism measurements showed that TH1R is an unstructured protein with a low content of secondary structure and that neither phosphorylation nor the 14-3-3 protein binding changes its secondary structure.  相似文献   

4.
Obsil T  Ghirlando R  Klein DC  Ganguly S  Dyda F 《Cell》2001,105(2):257-267
Serotonin N-acetyltransferase (AANAT) controls the daily rhythm in melatonin synthesis. When isolated from tissue, AANAT copurifies with isoforms epsilon and zeta of 14-3-3. We have determined the structure of AANAT bound to 14-3-3zeta, an association that is phosphorylation dependent. AANAT is bound in the central channel of the 14-3-3zeta dimer, and is held in place by extensive interactions both with the amphipathic phosphopeptide binding groove of 14-3-3zeta and with other parts of the central channel. Thermodynamic and activity measurements, together with crystallographic analysis, indicate that binding of AANAT by 14-3-3zeta modulates AANAT's activity and affinity for its substrates by stabilizing a region of AANAT involved in substrate binding.  相似文献   

5.
Phosphorylation at the C-terminal flexible region of the C-Raf protein plays an important role in regulating its biological activity. Auto-phosphorylation at serine 621 (S621) in this region maintains C-Raf stability and activity. This phosphorylation mediates the interaction between C-Raf and scaffold protein 14-3-3ζ to activate the downstream MEK kinase pathway. In this study, we have defined the interaction of C-terminal peptide sequence of C-Raf with 14-3-3ζ protein and determined the possible structural adaptation of this region. Biophysical elucidation of the interaction was carried out using phosphopeptide (residue number 615–630) in the presence of 14-3-3ζ protein. Using isothermal titration calorimetry (ITC), a high binding affinity with micro-molar range was found to exist between the peptide and 14-3-3ζ protein, whereas the non-phosphorylated peptide did not show any appreciable binding affinity. Further interaction details were investigated using several biophysical techniques such as circular dichroism (CD), fluorescence, and nuclear magnetic resonance (NMR) spectroscopy, in addition to molecular modeling. This study provides the molecular basis for C-Raf C-terminal-derived phosphopeptide interaction with 14-3-3ζ protein as well as structural insights responsible for phosphorylated S621-mediated 14-3-3ζ binding at an atomic resolution.  相似文献   

6.
7.
The plant plasma membrane H(+)-ATPase is regulated by an auto-inhibitory C-terminal domain that can be displaced by phosphorylation of the penultimate residue, a Thr, and the subsequent binding of 14-3-3 proteins. By mass spectrometric analysis of plasma membrane H(+)-ATPase isoform 2 (PMA2) isolated from Nicotiana tabacum plants and suspension cells, we identified a new phosphorylation site, Thr-889, in a region of the C-terminal domain upstream of the 14-3-3 protein binding site. This residue was mutated into aspartate or alanine, and the mutated H(+)-ATPases expressed in the yeast Saccharomyces cerevisiae. Unlike wild-type PMA2, which could replace the yeast H(+)-ATPases, the PMA2-Thr889Ala mutant did not allow yeast growth, whereas the PMA2-Thr889Asp mutant resulted in improved growth and increased H(+)-ATPase activity despite reduced phosphorylation of the PMA2 penultimate residue and reduced 14-3-3 protein binding. To determine whether the regulation taking place at Thr-889 was independent of phosphorylation of the penultimate residue and 14-3-3 protein binding, we examined the effect of combining the PMA2-Thr889Asp mutation with mutations of other residues that impair phosphorylation of the penultimate residue and/or binding of 14-3-3 proteins. The results showed that in yeast, PMA2 Thr-889 phosphorylation could activate H(+)-ATPase if PMA2 was also phosphorylated at its penultimate residue. However, binding of 14-3-3 proteins was not required, although 14-3-3 binding resulted in further activation. These results were confirmed in N. tabacum suspension cells. These data define a new H(+)-ATPase activation mechanism that can take place without 14-3-3 proteins.  相似文献   

8.
9.
10.
The alpha chain of the platelet von Willebrand factor receptor, glycoprotein (GP) Ib, is not known to be phosphorylated. Here, we report that the cytoplasmic domain of GPIbalpha is phosphorylated at Ser(609); this was detected by immunoblotting with an anti-phosphopeptide antibody, anti-pS609, that specifically recognizes the GPIbalpha C-terminal sequence S(606)GHSL(610) only when Ser(609) is phosphorylated. Immunoabsorption with anti-pS609 removed almost all of the GPIbalpha from platelet lysates, indicating a high proportion of GPIbalpha phosphorylation. Anti-pS609 inhibited GPIb-IX binding to the intracellular signaling molecule, 14-3-3zeta. Dephosphorylation of GPIb-IX with potato acid phosphatase inhibited anti-pS609 binding and also 14-3-3zeta binding. A synthetic phosphopeptide corresponding to the GPIbalpha C-terminal sequence (SIRYSGHpSL), but not a nonphosphorylated identical peptide, abolished GPIb-IX binding to 14-3-3zeta. Thus, phosphorylation at Ser(609) of GPIbalpha is important for 14-3-3zeta binding to GPIb-IX. In certain regions of spreading platelets, particularly at the periphery, there was a reduction in GPIbalpha staining by anti-pS609 as observed under a confocal microscope, indicating that a subpopulation of GPIbalpha molecules in these regions is dephosphorylated. These data suggest that phosphorylation and dephosphorylation at Ser(609) of GPIbalpha regulates GPIb-IX interaction with 14-3-3 and may play important roles in the process of platelet adhesion and spreading.  相似文献   

11.
In many human cancers, the cyclin-dependent kinase inhibitor p27(Kip1) is expressed at low or undetectable levels. The decreased p27(Kip1) expression allows cyclin-dependent kinase activity to cause cells to enter into S phase and correlates with poor patient survival. Inhibition of serine/threonine kinase Akt signaling by some pharmacological agents or by PTEN induces G(1) arrest, in part by up-regulating p27(Kip1). However, the role of Akt-dependent phosphorylation in p27(Kip1) regulation is not clear. Here, we show that Akt bound directly to and phosphorylated p27(Kip1). Screening p27(Kip1) phosphorylation sites identified the COOH-terminal Thr(198) residue as a novel site. Further analysis revealed that 14-3-3 proteins bound to p27(Kip1) through Thr(198) only when it was phosphorylated by Akt. Although Akt also phosphorylated p27(Kip1) at Ser(10) and Thr(187), these two sites were not involved in the binding to 14-3-3 proteins. p27(Kip1) phosphorylated at Thr(198) exists only in the cytoplasm. Therefore, Akt promotes cell-cycle progression through the mechanisms of phosphorylation-dependent 14-3-3 binding to p27(Kip1) and cytoplasmic localization.  相似文献   

12.
Tyrosine hydroxylase (TH) has been reported to require binding of 14-3-3 proteins for optimal activation by phosphorylation. We examined the effects of phosphorylation at Ser19, Ser31 and Ser40 of bovine TH and human TH isoforms on their binding to the 14-3-3 proteins BMH1/BMH2, as well as 14-3-3 zeta and a mixture of sheep brain 14-3-3 proteins. Phosphorylation of Ser31 did not result in 14-3-3 binding, however, phosphorylation of TH on Ser40 increased its affinity towards the yeast 14-3-3 isoforms BMH1/BMH2 and sheep brain 14-3-3, but not for 14-3-3 zeta. On phosphorylation of both Ser19 and Ser40, binding to the 14-3-3 zeta isoform also occurred, and the binding affinity to BMH1 and sheep brain 14-3-3 increased. Both phosphoserine-specific antibodies directed against the 10 amino acids surrounding Ser19 or Ser40 of TH, and the phosphorylated peptides themselves, inhibited the association between phosphorylated TH and 14-3-3 proteins. This was also found when heparin was added, or after proteolytic removal of the N-terminal 37 amino acids of Ser40-phosphorylated TH. Binding of BMH1 to phosphorylated TH decreased the rate of dephosphorylation by protein phosphatase 2A, but no significant change in enzymatic activity was observed in the presence of BMH1. These findings further support a role for 14-3-3 proteins in the regulation of catecholamine biosynthesis and demonstrate isoform specificity for both TH and 14-3-3 proteins.  相似文献   

13.
The 14-3-3 proteins play a central role in the regulation of cell growth, cycling, and apoptosis by modulating the functional activities of key signaling proteins. Through binding to a phosphoserine motif, 14-3-3 alters target proteins activities by sequestering them, relocalizing them, conformationally altering their functional activity, or by promoting interaction with other proteins. These functions of 14-3-3 are facilitated by, if not dependent on, its dimeric structure. We now show that the dimeric status of 14-3-3 is regulated by site-specific serine phosphorylation. We found that a sphingosine-dependent kinase phosphorylates 14-3-3 in vitro and in vivo on a serine residue (Ser58) located within the dimer interface. Furthermore, by developing an antibody that specifically recognizes 14-3-3zeta phosphorylated on Ser58 and employing native-PAGE and cross-linking techniques, we found that 14-3-3 phosphorylated on Ser58 is monomeric both in vitro and in vivo. Phosphorylated 14-3-3 was detected solely as a monomer, indicating that phosphorylation of a single monomer within a dimer is sufficient to disrupt the dimeric structure. Significantly, phosphorylation-induced monomerization did not prevent 14-3-3 binding to a phosphopeptide target. We propose that this regulated monomerization of 14-3-3 controls its ability to modulate the activity of target proteins and thus may have significant implications for 14-3-3 function and the regulation of many cellular processes.  相似文献   

14.
14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin   总被引:8,自引:0,他引:8  
Gohla A  Bokoch GM 《Current biology : CB》2002,12(19):1704-1710
The functionality of the actin cytoskeleton depends on a dynamic equilibrium between filamentous and monomeric actin. Proteins of the ADF/cofilin family are essential for the high rates of actin filament turnover observed in motile cells through regulation of actin polymerization/depolymerization cycles. Rho GTPases act through p21-activated kinase-1 (Pak-1) and Rho kinase to inhibit cofilin activity via the LIM kinase (LIMK)-mediated phosphorylation of cofilin on Ser3. We report the identification of 14-3-3zeta as a novel phosphocofilin binding protein involved in the maintenance of the cellular phosphocofilin pool. A Ser3 phosphocofilin binding protein was purified from bovine brain and was identified as 14-3-3zeta by mass spectrometry. The phosphorylation-dependent interaction between cofilin and 14-3-3zeta was confirmed in pulldown and coimmunoprecipitation experiments. Both Ser3 phosphorylation and a 14-3-3 recognition motif in cofilin are necessary for 14-3-3 binding. The expression of 14-3-3zeta increases phosphocofilin levels, and the coexpression of 14-3-3zeta with LIMK further elevates phosphocofilin levels and potentiates LIMK-dependent effects on the actin cytoskeleton. This potentiation of cofilin action appears to be a result of the protection of phosphocofilin from phosphatase-mediated dephosphorylation at Ser3 by bound 14-3-3zeta. Taken together, these results suggest that 14-3-3zeta proteins may play a dynamic role in the regulation of cellular actin structures through the maintenance of phosphocofilin levels.  相似文献   

15.
14-3-3 proteins are important dimeric scaffolds that regulate the function of hundreds of proteins in a phosphorylation-dependent manner. The SARS-CoV-2 nucleocapsid (N) protein forms a complex with human 14-3-3 proteins upon phosphorylation, which has also been described for other coronaviruses. Here, we report a high-resolution crystal structure of 14-3-3 bound to an N phosphopeptide bearing the phosphoserine 197 in the middle. The structure revealed two copies of the N phosphopeptide bound, each in the central binding groove of each 14-3-3 monomer. A complex network of hydrogen bonds and water bridges between the peptide and 14-3-3 was observed explaining the high affinity of the N protein for 14-3-3 proteins.  相似文献   

16.
The plant plasma membrane H+ -ATPase is activated by the binding of 14-3-3 proteins to its extreme C-terminal amino acids (YTV) and phosphorylation of the penultimate threonine (YpTV) is necessary for this interaction in vivo. However, in the presence of the fungal toxin fusicoccin (FC), binding of 14-3-3 proteins occurs independently of phosphorylation but still involves the YTV motif. Since FC exclusively binds to the complex consisting of both 14-3-3 homologs and the C-terminal domain of the H+ -ATPase, the toxin was used as a tool to reveal potential protein-protein interaction sites in the enzyme's C terminus. We performed in vitro interaction studies by applying various C-terminal parts of the H+ -ATPase PMA2 from Nicotiana plumbaginifolia expressed as glutathione S-transferase fusion peptides in E. coli. Interestingly, the PMA2 region encompassing residues 905-922 is implicated in FC-dependent binding of 14-3-3 homologs. Recently, part of this region has been shown to contribute to the autoinhibitory action of the PMA2 C terminus. Site-directed mutagenesis of individual amino acids localized within this region resulted in a drastic decrease in FC-dependent binding of 14-3-3 proteins. Furthermore, by expressing the corresponding mutants of PMA2 in yeast, we observed a reduced capability of the mutant enzymes to functionally replace the endogenous H+ -ATPase. Notably, the decreased activity of the mutant enzymes was accompanied by a weakened binding of yeast 14-3-3 homologs to the plasma membrane of transformed cells. Taken together, our results suggest that a section of the autoinhibitory C-terminal PMA2 region contributes to binding of activatory 14-3-3 proteins in the absence of FC.  相似文献   

17.
The ubiquitously expressed c-Abl tyrosine kinase localizes to the cytoplasm and nucleus. Nuclear c-Abl is activated by diverse genotoxic agents and induces apoptosis; however, the mechanisms that are responsible for nuclear targeting of c-Abl remain unclear. Here, we show that cytoplasmic c-Abl is targeted to the nucleus in the DNA damage response. The results show that c-Abl is sequestered into the cytoplasm by binding to 14-3-3 proteins. Phosphorylation of c-Abl on Thr 735 functions as a site for direct binding to 14-3-3 proteins. We also show that, in response to DNA damage, activation of the c-Jun N-terminal kinase (Jnk) induces phosphorylation of 14-3-3 proteins and their release from c-Abl. Together with these results, expression of an unphosphorylated 14-3-3 mutant attenuates DNA-damage-induced nuclear import of c-Abl and apoptosis. These findings indicate that 14-3-3 proteins are pivotal regulators of intracellular c-Abl localization and of the apoptotic response to genotoxic stress.  相似文献   

18.
19.
20.
The 14-3-3 proteins are important effectors of Ser/Thr phosphorylation in eukaryotic cells. Using mathematical modelling we investigated the roles of these proteins as effectors in signalling pathways that involve multi-phosphorylation events. We defined optimal conditions for positive and negative cross-talk. Particularly, synergistic signal interaction was evident at very different sets of binding affinities and phosphorylation kinetics. We identified three classes of 14-3-3 targets that all have two binding sites, but displayed synergistic interaction between converging signalling pathways for different ranges of parameter values. Consequently, these protein targets will respond differently to interventions that affect 14-3-3 binding affinities or phosphorylation kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号