首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of millimolar sodium glyoxylate to spinach (Spinacia oleracea) chloroplasts was inhibitory to photosynthetic incorporation of 14CO2 under conditions of both low (0.2 millimolar or air levels) and high (9 millimolar) CO2 concentrations. Incorporation of 14C into most metabolites decreased. Labeling of 6-P-gluconate and fructose-1,6-bis-P increased. This suggested that glyoxylate inhibited photosynthetic carbon metabolism indirectly by decreasing the reducing potential of chloroplasts through reduction of glyoxylate to glycolate. This hypothesis was supported by measuring the reduction of [14C]glyoxylate by chloroplasts. Incubation of isolated mesophyll cells with glyoxylate had no effect on net photosynthetic CO2 uptake, but increased labeling was observed in 6-P-gluconate, a key indicator of decreased reducing potential. The possibility that glyoxylate was affecting photosynthetic metabolism by decreasing chloroplast pH cannot be excluded. Increased 14C-labeling of ribulose-1,5-bis-P and decreased 3-P-glyceric acid and glycolate labeling upon addition of glyoxylate to chloroplasts suggested that ribulose-bis-P carboxylase and oxygenase might be inhibited either indirectly or directly by glyoxylate. Glyoxylate addition decreased 14CO2 labeling into glycolate and glycine by isolated mesophyll cells but had no effect on net 14CO2 fixation. Glutamate had little effect on net photosynthetic metabolism in chloroplast preparations but did increase 14CO2 incorporation by 15% in isolated mesophyll cells under air levels of CO2.  相似文献   

2.
Aminooxyacetate (1 millimolar) did not inhibit photosynthetic 14CO2 fixation by Chlamydomonas reinhardtii Dangeard, (−) strain (N.90) but greatly stimulated the biosynthesis and excretion of glycolate. Similar results were obtained from cells grown with 5% CO2 or low CO2 (air). After 2 minutes with air-grown cells, [14C]glycolate increased from 0.3% of the total 14C fixed by the control to 11.7% in the presence of aminooxyacetate and after 10 minutes from 3.8% to 41.1%. Ammonium nitrate (0.2 millimolar) in the media blocked the aminooxyacetate stimulation of glycolate excretion. Chromatographic analyses of the labeled products in the cells and supernatant media indicated that aminooxyacetate also completely inhibited the labeling of alanine while some pyruvate accumulated and was excreted. A high percentage (35%) of initial 14CO2 fixation was into C4 acids. Initial products of 14CO2 fixation included phosphate esters as well as malate, aspartate, and glutamate in treated or untreated cells. Lactate was also a major early product of photosynthesis, and its labeling was reduced by aminooxyacetate. Inasmuch as lactate was not excreted, glycolate excretion seemed to be specific. When photosynthesis was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, labeled organic and amino acids but not phosphate esters were lost from the cells. Aminooxyacetate did not inhibit the enzymes associated with glycolate synthesis from ribulose bisphosphate.  相似文献   

3.
Mechanism of glycolate transport in spinach leaf chloroplasts   总被引:5,自引:4,他引:1       下载免费PDF全文
Takabe T  Akazawa T 《Plant physiology》1981,68(5):1093-1097
The incorporation of 14CO2 into glycolate by intact spinach leaf (Spinacia oleracea L. var. Kyoho) chloroplasts exposed to 14CO2 (NaH14CO3, 1 millimolar) in the light was determined as a function of O2 concentrations in the reaction media. A hyperbolic saturation curve was obtained, apparent Km (O2) of 0.28 millimolar, indicating that glycolate is produced predominantly by ribulose-1,5-bisphosphate carboxylase/oxygenase. A concentration gradient of glycolate was invariably observed between chloroplast stroma and the outside media surrounding chloroplasts during photosynthetic 14CO2 fixation under an O2 atmosphere.  相似文献   

4.
Chemical inhibition of the glycolate pathway in soybean leaf cells   总被引:19,自引:15,他引:4       下载免费PDF全文
Isolated soybean (Glycine max [L.] Merr.) leaf cells were treated with three inhibitors of the glycolate pathway in order to evaluate the potential of such inhibitors for increasing photosynthetic efficiency. Preincubation of cells under acid conditions in α-hydroxypyridinemethanesulfonic acid increased 14CO2 incorporation into glycolate, but severely inhibited photosynthesis. Isonicotinic acid hydrazide (INH) increased the incorporation of 14CO2 into glycine and reduced label in serine, glycerate, and starch. Butyl 2-hydroxy-3-butynoate (BHB) completely and irreversibly inhibited glycolate oxidase and increased the accumulation of 14C into glycolate. Concomitant with glycolate accumulation was the reduction of label in serine, glycerate, and starch, and the elimination of label in glycine. The inhibitors INH and BHB did not eliminate serine synthesis, suggesting that some serine is synthesized by an alternate pathway. The per cent incorporation of 14CO2 into glycolate by BHB-treated cells or glycine by INH-treated cells was determined by the O2/CO2 ratio present during assay. Photosynthesis rate was not affected by INH or BHB in the absence of O2, but these compounds increased the O2 inhibition of photosynthesis. This finding suggests that the function of the photorespiratory pathway is to recycle glycolate carbon back into the Calvin cycle, so if glycolate metabolism is inhibited, Calvin cycle intermediates become depleted and photosynthesis is decreased. Thus, chemicals which inhibit glycolate metabolism do not reduce photorespiration and increase photosynthetic efficiency, but rather exacerbate the problem of photorespiration.  相似文献   

5.
Mass spectrometry has been used to confirm the presence of an active transport system for CO2 in Synechococcus UTEX 625. Cells were incubated at pH 8.0 in 100 micromolar KHCO3 in the absence of Na+ (to prevent HCO3 transport). Upon illumination the cells rapidly removed almost all the free CO2 from the medium. Addition of carbonic anhydrase revealed that the CO2 depletion resulted from a selective uptake of CO2, rather than a total uptake of all inorganic carbon species. CO2 transport stopped rapidly (<3 seconds) when the light was turned off. Iodoacetamide (3.3 millimolar) completely inhibited CO2 fixation but had little effect on CO2 transport. In iodoacetamide poisoned cells, transport of CO2 occurred against a concentration gradient of about 18,000 to 1. Transport of CO2 was completely inhibited by 10 micromolar diethylstilbestrol, a membrane-bound ATPase inhibitor. Studies with DCMU and PSI light indicated that CO2 transport was driven by ATP produced by cyclic or pseudocyclic photophosphorylation. Low concentrations of Na+ (<100 microequivalents per liter), but not of K+, stimulated CO2 transport as much as 2.4-fold. Unlike Na+-dependent HCO3 transport, the transport of CO2 was not inhibited by high concentrations (30 milliequivalents per liter) of Li+. During illumination, the CO2 concentration in the medium remained far below its equilibrium value for periods up to 15 minutes. This could only happen if CO2 transport was continuously occurring at a rapid rate, since the continuing dehydration of HCO3 to CO2 would rapidly raise the CO2 concentration to its equilibrium value if transport ceased. Measurement of the rate of dissolved inorganic carbon accumulation under these conditions indicated that at least part of the continuing CO2 transport was balanced by HCO3 efflux.  相似文献   

6.
Photosynthetic CO2-fixation in isolated pea (Pisum sativum L., cv Little Marvel) chloroplasts during induction is markedly inhibited by 0.4 millimolar sulfite. Sulfate at the same concentration has almost no effect. The 14CO2-fixation pattern indicates that the primary effect of sulfite is inhibition of the reaction catalyzed by ribulose bisphosphate carboxylase and a stimulation of export of intermediates out of the chloroplasts. Inhibition of light modulation of stromal enzyme activity does not appear to account for the toxicity of SO2 in this Pisum variety. Arsenite at 0.2 millimolar concentrations inhibits light activation and inhibits photosynthetic CO2 fixation. The 14CO2-fixation pattern indicates that the primary effect of arsenite is inhibition of light activation of reductive pentose phosphate pathway enzyme activity.  相似文献   

7.
Relatively high concentrations of monovalent salts (150 millimolar) stimulated light-saturated uncoupled rates of O2 evolution linked to oxaloacetic acid (OAA) reduction by intact chloroplasts 2-to 3-fold. In contrast, monovalent salts partially inhibited light-saturated rates of O2 evolution coupled to CO2 fixation and uncoupled rates of nitrite reduction. In the presence of high salt concentration, light-saturated rates of electron transport were about equivalent for all three terminal electron acceptors. It is inferred that exogenous monovalent salts have at least two effects on photosynthetic electron transport, independent of photophosphorylation and CO2 metabolism: a partial inhibitory effect common to OAA, NO2 and CO2 reduction and a marked stimulatory effect unique to the photoreduction of OAA.  相似文献   

8.
When photosynthesis of the blue-green alga Anacystis nidulans was measured as 14CO2-fixation, the inhibitory effect of DCMU at low concentrations was greatest when mainly Photosystem 1 (PS 1) (excitation at 446 or 687 nm) was operative. At concentrations above 10-6M the inhibition on 14CO2-fixation was greatest when mainly Photosystem 2 (PS 2) was operative (excitation at 619). During excitation of PS 1, the excretion of glycolate was stimulated at low concentrations of DCMU (5 × 10-8M and lower), while higher concentrations inhibited excretion. All concentrations of DCMU inhibited glycolate excretion when mainly PS 2 was excited. The curves showing the relative effect of DCMU on the two photosystems, measured as PS 1/PS 2, had opposite shapes for 14CO2-fixation and glycolate excretion. An increase in 14CO2-fixation coincided with a decrease in glycolate excretion and vice versa. It appears that the increased rate of photosynthesis when mainly PS 1 was operative relative to that when mainly PS 2 was excited, increases the consumption of glycolate in an oxidation process associated with the excitation of PS 1, resulting in less excretion of glycolate to the medium. The influence of DCMU inhibition on labelled amino acid pools connected to the glycolate pathway (glycine-serine) is quite similar to that for 14CO2-fixation. At concentrations below 10-6M DCMU, inhibition of 14CO2- incorporation into the amino acids was greatest when PS 1 was excited, while at the higher concentrations tested, inhibition was greater when PS 2 was excited. We conclude that the metabolism of glycine and serine is closely connected to the rate of photosynthesis.  相似文献   

9.
These studies demonstrated that CO2 rather than HCO3 is the inorganic carbon metabolite produced by the C4 acid decarboxylases involved in C4 photosynthesis (chloroplast located NADP malic enzyme, mitochondrial NAD malic enzyme, and cytosolic phosphoenolpyruvate [PEP] carboxykinase). The effect of varying CO2 or HCO3 as a substrate for the carboxylation reaction catalyzed by these enzymes or as inhibitors of the decarboxylation reaction was also determined. The KmCO2 was 1.1 millimolar for NADP malic enzyme and 2.5 millimolar for PEP carboxykinase. For these two enzymes the velocity in the carboxylating direction was substantially less than for the decarboxylating direction even with CO2 concentrations at the upper end of the range of expected cellular levels. Activity of NAD malic enzyme in the carboxylating direction was undetectable. The decarboxylation reaction of all three enzymes was inhibited by added HCO3. For NADP malic enzyme CO2 was shown to be the inhibitory species but PEP carboxykinase and NAD malic enzyme were apparently inhibited about equally by CO2 and HCO3.  相似文献   

10.
Adaptation of tobacco (Nicotiana tabacum L. var Wisconsin 38) cells to NaCl was accelerated by (±) abscisic acid (ABA). In medium with 10 grams per liter NaCl, ABA stimulated the growth of cells not grown in medium with NaCl (unadapted, S-0) with an increasing response from 10−8 to 10−4 molar. ABA (10−5 molar) enhanced the growth of unadapted cells in medium with 6 to 22 grams per liter NaCl but did not increase the growth of cells previously adapted to either 10 (S-10) or 25 (S-25) grams per liter NaCl unless the cells were inoculated into medium with a level of NaCl higher than the level to which the cells were adapted. The growth of unadapted cells in medium with Na2SO4 (85.5 millimolar), KCl (85.5 or 171 millimolar), K2SO4 (85.5 millimolar) was also stimulated by ABA. ABA (10−8-10−4 molar) did not accelerate the growth of unadapted cells exposed to water deficits induced by polyethylene glycol (molecular weight 8000) (5-20 grams per 100 milliliters), sorbitol (342 millimolar), mannitol (342 millimolar) or sucrose (342 millimolar). These results suggest that ABA is involved in adaptation of cells to salts, and is not effective in promoting adaptation to water deficits elicited by nonionic osmotic solutes.  相似文献   

11.
Oliver DJ 《Plant physiology》1978,62(6):938-940
The addition of glyoxylate to tobacco (Nicotiana tabacum) leaf discs inhibited glycolate synthesis and photorespiration and increased net photosynthetic 14CO2 fixation. This inhibition of photorespiration was investigated further by studying the effect of glyoxylate on the stimulation of photosynthesis that occurs when the atmospheric O2 level was decreased from 21 to 3% (the Warburg effect). The Warburg effect is usually ascribed to the increased glycolate synthesis and metabolism that occurs at higher O2 concentrations. Photosynthesis in control discs increased from 59.1 to 94.7 micromoles of CO2 per gram fresh weight per hour (a 60% increase) when the O2 level was lowered from 21 to 3%, while the rate for discs floated on 15 millimolar glyoxylate increased only from 82.0 to 99.7 micromoles of CO2 per gram fresh weight per hour (a 22% increase). The decrease in the O2 sensitivity of photosynthesis in the presence of glyoxylate was explained by changes in the rate of glycolate synthesis under the same conditions.

The rate of metabolism of the added glyoxylate by tobacco leaf discs was about 1.35 micromoles per gram fresh weight per hour and was not dependent on the O2 concentration in the atmosphere. This rate of metabolism is about 10% the amount of stimulation in the rate of CO2 fixation caused by the glyoxylate treatment on a molar carbon basis. Glyoxylate (10 millimolar) had no effect on the carboxylase/oxygenase activity of isolated ribulose diphosphate carboxylase. Although the biochemical mechanism by which glyoxylate inhibits glycolate synthesis and photorespiration and thereby decreases the Warburg effect is still uncertain, these results show that cellular metabolites can regulate the extent of the Warburg effect.

  相似文献   

12.
Lovatt et al. (1979 Plant Physiol 64: 562-569) have previously demonstrated that end-product inhibition functions as a mechanism regulating the activity of the orotic acid pathway in intact cells of roots excised from 2-day-old squash plants (Cucurbita pepo L. cv Early Prolific Straightneck). Uridine (0.5 millimolar final concentration) or one of its metabolites inhibited the incorporation of NaH14CO3, but not [14C]carbamylaspartate or [14C]orotic acid, into uridine nucleotides (ΣUMP). Thus, regulation of de novo pyrimidine biosynthesis was demonstrated to occur at one or both of the first two reactions of the orotic acid pathway, those catalyzed by carbamylphosphate synthetase (CPSase) and aspartate carbamyltransferase (ACTase). The results of the present study provide evidence that ACTase alone is the site of feedback control by added uridine or one of its metabolites. Evidence demonstrating regulation of the orotic acid pathway by end-product inhibition at ACTase, but not at CPSase, includes the following observations: (a) addition of uridine (0.5 millimolar final concentration) inhibited the incorporation of NaH14CO3 into ΣUMP by 80% but did not inhibit the incorporation of NaH14CO3 into arginine; (b) inhibition of the orotate pathway by added uridine was not reversed by supplying exogenous ornithine (5 millimolar final concentration), while the incorporation of NaH14CO3 into arginine was stimulated more than 15-fold when both uridine and ornithine were added; (c) incorporation of NaH14CO3 into arginine increased, with or without added ornithine when the de novo pyrimidine pathway was inhibited by added uridine; and (d) in assays employing cell-free extracts prepared from 2-day-old squash roots, the activity of ACTase, but not CPSase, was inhibited by added pyrimidine nucleotides.  相似文献   

13.
Adenosine-5′-phosphosulfate (APS) and adenosine-3′-phosphate 5′-phosphosulfate (PAPS) have been used as precursors of sulfoquinovosyldiacylglycerol (SQDG) in intact chloroplasts incubated in the dark. Competition studies demonstrated APS was preferred over PAPS and SO42−. Rates of SQDG synthesis up to 3 nanomoles per milligram of chlorophyll per hour were observed when [35S]APS and appropriate cofactors were supplied to chloroplasts incubated in the dark. The pH optimum for utilization of APS was 7.0. The incorporation was linear for at least 30 minutes. ATP and UTP stimulated the incorporation of sulfur from APS into SQDG, but the most stimulatory additions were DHAP and glycerol-3-P. The concentration curve for APS showed a maximum at 20 micromolar in the absence of DHAP and 30 micromolar in the presence of DHAP. The optimum concentration of DHAP for conversion of APS into SQDG was 2 millimolar. Rates of synthesis up to 4 nanomoles per milligram of chlorophyll per hour were observed when [35S]PAPS was the sulfur donor and appropriate cofactors were supplied to chloroplasts. Optimal rates for conversion of sulfur from PAPS into SQDG occurred with concentrations of DHAP between 5 and 10 millimolar. DHAP was by far the most effective cofactor, although ATP and UTP also stimulated the utilization of PAPS for SQDG biosynthesis. In general, triose phosphates, including glycerol-3-P were not effective cofactors for SQDG biosynthesis.  相似文献   

14.
Light-induced acidification by the cyanobacterium Anabaena variabilis is biphasic (a fast phase I and slow phase II) and shown to be sodium-dependent with an optimum concentration of 40 to 60 millimolar Na+. Cells grown under low CO2 concentrations at pH 9 (i.e. mainly HCO3 present in the medium) exhibited the slow phase II of proton efflux only, while cells grown under low CO2 concentrations at pH 6.3 (i.e. CO2 and HCO3 present) exhibited both phases. Light-induced proton release of phase I was dependent on inorganic carbon available in the bathing medium with an apparent Km for CO2 of 20 to 70 micromolar. As was concluded from the CO2 dependence of acidification measured at different pH of the bathing medium, bicarbonate inhibited phase-I acidification noncompetetively. Acidification was inhibited by acetazolamide, an inhibitor of carbonic anhydrase. Apparently, acidification of phase I is due to a light-dependent uptake of CO2 being converted to HCO3 by a carbonic anhydrase-like function of the HCO3-transport system (M Volokita, D Zenvirth, A Kaplan, L Reinhold 1984 Plant Physiol 76: 599-602) before or during entering the cell, thus releasing one proton per CO2 converted to HCO3.  相似文献   

15.
The formation and metabolism of glycolate in the cyanobacterium Coccochloris peniocystis was investigated and the activities of enzymes of glycolate metabolism assayed. Photosynthetic 14CO2 incorporation was O2 insensitive and no labelled glycolate could be detected in cells incubated at 2 and 21% O2. Under conditions of 100% O2 glycolate comprised less than 1% of the acid-stable products indicating ribulose 1,5 bisphosphate (RuBP) oxidation only occurs under conditions of extreme O2 stress. Metabolism of [1-14C] glycolate indicated that as much as 62% of 14C metabolized was released as 14CO2 in the dark. Metabolism of labelled glycolate, particularly incorporation of 14C into glycine, was inhibited by the amino-transferase inhibitor amino-oxyacetate. Metabolism of [2-14C] glycine was not inhibited by the serine hydroxymethyltransferase inhibitor isonicotinic acid hydrazide and little or no labelled serine was detected as a result of 14C-glycolate metabolism. These findings indicate that a significant amount of metabolized glycolate is totally oxidized to CO2 via formate. The remainder is converted to glycine or metabolized via a glyoxylate cycle. The conversion of glycine to serine contributes little to glycolate metabolism and the absence of hydroxypyruvate reductase confirms that the glycolate pathway is incomplete in this cyanobacterium.Abbreviations AAN aminoacetonitrile - AOA aminooxyacetate - DIC dissolved inorganic carbon - INH isonicotinic acid hydrazide - PEP phosphoenolpyruvate - PEPcase phosphoenolpyruvate carboxylase - PG phosphoglycolate - PGA phosphoglyceric acid - PGPase phosphoglycolate phosphatase - PR photorespiration - Rubisco ribulose-1,5-bisphosphate carboxylase oxygenase - TCA trichloroacetic acid - RuBP ribulose-1,5-bisphosphate  相似文献   

16.
The capacity of photosynthetic CO2 fixation in the anaerobic purple-sulfur bacterium, Chromatium vinosum is markedly impaired by strong illumination (9 × 104 lux) in the presence of 100% O2. In the absence of HCO3, decline in activity occurred gradually, with about 40% of the initial activity remaining after a 1-hour incubation. The addition of 50 millimolar HCO3 to the incubation medium resulted in a measurable delay (about 30 minutes) of the inactivation process. Ribulose-1,5-bisphosphate carboxylase activity and light-dependent O2 uptake (electron flow) or crude extracts prepared after pretreatment of the bacterial cells with O2 and light were not affected but the photophosphorylation capacity of either bacterial cells or chromatophores was drastically reduced. The inhibition of photophos-phorylation in the chromatophore preparations was significantly reduced by the addition of either an O2 scavenger, Tiron, or an 1O2 scavenger, α-tocopherol. These results suggest that the active O2 species, O2 or 1O2, might take part in the observed inactivation.

The pretreatment of the bacteria with O2 and light inhibited CO2 assimilation through the Calvin-Benson cycle, while relatively stimulating the formation of aspartate and glutamate. It also inhibited the conversion of glycolate to glycine, resulting in a sustained extracellular excretion of glycolate. The inactivation of photosynthetic CO2 fixation by intact cells was enhanced by low temperature, KCN, or methylviologen addition during the pretreatment with O2 and light. The mechanism(s) of O2-dependent photoinactivation of photosynthetic activities in Chromatium are discussed in relation to the possible role of photorespiration as a means of producing CO2 in the photosynthetic system.

  相似文献   

17.
The influence of abscisic acid (ABA) on carbon metabolism, rate of photorespiration, and the activity of the photorespiratory enzymes ribulose bisphosphate oxygenase and glycolate oxidase in 7-day-old barley seedlings (Hordeum vulgare L. var. Alfa) was investigated. Plants treated with ABA had enhanced incorporation of labeled carbon from 14CO2 into glycolic acid, glycine, and serine, while 14C incorporation into 3-phosphoglyceric acid and sugarphosphate esters was depressed. Parallel with this effect, treated plants showed a rise in activity of RuBP oxygenase and glycolic acid oxidase. The rate of photorespiration was increased twofold by ABA treatment at IO−6 molar while the CO2-compensation point increased 46% and stomatal resistance increased more than twofold over control plants.  相似文献   

18.
Microbial Methanogenesis and Acetate Metabolism in a Meromictic Lake   总被引:10,自引:8,他引:2       下载免费PDF全文
Methanogenesis and the anaerobic metabolism of acetate were examined in the sediment and water column of Knaack Lake, a small biogenic meromictic lake located in central Wisconsin. The lake was sharply stratified during the summer and was anaerobic below a depth of 3 m. Large concentrations (4,000 μmol/liter) of dissolved methane were detected in the bottom waters. A methane concentration maximum occurred at 4 m above the sediment. The production of 14CH4 from 14C-labeled HCOOH, HCO3, and CH3OH and [2-14C]acetate demonstrated microbial methanogenesis in the water column of the lake. The maximum rate of methanogenesis calculated from reduction of H14CO3 by endogenous electron donors in the surface sediment (depth, 22 m) was 7.6 nmol/h per 10 ml and in the water column (depth, 21 m) was 0.6 nmol/h per 10 ml. The methyl group of acetate was simultaneously metabolized to CH4 and CO2 in the anaerobic portions of the lake. Acetate oxidation was greatest in surface waters and decreased with water depth. Acetate was metabolized primarily to methane in the sediments and water immediately above the sediment. Sulfide inhibition studies and temperature activity profiles demonstrated that acetate metabolism was performed by several microbial populations. Sulfide additions (less than 5 μg/ml) to water from 21.5 m stimulated methanogenesis from acetate, but inhibited CO2 production. Sulfate addition (1 mM) had no significant effect on acetate metabolism in water from 21.5 m, whereas nitrate additions (10 to 14,000 μg/liter) completely inhibited methanogenesis and stimulated CO2 formation.  相似文献   

19.
Our aim was to determine whether fixation of inorganic carbon (Ci), due to phosphoenolpyruvate carboxylase activity, is limited by the availability of Ci in the cytoplasm of maize (Zea mays L.) root tips. Rates of Ci uptake and metabolism were measured during K2SO4 treatment, which stimulates dark Ci fixation. 13Ci uptake was followed by 13C-nuclear magnetic resonance (NMR); 5 millimolar K2SO4 had no significant effect on 13Ci influx. The contribution of respiratory CO2 production to cytoplasmic HCO3 was measured using in vivo 13C-NMR and 1H-NMR of cell extracts; K2SO4 treatment had no effect on respiratory CO2 production. The concentration of cytoplasmic HCO3 was estimated to be approximately 11 millimolar, again with K2SO4 having no significant effect. These experiments allowed us to determine the extent to which extracellularly supplied 14Ci was diluted in the cytoplasm by respiratory CO2 and thereby measure phosphoenolpyruvate (PEP) carboxylase activity in vivo using 14Ci. PEP carboxylase activity in root tips was enhanced approximately 70% over controls within 12 minutes of the addition of 5 millimolar K2SO4. The activity of carbonic anhydrase, which provides PEP carboxylase with Ci, was determined by saturation transfer 13C-NMR to be more than 200 times that of PEP carboxylase in vivo. The regulation of PEP carboxylase in K2SO4-treated roots is discussed.  相似文献   

20.
Experiments were designed to study the importance of organic acids as counterions for K+ translocation in the xylem during excess cation uptake. A comparison was made of xylem exudate from wheat seedlings treated 72 hours with either 1.0 millimolar KNO3 or 0.5 millimolar K2SO4, both in the presence of 0.2 millimolar CaSO4. Exudation from KNO3 plants had twice the volume and twice the K+ and Ca2+ fluxes or rate of delivery to shoots, as K2SO4 plants. Malate flux was 25% higher in K2SO4 than in KNO3 exudate. Malate was the principal anion accompanying K+ or Ca2+ in K2SO4 treatment, while in the KNO3 treatment, NO3 was the principal anion. The contribution of SO42− was negligible in both treatments. In a second experiment, exudate was collected every 4 hours during the daytime throughout a 72-hour treatment with KNO3. Malate was the only anion present in exudate at first, just after the CaSO4 pretreatment had ended. Malate concentration decreased and NO3 concentration increased with time and these concentrations were negatively correlated. By 62 hours, NO3 represented 80% of exudate anions. K+ and NO3 concentrations in exudate were strongly correlated with K+ and NO3 uptake, respectively. The first 36 hours of absorption from KNO3 solution resembled the continuous absorption of K2SO4, in that malate was the principal counterion for translocation of K+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号