首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nowadays, there is clear progress in using the threshold concept in genetic toxicology, but its demonstration and acceptance in risk assessment is still under debate. Although it has been accepted for some non-DNA-reactive agents for which mechanisms of action were demonstrated, there is a growing weight of evidence to also support the existence of thresholded dose-responses for DNA-reactive agents. In this context, we have recently shown in human TK6 lymphoblastoid cells, that DNA-oxidizing agents [potassium bromate, bleomycin and hydrogen peroxide (via glucose oxidase)] produced non-linear dose-responses in the in vitro micronucleus test, thus allowing the determination of No-Observed-Genotoxic-Effect-Levels (NOGELs). Therefore, the aim of the present study was to focus on the analysis of thresholded dose-response curves in order to further investigate the existence of NOGELs for these same directly DNA-damaging agents, by use of other genotoxicity endpoints. Mutation frequency was determined after a 1-h treatment in the thymidine kinase (TK) gene-mutation assay. Primary DNA damage, especially oxidative DNA damage, was also assessed after 1h of treatment, followed - or not - by a 23-h recovery period, with the modified version of the comet assay (i.e. with the glycosylases Fpg and hOgg1). Overall, our analysis demonstrates that there is convincing evidence to support the existence of thresholded dose-responses for DNA-oxidizing agents. The determination of NOGELs depends on the genotoxic endpoint studied and consequently requires different genotoxicity assays performed concurrently. NOGELs could only be defined for the induction of chromosomal aberrations and gene mutations, i.e. for an effect-endpoint but not for primary DNA damage, i.e. for an exposure-endpoint. Further statistical analyses of these data are now required in order to draw conclusions on the exact level of the thresholds.  相似文献   

2.
The in vitro unscheduled DNA synthesis assay (UDS) is part of the routine genetic toxicology screening at The Upjohn Company. The purpose of this paper is to report results for 8 compounds which were tested in the in-house genetic toxicology program. These compounds represent diverse chemical structure and most of them entered the screening program because they are biologically active in efficacy screens. All tests were carried out under Good Laboratory Practices Regulations of the U.S. Food and Drug Administration. None of the materials reported here produced an increase in UDS and therefore the UDS results with these compounds do not suggest potential for genotoxicity.  相似文献   

3.
Double-strand breaks (DSBs) are highly deleterious DNA lesions as they lead to chromosome aberrations and/or apoptosis. The formation of nuclear DSBs triggers phosphorylation of histone H2AX on Ser-139 (defined as γH2AX), which participates in the repair of such DNA damage. Our aim was to compare the induction of γH2AX in relation to DSBs induced by topoisomerase II (TOPO II) poisons, etoposide (ETOP) and mitoxantrone (MXT), in V79 cells. DSBs were measured by the neutral comet assay, while γH2AX was quantified using immunocytochemistry and flow cytometry. Stabilized cleavage complexes (SCCs), lesions thought to be responsible for TOPO II poison-induced genotoxicity, were measured using a complex of enzyme–DNA assay. In the case of ETOP, a no observed adverse effect level (NOAEL) and lowest observed effect level (LOEL) for genotoxicity was determined; γH2AX levels paralleled DSBs at all concentrations but significant DNA damage was not detected below 0.5 μg/ml. Furthermore, DNA damage was dependent on the formation of SCCs. In contrast, at low MXT concentrations (0.0001–0.001 μg/ml), induction of γH2AX was not accompanied by increases in DSBs. Rather, DSBs were only significantly increased when SCCs were detected. These findings suggest MXT-induced genotoxicity occurred via at least two mechanisms, possibly related to DNA intercalation and/or redox cycling as well as TOPO II inhibition. Our findings also indicate that γH2AX can be induced by DNA lesions other than DSBs. In conclusion, γH2AX, when measured using immunocytochemical and flow cytometric methods, is a sensitive indicator of DNA damage and may be a useful tool in genetic toxicology screens. ETOP data are consistent with the threshold concept for TOPO II poison-induced genotoxicity and this should be considered in the safety assessment of chemicals displaying an affinity for TOPO II and genotoxic/clastogenic effects.  相似文献   

4.
Glutaraldehyde (GA) induces DNA-protein crosslinks (DPX), but conflicting results have been reported with regard to other genotoxic and mutagenic effects in mammalian cells in vitro. We, therefore, characterized the genotoxic and mutagenic potential of GA in V79 cells. Using the alkaline comet assay we demonstrated the induction of DPX by GA (reduction of gamma ray-induced DNA migration) at a concentration of 10 microM and above. The standard comet assay did not reveal a significant DNA strand-breaking activity of GA. Cross-linking concentrations of GA were also cytotoxic, i.e. inhibited cell growth of treated V79 cultures. Interestingly, a small but statistically significant increase in sister chromatid exchange (SCE) and micronuclei (MN) was already measured at lower concentrations (2 and 5 microM). FISH analysis revealed that the majority of GA-induced MN was due to chromosome breaks. We also compared the genotoxic activity of GA to that of formaldehyde (FA). Similar to GA, FA-induced DPX, SCE and MN, but distinct differences exist with regard to the sensitivity of the endpoints and the relationship between genotoxicity and cytotoxicity. However, the differences in genotoxicity cannot readily explain the different carcinogenic activities of the two compounds.  相似文献   

5.
We evaluated the genotoxicity of the food-flavouring agent estragole in V79 cells using the sister chromatid exchange (SCE) assay and the alkaline comet assay. Unexpectedly, we observed an increase in SCE without an exogenous biotransformation system (S9) and a decrease in its presence. Positive results were also observed in the alkaline comet assay without S9, indicating DNA strand breakage. To ascertain repair of damage, we performed the comet assay in V79 cells after two hours of recovery, and observed a reduction of the genotoxic response. Estragole did not produce strand breaks in plasmid DNA in vitro. We then evaluated the formation of DNA adducts in V79 cells by use of the (32)P-postlabelling assay and detected a dose-dependent formation of DNA adducts, which may be responsible for its genotoxicity. We then assayed estragole in the comet assay with two CHO cell lines, a parental AA8 cell line, and an XRCC1-deficient cell line, EM9. Results confirmed the genotoxicity of estragole without biotransformation in both cell lines, although the genotoxicity in EM9 cells compared with that in AA8 cells was not significantly different, suggesting that the XRCC1 protein is not involved in the repair of estragole-induced lesions. Estragole induces apoptosis, but only with high doses (2000μM), and after long treatment periods (24h). Overall, our results suggest that estragole, besides being metabolized to genotoxic metabolites, is a weak direct-acting genotoxin that forms DNA adducts.  相似文献   

6.
There are few studies on the biological activity of aminohydroxy derivates of 1,4-naphthoquinone (1,4-NQ) on prokaryotic and eukaryotic cells. We determined the mutagenic activity of 5-amino-8-hydroxy-1,4-naphthoquinone (ANQ) and 5-amino-2,8-dihydroxy-1,4-naphthoquinone (ANQ-OH) as compared to the unsubstituted 1,4-NQ in Salmonella/microsome assay. Potential mutagenic and recombinogenic effects and cytotoxicity were analyzed in haploid and diploid cultures of the yeast Saccharomyces cerevisiae. In Salmonella/microsome assay, 1,4-NQ was not mutagenic, whereas aminohydroxynaphthoquinones were weakly mutagenic in TA98 and TA102 strains. In haploid yeast in stationary growth phase (STAT), mutagenic response was only observed for the hom3 locus at the highest dose. In diploid yeast, aminohydroxynaphthoquinones did not induce any recombinogenic events, but 1,4-NQ was shown to be a recombinogenic agent. These results suggest that aminohydroxynaphthoquinones are weak mutagenic agents only in prokaryotic cells. The cytotoxicity of 1,4-NQ in yeast stationary cells was more significant in diploid cells as compared to that observed in haploid cells. However, ANQ and ANQOH were slightly cytotoxic in all treatments. Genotoxicity of these naphthoquinone compounds was also determined in V79 Chinese hamster lung fibroblast cells using standard Comet, as well as modified Comet assay with the bacterial enzymes formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (ENDOIII). Both 1,4-NQ and ANQ induced pronounced DNA damage in the standard Comet assay. The genotoxic effect of ANQ-OH was observed only at the highest dose. In presence of metabolic activation all substances showed genotoxic effects on V79 cells. Post-treatment of V79 cells with ENDOIII and FPG proteins did not have a significant effect on ANQ-OH-induced oxidative DNA damage as compared to standard alkaline Comet assay. However, all naphthoquinones were genotoxic in V79 cells in the presence of metabolic activation and post-treatment with enzymes, indicating that all compounds induced oxidative DNA damage in V79 cells. Our data suggest that aminohydroxynaphthoquinone pro-oxidant activity, together with their capability of DNA intercalation, have an important role in mutagenic and genotoxic activities.  相似文献   

7.
Genotoxicity of naturally occurring hydroxyanthraquinones   总被引:9,自引:0,他引:9  
A variety of structurally related hydroxyanthraquinones (HA) were investigated in a test battery for the evaluation of mutagenicity and cell-transforming activity. The tests were: (1) the Salmonella typhimurium mutagenicity assay, (2) the V79-HGPRT mutagenicity assay, (3) the DNA-repair induction assay in primary rat hepatocytes and (4) the in vitro transformation of C3H/M2 mouse fibroblasts. In Salmonella, most of the tested compounds were mutagenic in strain TA1537, but only a few were active in other strains. Among these were HA with a hydroxymethyl group, such as lucidin and aloe-emodin. In V79 cells, only HA with 2 hydroxy groups in the 1,3 positions (1,3-DHA, purpurin, emodin) or with a hydroxymethyl sidechain (lucidin and aloe-emodin) were mutagenic. The compounds found to be active in V79 cells were also active in the DNA-repair assay and in the C3H/M2 transformation assay. Thus, it appears that the genotoxicity of HA is dependent on certain structural requirements.  相似文献   

8.
The genotoxicity of 15 polycyclic aromatic hydrocarbons was determined with the alkaline version of the comet assay employing V79 lung fibroblasts of the Chinese hamster as target cells. These cells lack the enzymes necessary to convert PAHs to DNA-binding metabolites. Surprisingly, 11 PAHs, i.e., benzo[a]pyrene (BaP), benz[a]anthracene, 7,12-dimethylbenz[a]anthracene, 3-methylcholanthrene, fluoranthene, anthanthrene, 11H-benzo[b]fluorene, dibenz[a,h]anthracene, pyrene, benzo[ghi]perylene and benzo[e]pyrene caused DNA strand breaks even without external metabolic activation, while naphthalene, anthracene, phenanthrene and naphthacene were inactive. When the comet assay was performed in the dark or when yellow fluorescent lamps were used for illumination the DNA-damaging effect of the 11 PAHs disappeared. White fluorescent lamps exhibit emission maxima at 334.1, 365.0, 404.7, and 435.8 nm representing spectral lines of mercury. In the case of yellow fluorescent lamps these emissions were absent. Obviously, under standard laboratory illumination many PAHs are photo-activated, resulting in DNA-damaging species. This feature of PAHs should be taken into account when these compounds are employed for the initiation of skin cancer. The genotoxicity of BaP that is metabolically activated in V79 cells stably expressing human cytochrome P450-dependent monooxygenase (CYP1A1) as well as human epoxide hydrolase (V79-hCYP1A1-mEH) could not be detected with the comet assay performed under yellow light. Likewise the DNA-damaging effect of r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BaPDE) observed with the comet assay was only weak. However, upon inhibition of nucleotide excision repair (NER), which is responsible for the removal of stable DNA adducts caused by anti-BaPDE, the tail moment rose 3.4-fold in the case of BaP and 12.9-fold in the case of anti-BaPDE. These results indicate that the genotoxicity of BaP and probably of other compounds producing stable DNA adducts are reliably detected with the comet assay only when NER is inhibited.  相似文献   

9.
This survey is a compendium of genotoxicity and carcinogenicity information of antihypertensive drugs. Data from 164 marketed drugs were collected. Of the 164 drugs, 65 (39.6%) had no retrievable genotoxicity or carcinogenicity data; this group was comprised largely of drugs marketed in a limited number of countries. The remaining 99 (60.4%) had at least one genotoxicity or carcinogenicity test result. Of these 99, 48 (48.5%) had at least one positive finding: 32 tested positive in at least one genotoxicity assay, 26 in at least one carcinogenicity assay, and 10 gave a positive result in both at least one genotoxicity assay and at least one carcinogenicity assay. In terms of correlation between results of the various genotoxicity assays and absence of carcinogenic activity in both mice and rats 2 of 44 non-carcinogenic drugs tested positive in the in vitro bacterial mutagenesis assay, 2 of 9 tested positive in the mouse lymphoma assay, none of 14 tested positive for gene mutation at the hprt locus, 5 of 25 tested positive in in vitro cytogenetic assays, none of 31 in in vivo cytogenetic assays, and none of 14 in inducing DNA damage and/or repair in in vitro and/or in vivo assays. Concerning the predictivity of genetic toxicology findings for long-term carcinogenesis assays, 75 drugs had both genotoxicity and carcinogenicity data; of these 37 (49.3%) were neither genotoxic nor carcinogenic, 14 (18.7%) were non-carcinogens which tested positive in at least one genotoxicity assay, 14 (18.7%) were carcinogenic in at least one sex of mice or rats but tested negative in genotoxicity assays, and 10 (13.3%) were both genotoxic and carcinogenic. Only 42 of the 164 marketed antihypertensives (25.6%) had all data required by the guidelines for testing of pharmaceuticals.  相似文献   

10.
We have designed and synthesized a series of novel DNA photocleaving agents which break DNA with high sequence specificity. These compounds contain the non-diffusible photoactive p-nitrobenzoyl group covalently linked via a dimethylene (or tetramethylene) spacer to thiazole analogues of the DNA binding portion of the antibiotic bleomycin A2. By using a variety of 5' or 3' 32P-end labeled restriction fragments from plasmid pBR322 as substrate, we have shown that photoactive bithiazole compounds bind DNA at the consensus sequence 5'-AAAT-3' and induce DNA cleavage 3' of the site. Analysis of cleavage sites on the complementary DNA strand and inhibition of DNA breakage by distamycin A indicates these bithiazole derivatives bind and attack the minor groove of DNA. A photoactive unithiazole compound was less specific inducing DNA breakage at the degenerate site 5'-(A/T)(AA/TT)TPu(A/T)-3'. DNA sequence recognition of these derivatives appears to be determined by the thiazole moiety rather than the p-nitrobenzoyl group: use of a tetramethylene group in place of a dimethylene spacer shifted the position of DNA breakage by one base pair. Moreover, much less specific DNA photocleavage was observed for a compound in which p-nitrobenzoyl was linked to the intercalator acridine via a sequence-neutral hexamethylene spacer. The 5'-AAAT-3' specificity of photoactive bithiazole derivatives contrasts with that of bleomycin A2 which cleaves DNA most frequently at 5'-GPy-3' sequences. These results suggest that the cleavage specificity exhibited by bleomycin is not simply determined by its bithiazole/sulphonium terminus, and the contributions from other features, e.g. its metal-chelating domain, must be considered. The novel thiazole-based DNA cleavage agents described here should prove useful as reagents for probing DNA structure and for elucidating the molecular basis of DNA recognition by bleomycin and other ligands.  相似文献   

11.
Information in the 1999 Physician's Desk Reference as well as from the peer-reviewed published literature was used to evaluate the genotoxicity of marketed pharmaceuticals. This survey is a compendium of genotoxicity information and a means to gain perspective on the inherent genotoxicity of structurally diverse pharmaceuticals. Data from 467 marketed drugs were collected. Excluded from analysis were anti-cancer drugs and nucleosides, which are expected to be genotoxic, steroids, biologicals and peptide-based drugs. Of the 467 drugs, 115 had no published gene-tox data. This group was comprised largely of acutely administered drugs such as antibiotics, antifungals, antihistamines decongestants and anesthetics. The remaining 352 had at least one standard gene-tox assay result. Of these, 101 compounds (28.7%) had at least one positive assay result in the pre-ICH/OECD standard four-test battery (bacterial mutagenesis, in vitro cytogenetics, mouse lymphoma assay (MLA), in vivo cytogenetics). Per assay type, the percentage of positive compounds was: bacterial mutagenesis test, 27/323 (8.3%); in vitro cytogenetics 55/222 (24.8%); MLA 24/96 (25%); in vivo cytogenetics 29/252 (11.5%). Of the supplemental genetic toxicology test findings reported, the sister chromatid exchange (SCE) assay had the largest percentage of positives 17/39 (43.5%) and mammalian mutagenesis assays (excluding MLA) had the lowest percentage of positives 2/91 (2.2%). The predictive value of genetic toxicology findings for 2-year bioassay outcomes is difficult to assess since carcinogenicity can occur via non-genotoxic mechanisms. Nevertheless, the following survey findings were made: 201 drugs had both gene-tox data and rodent carcinogenicity data. Of these, 124 were negative and 77 were equivocal or positive for carcinogenicity in at least 1 gender/1 species. Of the 124 non-carcinogens, 100 had no positive gene-tox findings. Of the remaining 24, 19 were positive in in vitro cytogenetics assays. Among the 77 compounds that exhibited equivocal or positive effects in carcinogenesis studies, 26 were positive in gene-tox assays and 51 were negative. Of the 51 negatives, 47 had multiple negative gene-tox assay results suggesting that these are probably non-genotoxic carcinogens. Statistical analyses suggested that no combination of gene-tox assays provided a higher predictivity of rodent carcinogenesis than the bacterial mutagenicity test itself.  相似文献   

12.
There are few studies on the biological activity of aminohydroxy derivates of 1,4-naphthoquinone (1,4-NQ) on prokaryotic and eukaryotic cells. We determined the mutagenic activity of 5-amino-8-hydroxy-1,4-naphthoquinone (ANQ) and 5-amino-2,8-dihydroxy-1,4-naphthoquinone (ANQ-OH) as compared to the unsubstituted 1,4-NQ in Salmonella/microsome assay. Potential mutagenic and recombinogenic effects and cytotoxicity were analyzed in haploid and diploid cultures of the yeast Saccharomyces cerevisiae. In Salmonella/microsome assay, 1,4-NQ was not mutagenic, whereas aminohydroxynaphthoquinones were weakly mutagenic in TA98 and TA102 strains. In haploid yeast in stationary growth phase (STAT), mutagenic response was only observed for the hom3 locus at the highest dose. In diploid yeast, aminohydroxynaphthoquinones did not induce any recombinogenic events, but 1,4-NQ was shown to be a recombinogenic agent. These results suggest that aminohydroxynaphthoquinones are weak mutagenic agents only in prokaryotic cells. The cytotoxicity of 1,4-NQ in yeast stationary cells was more significant in diploid cells as compared to that observed in haploid cells. However, ANQ and ANQOH were slightly cytotoxic in all treatments. Genotoxicity of these naphthoquinone compounds was also determined in V79 Chinese hamster lung fibroblast cells using standard Comet, as well as modified Comet assay with the bacterial enzymes formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (ENDOIII). Both 1,4-NQ and ANQ induced pronounced DNA damage in the standard Comet assay. The genotoxic effect of ANQ-OH was observed only at the highest dose. In presence of metabolic activation all substances showed genotoxic effects on V79 cells. Post-treatment of V79 cells with ENDOIII and FPG proteins did not have a significant effect on ANQ-OH-induced oxidative DNA damage as compared to standard alkaline Comet assay. However, all naphthoquinones were genotoxic in V79 cells in the presence of metabolic activation and post-treatment with enzymes, indicating that all compounds induced oxidative DNA damage in V79 cells. Our data suggest that aminohydroxynaphthoquinone pro-oxidant activity, together with their capability of DNA intercalation, have an important role in mutagenic and genotoxic activities.  相似文献   

13.
A series of bleomycin analogues was prepared with a facile synthetic method. All the compounds were shown to display significant antitumor activity against HeLa and BGC-823 cell lines in vitro. The binding properties with CT-DNA and cleavage efficiency to pBR322 DNA were investigated, the results indicate that there is a positive relationship between DNA cleavage efficiency and the binding affinity to DNA, and the antitumor activity of the bleomycin analogues is enhanced as the hydrophobicity of the C-terminus substituent side chain increased.  相似文献   

14.
Wu M  Xing G  Qi X  Feng C  Liu M  Gong L  Luan Y  Ren J 《Mutation research》2012,741(1-2):65-69
Until recently, knowledge about the genotoxicity of roxarsone in vitro or in vivo was limited. This study assessed the genotoxicity of roxarsone in an in vitro system. Roxarsone was tested for potential genotoxicity on V79 cells by a Comet assay and a micronucleus (MN) test, exposing the cells to roxarsone (1-500 μM) and to sodium arsenite (NaAsO?, 20 μM) solutions for 3-48 h. Roxarsone was found to be cytotoxic when assessed with a commercial cell counting kit (CCK-8) used to evaluate cell viability, and moderately genotoxic in the Comet assay and micronucleus test used to assess DNA damage. The Comet metrics (percentages TDNA, TL, TM) increased significantly in a time- and concentration-dependent manner in roxarsone-treated samples compared with PBS controls (P<0.05), while the data from samples treated with 20 μM NaAsO? were comparable to those from 500 μM roxarsone-treated samples. The MN frequency of V79 cells treated with roxarsone was higher than that in the negative control but lower than the frequency in cells treated with 20 μM NaAsO?. A dose- and time-dependent response in MN induction was observed at 10, 50, 100 and 500 μM doses of roxarsone after 12-48 h exposure time. The DNA damage in V79 cells treated with 500 μM roxarsone was similar to cells exposed to 20 μM NaAsO?. The uptake of cells was correlated with the DNA damage caused by roxarsone. This investigation depicts the genotoxic potentials of roxarsone to V79 cells, which could lead to further advanced studies on the genotoxicity of roxarsone.  相似文献   

15.
Continuous cell lines could provide an important tool for studying epidemiology, toxicology, cellular physiology and the host–pathogen interactions. Random amplified polymorphic deoxyribonucleic acid analysis by PCR (RAPD-PCR) was used for the molecular characterization of Dicentrarchus labrax embryonic cells (DLEC) as a possible tool to detect DNA alterations in environmental genotoxic studies. We studied the DNA pattern of the DLEC fish cell line, a fibroblast-like cell line derived from European sea bass. From a total of 15 primers only six showed good discriminatory power for the amplification process on DNA samples collected from cells by three different methods (organic extraction, salting-out method and chelating agent extraction). The results obtained show that the cell line chosen for this study could be used as a possible tool for the detection of potential genotoxicity of numerous chemical compounds.  相似文献   

16.
Flavonls are natural compounds present in edible plants and possess several biological activities that can be useful in drug design. Conversely some of these compounds have been shown to be genotoxic to prokaryotic and eukaryotic cells. In this study we tried to establish the chemical features responsible for the genotoxicity of flavonols and to study the conditions that can modulate their genotoxicity namely pH, the presence of antioxidants and metabolism. We assessed the induction of revertants in Salmonella typhimurium TA98 and the induction of Chromosomal aberrations in V79 cells by eight different flavonols and one catechin in the presence and in the absence of metabolizing systems. We have also studied the generation of hydroxyl radical by these flavonoids using the deoxyribose degradation assay. The results obtained in this study suggest that flavonols having a free hydroxyl group at position 3 of the C ring, a free hydroxyl group at position 7 of the A ring and a B ring with a catechol or pyrogallol structure, or a structure that after metabolic activation is transformed into a catechol or a pyrogallol, are flavonols whose genotoxicity in eukaryotic cells depends on their autooxidation. These flavonols can autooxidize when the pH value is slightly alkaline, such as in the intestine, and therefore can induce genotoxicity in humans. Given the above mentioned considerations it is necessary to clarify the mechanisms and the conditions that mediate the biological effects of flavonols before considering them as therapeutical agents.  相似文献   

17.
《Mutation Research Letters》1993,301(4):275-279
Further to a previous genotoxicity study, we analyzed sister-chromatid exchange (SCE) and DNA-repair induction (V79 and EUE cells in vitro) and DNA damage (rat liver in vivo) with regard to N-acryloyl-N-phenylpiperazine (AcrNPP), a chemical proposed for biomaterial polymerization which contains an aromatic tertiary amino function in a piperazine cycle. This chemical induced SCEs in a dose-dependent fashion (up to ≈ 3.7 times the control value), while it was negative for DNA-repair induction and weakly yeat significantly positive for in vivo DNA damage (maximum increase ≈ 1.4 times the control value). Taken together with our previous genotoxicity data on AcrNPP and structurally related compounds, the present results confirm that aneuploidy is a possible major effect of aromatic tertiary amines. As regards exposure to aneugenic agents, considerations on cancer risk evaluation are presented.  相似文献   

18.
Neolignans are secondary metabolites found in various groups of Angiosperms. They belong to a class of natural compounds with great diversity of chemical structures and pharmacological activities. These compounds are formed by linking two phenylpropanoid units. Several compounds that have ability to prevent genetic damage have been isolated from plants, and can be used to prevent or delay the development of tumor cells. Genetic toxicology evaluation is widely used in risk assessment of new drugs in preclinical screening tests. In this study, we evaluated the genotoxicity and cytotoxicity of the neolignan analogue 2-(4-nitrophenoxy)-1-phenylethanone (4NF) and its protective effect against DNA damage using the mouse bone marrow micronucleus test and the comet assay in mouse peripheral blood. Our results showed that this neolignan analogue had no genotoxic activity and was able to reduce induced damage both in mouse bone marrow and peripheral blood. Although the neolignan analogue 4NF was cytotoxic, it reduced cyclophosphamide-induced cytotoxicity. In conclusion, it showed no genotoxic action, but exhibited cytotoxic, antigenotoxic, and anticytotoxic activities.  相似文献   

19.
20.
Clastogenic agents, i.e. agents that can induce chromosome or DNA breakage, have been shown to enhance the rale of direct gene transfer to protoplasts. The effect was analysed at the enzymatic level using protoplast homogenates as well as intact protoplasts. For that purpose existing procedures were modified to enable measurement of DNA polymerase in vivo. In the system used, external DNA was able to enter the cells without the addition of membrane-permeabilizing compounds. When comparing total DNA polymerase activity of protoplasts irradiated with X-rays or UV-light with that of untreated cells we did not observe significant differences. Incubation of protoplasts with high doses of bleomycin affected total DNA polymerase activity negatively. but dideoxythymidine triphosphate-sensitive activity was not influenced. We conclude that the DNA strand-breaks induced by low doses of X-rays. UV-light or bleomycin do not increase the total or the repair-DNA polymerase activity and. therefore. that the increase in the transformation rates after DNA strand-breaking is not preceded by enhanced DNA polymerase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号