首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhinovirus (RV) infections cause exacerbations and development of severe asthma highlighting the importance of antiviral interferon (IFN) defence by airway cells. Little is known about bronchial smooth muscle cell (BSMC) production of IFNs and whether BSMCs have dsRNA-sensing receptors besides TLR3. dsRNA is a rhinoviral replication intermediate and necrotic cell effect mimic that mediates innate immune responses in bronchial epithelial cells. We have explored dsRNA-evoked IFN-β and IFN-λ1 production in human BSMCs and potential involvement of TLR3 and RIG-I-like receptors (RLRs). Primary BSMCs were stimulated with 0.1–10 µg/ml dsRNA, 0.1–1 µg/ml dsRNA in complex with the transfection agent LyoVec (dsRNA/LyoVec; selectively activating cytosolic RLRs) or infected with 0.05–0.5 MOI RV1B. Both dsRNA stimuli evoked early (3 h), concentration-dependent IFN-β and IFN-λ1 mRNA expression, which with dsRNA/LyoVec was much greater, and with dsRNA was much less, after 24 h. The effects were inhibited by dexamethasone. Further, dsRNA and dsRNA/LyoVec concentration-dependently upregulated RIG-I and MDA5 mRNA and protein. dsRNA and particularly dsRNA/LyoVec caused IFN-β and IFN-λ1 protein production (24 h). dsRNA- but not dsRNA/LyoVec-induced IFN expression was partly inhibited by chloroquine that suppresses endosomal TLR3 activation. RV1B dose-dependently increased BSMC expression of RIG-I, MDA5, IFN-β, and IFN-λ1 mRNA. We suggest that BSMCs express functional RLRs and that both RLRs and TLR3 are involved in viral stimulus-induced BSMC expression of IFN-β and IFN-λ1.  相似文献   

2.
Type I interferon (IFN) production by plasmacytoid dendritic cells (pDCs) has been mainly studied in the context of Toll-like receptor (TLR) activation. In the current report, we reveal that, in the absence of TLR activation, the integrin-binding SLAYGLR motif of secreted osteopontin (sOpn) induces IFN-β production in murine pDCs. This process is mediated by α4β1 integrin, indicating that integrin triggering may act as a subtle danger signal leading to IFN-β induction. The SLAYGLR-mediated α4 integrin/IFN-β axis is MyD88 independent and operates via a PI3K/mTOR/IRF3 pathway. Consequently, SLAYGLR-treated pDCs produce increased levels of type I IFNs following TLR stimulation. Intratumoral administration of SLAYGLR induces accumulation of IFN-β–expressing pDCs and efficiently suppresses melanoma tumor growth. In this process, pDCs are crucial. Finally, SLAYGLR enhances pDC development from bone marrow progenitors. These findings open new questions on the roles of sOpn and integrin α4 during homeostasis and inflammation. The newly identified integrin/IFN-β axis may be implicated in a wide array of immune responses.  相似文献   

3.
Ubiquitination and deubiquitination have emerged as critical regulatory processes in the virus-triggered type I interferon (IFN) induction pathway. In this study, we carried out a targeted siRNA screen of 54 ubiquitin-specific proteases (USPs) and identified USP25 as a negative regulator of the virus-triggered type I IFN signaling pathway. Overexpression of USP25 inhibited virus-induced activation of IFN-β, interferon regulation factor 3 (IRF3) and nuclear factor-kappa B (NF-κB), as well as the phosphorylation of IRF3 and NF-κB subunit p65. Furthermore, Knockdown of USP25 potentiated virus-induced induction of the IFN-β. In addition, detailed analysis demonstrated that USP25 cleaved lysine 48- and lysine 63-linked polyubiquitin chains in vitro and in vivo, and its deubiquitinating enzyme (DUB) activity, were dependent on a cysteine residue (Cys178) and a histidine residue (His607). USP25 mutants lacking DUB activity lost the ability to block virus-induced type I IFN to some degree. Mechanistically, USP25 deubiquitinated retinoic acid-inducible gene I (RIG-I), tumornecrosis factor (TNF) receptor-associated factor 2 (TRAF2), and TRAF6 to inhibit RIG-I-like receptor-mediated IFN signaling. Our findings suggest that USP25 is a novel DUB negatively regulating virus-induced type I IFN production.  相似文献   

4.
5.
Interferon-gamma (IFN-γ) is a glycoprotein generated by lymphocytes that possesses anti-tumor, antiviral and immunomodulatory functions. IFN-γ assays are broadly employed in immunological research and clinical diagnostic tests. Intracellular IFN-γ staining, in particular, is an important immune assay that allows simultaneous determination of cellular phenotype and antigen-specific T cell response. Aptamers have great potential for molecule detection and can bind to target molecules with high affinity and specificity. In this study, a novel 59-mer DNA aptamer (B1–4) was developed for assay of intracellular IFN-γ. The selected aptamer bound to IFN-γ with a Kd of 74.5 nM, with minimal cross-reactivity to albumin. The aptamer was also found capable of binding with paraformaldehyde-fixed IFN-γ. Moreover, B1–4 could enter permeated and paraformaldehyde-fixed lymphocytes, and bound to intracellular IFN-γ produced by these cells. When FITC-labeled B1–4 was used to stain a group of lymphocytes, the average fluorescence of the cells was positively correlated with the number of PMA-stimulated lymphocytes within the group. A standard curve could thus be established for assessing the fraction of IFN-γ-producing cells in a cluster of lymphocytes. The selected aptamer hence provides a novel approach for assaying intracellular IFN-γ generated by a group of lymphocytes, and may have application potential in both scientific research and clinical laboratory test.  相似文献   

6.
The innate immune response mediated by cells such as natural killer (NK) cells is critical for the rapid containment of virus replication and spread during acute infection. Here, we show that subtype 11 of the type I interferon (IFN) family greatly potentiates the antiviral activity of NK cells during retroviral infection. Treatment of mice with IFN-α11 during Friend retrovirus infection (FV) significantly reduced viral loads and resulted in long-term protection from virus-induced leukemia. The effect of IFN-α11 on NK cells was direct and signaled through the type I IFN receptor. Furthermore, IFN-α11-mediated activation of NK cells enabled cytolytic killing of FV-infected target cells via the exocytosis pathway. Depletion and adoptive transfer experiments illustrated that NK cells played a major role in successful IFN-α11 therapy. Additional experiments with Mouse Cytomegalovirus infections demonstrated that the therapeutic effect of IFN-α11 is not restricted to retroviruses. The type I IFN subtypes 2 and 5, which bind the same receptor as IFN-α11, did not elicit similar antiviral effects. These results demonstrate a unique and subtype-specific activation of NK cells by IFN-α11.  相似文献   

7.
8.
Exposure of cells to certain cytokines can alter how these same cells respond to later cues from other agents, such as extracellular matrix or growth factors. Interferon (IFN)-γ pre-exposure inhibits the spreading of fibroblasts on fibronectin. Expression of the IFN-γ–induced GTPase murine guanylate-binding protein-2 (mGBP-2) can phenocopy this inhibition and small interfering RNA knockdown of mGBP-2 prevents IFN-γ–mediated inhibition of cell spreading. Either IFN-γ treatment or mGBP-2 expression inhibits Rac activation during cell spreading. Rac is required for cell spreading. mGBP-2 also inhibits the activation of Akt during cell spreading on fibronectin. mGBP-2 is incorporated into a protein complex containing the catalytic subunit of phosphatidylinositol 3-kinase (PI3-K), p110. The association of mGBP-2 with p110 seems important for the inhibition of cell spreading because S52N mGBP-2, which does not incorporate into the protein complex with p110, is unable to inhibit cell spreading. PI3-K activation during cell spreading on fibronectin was inhibited in the presence of mGBP-2. Both IFN-γ and mGBP-2 also inhibit cell spreading initiated by platelet-derived growth factor treatment, which is also accompanied by inhibition of Rac activation by mGBP-2. This is the first report of a novel mechanism by which IFN-γ can alter how cells respond to subsequent extracellular signals, by the induction of mGBP-2.  相似文献   

9.
Type-I interferons (IFNs) form a large family of cytokines that primarily act to control the early development of viral infections. Typical type-I IFN genes, such as those encoding IFN-α or IFN-β are upregulated by viral infection in many cell types. In contrast, the gene encoding IFN-ε was reported to be constitutively expressed by cells of the female reproductive tract and to contribute to the protection against vaginal infections with herpes simplex virus 2 and Chlamydia muridarum. Our data confirm the lack of induction of IFN-ε expression after viral infection and the constitutive expression of IFN-ε by cells of the female but also of the male reproductive organs. Interestingly, when expressed from transfected expression plasmids in 293T, HeLa or Neuro2A cells, the mouse and human IFN-ε precursors were inefficiently processed and secretion of IFN-ε was minimal. Analysis of chimeric constructs produced between IFN-ε and limitin (IFN-ζ) showed that both the signal peptide and the mature moiety of IFN-ε contribute to poor processing of the precursor. Immunofluorescent detection of FLAG-tagged IFN-ε in transfected cells suggested that IFN-ε and chimeric proteins were defective for progression through the secretory pathway. IFN-ε did not, however, act intracellularly and impart an antiviral state to producing cells. Given the constitutive expression of IFN-ε in specialized cells and the poor processing of IFN-ε precursor in fibroblasts and cell lines, we hypothesize that IFN-ε secretion may require a co-factor specifically expressed in cells of the reproductive organs, that might secure the system against aberrant release of this IFN.  相似文献   

10.
11.
12.
13.
14.
The coronavirus mouse hepatitis virus (MHV) induces a minimal type I interferon (IFN) response in several cell types in vitro despite the fact that the type I IFN response is important in protecting the mouse from infection in vivo. When infected with MHV, mice deficient in IFN-associated receptor expression (IFNAR−/−) became moribund by 48 h postinfection. MHV also replicated to higher titers and exhibited a more broad tissue tropism in these mice, which lack a type I IFN response. Interestingly, MHV induced IFN-β in the brains and livers, two main targets of MHV replication, of infected wild-type mice. MHV infection of primary cell cultures indicates that hepatocytes are not responsible for the IFN-β production in the liver during MHV infection. Furthermore, macrophages and microglia, but not neurons or astrocytes, are responsible for IFN-β production in the brain. To determine the pathway by which MHV is recognized in macrophages, IFN-β mRNA expression was quantified following MHV infection of a panel of primary bone marrow-derived macrophages generated from mice lacking different pattern recognition receptors (PRRs). Interestingly, MDA5, a PRR thought to recognize primarily picornaviruses, was required for recognition of MHV. Thus, MHV induces type I IFN in macrophages and microglia in the brains of infected animals and is recognized by an MDA5-dependent pathway in macrophages. These findings suggest that secretion of IFN-β by macrophages and microglia plays a role in protecting the host from MHV infection of the central nervous system.  相似文献   

15.
16.
17.
18.
19.
Lysophosphatidic acid (LPA) is an important phospholipid mediator in inflammation and immunity. However, the mechanism of LPA regulation during inflammatory response is largely unknown. Autotaxin (ATX) is the key enzyme to produce extracellular LPA from lysophosphatidylcholine (LPC). In this study, we found that ATX was induced in monocytic THP-1 cells by TLR4 ligand lipopolysaccharide (LPS), TLR9 ligand CpG oligonucleotide, and TLR3 ligand poly(I:C), respectively. The ATX induction by TLR ligand was abolished by the neutralizing antibody against IFN-β or the knockdown of IFNAR1, indicating that type I IFN autocrine loop is responsible for the ATX induction upon TLR activation. Both IFN-β and IFN-α were able to induce ATX expression via the JAK-STAT and PI3K-AKT pathways but with different time-dependent manners. The ATX induction by IFN-β was dramatically enhanced by IFN-γ, which had no significant effect on ATX expression alone, suggesting a synergy effect between type I and type II IFNs in ATX induction. Extracellular LPA levels were significantly increased when THP-1 cells were treated with IFN-α/β or TLR ligands. In addition, the type I IFN-mediated ATX induction was identified in human monocyte-derived dendritic cells (moDCs) stimulated with LPS or poly(I:C), and IFN-α/β could induce ATX expression in human peripheral blood mononuclear cells (PBMCs) and monocytes isolated form blood samples. These results suggest that, in response to TLR activation, ATX is induced through a type I INF autocrine-paracrine loop to enhance LPA generation.  相似文献   

20.
Poxviruses such as virulent vaccinia virus (VACV) strain Western Reserve encode a broad range of immune modulators that interfere with host responses to infection. Upon more than 570 in vitro passages in chicken embryo fibroblasts (CEF), chorioallantois VACV Ankara (CVA) accumulated mutations that resulted in highly attenuated modified vaccinia virus Ankara (MVA). MVA infection of mice and of dendritic cells (DC) induced significant type I interferon (IFN) responses, whereas infection with VACV alone or in combination with MVA did not. These results implied that VACV expressed an IFN inhibitor(s) that was functionally deleted in MVA. To further characterize the IFN inhibitor(s), infection experiments were carried out with CVA strains isolated after 152 (CVA152) and 386 CEF passages (CVA386). Interestingly, neither CVA152 nor CVA386 induced IFN-α, whereas the latter variant did induce IFN-β. This pattern suggested a consecutive loss of inhibitors during MVA attenuation. Similar to supernatants of VACV- and CVA152-infected DC cultures, recombinantly expressed soluble IFN decoy receptor B18, which is encoded in the VACV genome, inhibited MVA-induced IFN-α but not IFN-β. In the same direction, a B18R-deficient VACV variant triggered only IFN-α, confirming B18 as the soluble IFN-α inhibitor. Interestingly, VACV infection inhibited IFN responses induced by a multitude of different stimuli, including oligodeoxynucleotides containing CpG motifs, poly(I:C), and vesicular stomatitis virus. Collectively, the data presented show that VACV-mediated IFN inhibition is a multistep process involving secreted factors such as B18 plus intracellular components that cooperate to efficiently shut off systemic IFN-α and IFN-β responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号