首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 386 毫秒
1.
Background and Aims Polyphenol oxidases (PPOs) catalyse the oxidation of monophenols and/or o-diphenols to highly reactive o-quinones, which in turn interact with oxygen and proteins to form reactive oxygen species (ROS) and typical brown-pigmented complexes. Hence PPOs can affect local levels of oxygen and ROS. Although the currently known substrates are located in the vacuole, the enzyme is targeted to the thylakoid lumen, suggesting a role for PPOs in photosynthesis. The current study was designed to investigate the potential involvement of PPOs in the photosynthetic response to oxidative stress.Methods Photosynthesis (A, Fv/Fm, ΦPSII, qN, qP, NPQ) was measured in leaves of a wild-type and a low-PPO mutant of red clover (Trifolium pratense ‘Milvus’) under control conditions and under a stress treatment designed to induce photooxidative stress: cold/high light (2 °C/580 µmol m2 s–1) or 0–10 µm methyl viologen. Foliar protein content and oxidation state were also determined.Key Results Photosynthetic performance, and chlorophyll and protein content during 4 d of cold/high light stress and 3 d of subsequent recovery under control growth conditions showed similar susceptibility to stress in both lines. However, more extensive oxidative damage to protein in mutants than wild-types was observed after treatment of attached leaves with methyl viologen. In addition, PPO activity could be associated with an increased capacity to dissipate excess energy, but only at relatively low methyl viologen doses.Conclusions The presence of PPO activity in leaves did not correspond to a direct role for the enzyme in the regulation or protection of photosynthesis under cold stress. However, an indication that PPO could be involved in cellular protection against low-level oxidative stress requires further investigation.  相似文献   

2.
3.
The pathophysiology of ischemic myocardial injury involves cellular events, reactive oxygen species, and an inflammatory reaction cascade. The zinc complex of acetylsalicylic acid (Zn(ASA)2) has been found to possess higher anti-inflammatory and lower ulcerogenic activities than acetylsalicylic acid (ASA). Herein, we studied the effects of both ASA and Zn(ASA)2 against acute myocardial ischemia. Rats were pretreated with ASA (75 mg/kg) or Zn(ASA)2 (100 mg/kg) orally for five consecutive days. Isoproterenol (85 mg/kg, subcutaneously [s.c.]) was applied to produce myocardial infarction. After 17–22 h, animals were anesthetized with sodium pentobarbital (60 mg/kg, intraperitoneally [i.p.]) and both electrical and mechanical parameters of cardiac function were evaluated in vivo. Myocardial histological and gene expression analyses were performed. In isoproterenol-treated rats, Zn(ASA)2 treatment normalized significantly impaired left-ventricular contractility index (Emax 2.6 ± 0.7 mmHg/µL vs. 4.6 ± 0.5 mmHg/µL, P < 0.05), increased stroke volume (30 ± 3 µL vs. 50 ± 6 µL, P < 0.05), decreased systemic vascular resistance (7.2 ± 0.7 mmHg/min/mL vs. 4.2 ± 0.5 mmHg/min/mL, P < 0.05) and reduced inflammatory infiltrate into the myocardial tissues. ECG revealed a restoration of elevated ST-segment (0.21 ± 0.03 mV vs. 0.09 ± 0.02 mV, P < 0.05) and prolonged QT-interval (79.2 ± 3.2 ms vs. 69.5 ± 2.5 ms, P < 0.05) by Zn(ASA)2. ASA treatment did not result in an improvement of these parameters. Additionally, Zn(ASA)2 significantly increased the mRNA-expression of superoxide dismutase 1 (+73 ± 15%), glutathione peroxidase 4 (+44 ± 12%), and transforming growth factor (TGF)-β1 (+102 ± 22%). In conclusion, our data demonstrate that oral administration of zinc and ASA in the form of bis(aspirinato)zinc(II) complex is superior to ASA in preventing electrical, mechanical, and histological changes after acute myocardial ischemia. The induction of antioxidant enzymes and the anti-inflammatory cytokine TGF-β1 may play a pivotal role in the mechanism of action of Zn(ASA)2.  相似文献   

4.
This research presents the design and synthesis of a novel series of phthalazine derivatives as Topo II inhibitors, DNA intercalators, and cytotoxic agents. In vitro testing of the new compounds against HepG-2, MCF-7, and HCT-116 cell lines confirmed their potent cytotoxic activity with low IC50 values. Topo II inhibition and DNA intercalating activities were evaluated for the most cytotoxic members. IC50 values determination demonstrated Topo II inhibitory activities and DNA intercalating affinities of the tested compounds at a micromolar level. Amongst, compound 9d was the most potent member. It inhibited Topo II enzyme at IC50 value of 7.02 ± 0.54 µM with DNA intercalating IC50 of 26.19 ± 1.14 µM. Compound 9d was then subjected to an in vivo antitumor examination. It inhibited tumour proliferation reducing solid tumour volume and mass. Additionally, it restored liver enzymes, proteins, and CBC parameters near-normal, indicating a remarkable amelioration in their functions along with histopathological examinations.  相似文献   

5.

Background

Chronic obstructive pulmonary disease, COPD, is an increasing cause of morbidity and mortality worldwide, and an imbalance between proteases and antiproteases has been implicated to play a role in COPD pathogenesis. Matrix metalloproteinases (MMP) are important proteases that along with their inhibitors, tissue inhibitors of metalloproteinases (TIMP), affect homeostasis of elastin and collagen, of importance for the structural integrity of human airways. Small observational studies indicate that these biomarkers are involved in the pathogenesis of COPD. The aim of this study was to investigate serum levels of MMP-9 and TIMP-1 in a large Swedish population-based cohort, and their association with disease severity and important clinical symptoms of COPD such as productive cough.

Methods

Spirometry was performed and peripheral blood samples were collected in a populations-based cohort (median age 67 years) comprising subjects with COPD (n = 594) and without COPD (n = 948), in total 1542 individuals. Serum MMP-9 and TIMP-1 concentrations were measured with enzyme linked immunosorbant assay (ELISA) and related to lung function data and symptoms.

Results

Median serum MMP-9 values were significantly higher in COPD compared with non-COPD 535 vs. 505 ng/ml (P = 0.017), without any significant differences in serum TIMP-1-levels or MMP-9/TIMP-1-ratio. In univariate analysis, productive cough and decreasing FEV1% predicted correlated significantly with increased MMP-9 among subjects with COPD (P = 0.004 and P = 0.001 respectively), and FEV1% predicted remained significantly associated to MMP-9 in a multivariate model adjusting for age, sex, pack years and productive cough (P = 0.033).

Conclusion

Productive cough and decreasing FEV1 were each associated with MMP-9 in COPD, and decreasing FEV1 remained significantly associated with MMP-9 also after adjustment for common confounders in this population-based COPD cohort. The increased serum MMP-9 concentrations in COPD indicate an enhanced proteolytic activity that is related to disease severity, and further longitudinal studies are important for the understanding of MMP-9 in relation to the disease process and the pathogenesis of different COPD phenotypes.  相似文献   

6.
This study compared resting and exercise heat/hypoxic stress-induced levels of plasma extracellular heat shock protein 70 (eHSP70) in humans using two commercially available enzyme-linked immunosorbent assay (ELIS)A kits. EDTA plasma samples were collected from 21 males during two separate investigations. Participants in part A completed a 60-min treadmill run in the heat (HOT70; 33.0 ± 0.1 °C, 28.7 ± 0.8 %, n = 6) at 70 % V̇O2max. Participants in part B completed 60 min of cycling exercise at 50 % V̇O2max in either hot (HOT50; 40.5 °C, 25.4 relative humidity (RH)%, n = 7) or hypoxic (HYP50; fraction of inspired oxygen (FIO2) = 0.14, 21 °C, 35 % RH, n = 8) conditions. Samples were collected prior to and immediately upon termination of exercise and analysed for eHSP70 using EKS-715 high-sensitivity HSP70 ELISA and new ENZ-KIT-101 Amp’d™ HSP70 high-sensitivity ELISA. ENZ-KIT was superior in detecting resting eHSP70 (1.54 ± 3.27 ng·mL−1; range 0.08 to 14.01 ng·mL−1), with concentrations obtained from 100 % of samples compared to 19 % with EKS-715 assay. The ENZ-KIT requires optimisation prior to running samples in order to ensure participants fall within the standard curve, a step not required with EKS-715. Using ENZ-KIT, a 1:4 dilution allowed for quantification of resting HSP70 in 26/32 samples, with a 1:8 (n = 3) and 1:16 (n = 3) dilution required to determine the remaining samples. After exercise, eHSP70 was detected in 6/21 and 21/21 samples using EKS-715 and ENZ-KIT, respectively. eHSP70 was increased from rest after HOT70 (p < 0.05), but not HOT50 (p > 0.05) or HYP50 (p > 0.05) when analysed using ENZ-KIT. It is recommended that future studies requiring the precise determination of resting plasma eHSP70 use the ENZ-KIT (i.e. HSP70 Amp’d® ELISA) instead of the EKS-715 assay, despite additional assay development time and cost required.  相似文献   

7.
Ellis RH  Hong TD 《Annals of botany》2006,97(5):785-791
Background and Aims The negative logarithmic relationship between orthodox seed longevity and moisture content in hermetic storage is subject to a low-moisture-content limit (mc), but is mc affected by temperature?• Methods Red clover (Trifolium pratense) and alfalfa (Medicago sativa) seeds were stored hermetically at 12 moisture contents (2–15 %) and five temperatures (–20, 30, 40, 50 and 65 °C) for up to 14·5 years, and loss in viability was estimated.• Key Results Viability did not change during 14·5 years hermetic storage at −20 °C with moisture contents from 2·2 to 14·9 % for red clover, or 2·0 to 12·0 % for alfalfa. Negative logarithmic relationships between longevity and moisture contents >mc were detected at 30–65 °C, with discontinuities at low moisture contents; mc varied between 4·0 and 5·4 % (red clover) or 4·2 and 5·5 % (alfalfa), depending upon storage temperature. Within the ranges investigated, a reduction in moisture content below mc at any one temperature had no effect on longevity. Estimates of mc were greater the cooler the temperature, the relationship (P < 0·01) being curvilinear. Above mc, the estimates of CH and CQ (i.e. the temperature term of the seed viability equation) did not differ (P > 0·10) between species, whereas those of KE and CW did (P < 0·001).• Conclusions The low-moisture-content limit to negative logarithmic relationships between seed longevity and moisture content in hermetic storage increased the cooler the storage temperature, by approx. 1·5 % over 35 °C (4·0–4·2 % at 65 °C to 5·4–5·5 % at 30–40 °C) in these species. Further reduction in moisture content was not damaging. The variation in mc implies greater sensitivity of longevity to temperature above, compared with below, mc. This was confirmed (P < 0·005).  相似文献   

8.

Background

Heat stress induces various physiological changes and so could influence ocular circulation. This study examined the effect of heat stress on ocular blood flow.

Findings

Ocular blood flow, end-tidal carbon dioxide (PETCO2) and blood pressure were measured for 12 healthy subjects wearing water-perfused tube-lined suits under two conditions of water circulation: (1) at 35°C (normothermia) for 30 min and (2) at 50°C for 90 min (passive heat stress). The blood-flow velocities in the superior temporal retinal arteriole (STRA), superior nasal retinal arteriole (SNRA), and the retinal and choroidal vessels (RCV) were measured using laser-speckle flowgraphy. Blood flow in the STRA and SNRA was calculated from the integral of a cross-sectional map of blood velocity. PETCO2 was clamped at the normothermia level by adding 5% CO2 to the inspired gas. Passive heat stress had no effect on the subjects’ blood pressures. The blood-flow velocity in the RCV was significantly lower after 30, 60 and 90 min of passive heat stress than the normothermic level, with a peak decrease of 18 ± 3% (mean ± SE) at 90 min. Blood flow in the STRA and SNRA decreased significantly after 90 min of passive heat stress conditions, with peak decreases of 14 ± 3% and 14 ± 4%, respectively.

Conclusion

The findings of this study suggest that passive heat stress decreases ocular blood flow irrespective of the blood pressure or arterial partial pressure of CO2.  相似文献   

9.
This study aimed to verify the anti-inflammatory effect of soybean isoflavones (SI) on the inflammatory response induced by Streptococcus agalactiae (S. agalactiae) of bovine mammary epithelial cells (bMECs) and to elucidate its possible mechanism. BMECs were pretreated with SI of different concentrations (20, 40, 60, 80, 100 μg/mL) for 0.5, 3, 6, 9, 12, 15, 18, 24 h. And then, S. agalactiae was used to infect bMECs for 6 h (MOI = 50:1) to establish the inflammation model. Cell viability, growth curves of S. agalactiae, cytotoxicity, and S. agalactiae invasion rate were determined. A proteomics technique was used to further detect differential proteins and enrichment pathways. SI (40 μg/mL) improved the viability of bMECs at 12 h (p < 0.05) and 60 and 80 μg/mL of SI greater (p < 0.01). Moreover, 60 μg/mL of SI protects cells from bacterial damage (p < 0.05). SI could inhibit S. agalactiae growth and internalization into bMECs in a time- and dose-dependent manner. In addition, proteomics results showed that 133 proteins were up-regulated and 89 proteins were down-regulated significantly. The differentially significantly expressed proteins (DSEPs) were mainly related to cell proliferation, differentiation, apoptosis, and migration. GO annotation showed that 222 DSEPs were divided into 23 biological processes (BP) terms, 14 cell components (CC) terms, and 12 molecular functions (MF) terms. DSEPs were significantly enriched in 10 pathways, of which the immune pathway was the main enrichment pathway.  相似文献   

10.

Background

Atriplex laciniata L. was investigated for phenolic, flavonoid contents, antioxidant, anticholinesterase activities, in an attempt to explore its effectiveness in Alzheimer’s and other neurological disorders. Plant crude methanolic extract (Al.MeF), subsequent fractions; n-hexane (Al.HxF), chloroform (Al.CfF), ethyl acetate (Al.EaF), aqueous (Al.WtF), Saponins (Al.SPF) and Flavonoids (Al.FLVF) were investigated for DPPH, ABTS and H2O2 free radical scavenging activities. Further these extracts were subjected to acetylcholinesterase (AChE) & butyrylcholinesterase (BChE) inhibitory activities using Ellman’s assay. Phenolic and Flavonoid contents were determined and expressed in mg Gallic acid GAE/g and Rutin RTE/g of samples respectively.

Results

In DPPH free radicals scavenging assay, Al.FLVF, Al.SPF and Al.MeF showed highest activity causing 89.41 ± 0.55, 83.37 ± 0.34 and 83.37 ± 0.34% inhibition of free radicals respectively at 1 mg/mL concentration. IC50 for these fractions were 33, 83 and 82 μg/mL respectively. Similarly, plant extracts showed high ABTS scavenging potential, i.e. Al.FLVF (90.34 ± 0.55), Al.CfF (83.42 ± 0.57), Al.MeF (81.49 ± 0.60) with IC50 of 30, 190 and 70 μg/ml respectively. further, H2O2 percent scavenging was highly appraised in Al.FLVF (91.29 ± 0.53, IC50 75), Al.SPF (85.35 ± 0.61, IC50 70) and Al.EaF (83.48 ± 0.67, IC50 270 μg/mL). All fractions exhibited concentration dependent AChE inhibitory activity as; Al.FLVF, 88.31 ± 0.57 (IC50 70 μg/mL), Al.SPF, 84.36 ± 0.64 (IC50 90 μg/mL), Al.MeF, 78.65 ± 0.70 (IC50 280 μg/mL), Al.EaF, 77.45 ± 0.46 (IC50 270 μg/mL) and Al.WtF 72.44 ± 0.58 (IC50 263 μg/mL) at 1 mg/mL. Likewise the percent BChE inhibitory activity was most obvious in Al.FLVF 85.46 ± 0.62 (IC50 100 μg/mL), Al.CfF 83.49 ± 0.46 (IC50 160 μg/mL), Al.MeF 82.68 ± 0.60 (IC50 220 μg/mL) and Al.SPF 80.37 ± 0.54 (IC50 120 μg/mL).

Conclusions

These results stipulate that A. laciniata is enriched with phenolic and flavonoid contents that possess significant antioxidant and anticholinestrase effects. This provide pharmacological basis for the presence of compounds that may be effective in Alzheimer’s and other neurological disorders.  相似文献   

11.
Theory predicts that the net charge (Z) of a protein can be altered by the net charge of a neighboring protein as the two approach one another below the Debye length. This type of charge regulation suggests that a protein''s charge and perhaps function might be affected by neighboring proteins without direct binding. Charge regulation during protein crowding has never been directly measured due to analytical challenges. Here, we show that lysine specific protein crosslinkers (NHS ester‐Staudinger pairs) can be used to mimic crowding by linking two non‐interacting proteins at a maximal distance of ~7.9 Å. The net charge of the regioisomeric dimers and preceding monomers can then be determined with lysine‐acyl “protein charge ladders” and capillary electrophoresis. As a proof of concept, we covalently linked myoglobin (Z monomer = −0.43 ± 0.01) and α‐lactalbumin (Z monomer = −4.63 ± 0.05). Amide hydrogen/deuterium exchange and circular dichroism spectroscopy demonstrated that crosslinking did not significantly alter the structure of either protein or result in direct binding (thus mimicking crowding). Ultimately, capillary electrophoretic analysis of the dimeric charge ladder detected a change in charge of ΔZ = −0.04 ± 0.09 upon crowding by this pair (Z dimer = −5.10 ± 0.07). These small values of ΔZ are not necessarily general to protein crowding (qualitatively or quantitatively) but will vary per protein size, charge, and solvent conditions.  相似文献   

12.

Background

Several studies on the association of TNF-alpha (−308 G/A), IL-6 (−174 G/C) and IL-1beta (−511 C/T) polymorphisms with polycystic ovary syndrome (PCOS) risk have reported conflicting results. The aim of the present study was to assess these associations by meta-analysis.

Results

A total of 14 eligible articles (1665 cases/1687 controls) were included in this meta-analysis. The results suggested that there was no obvious association between the TNF-alpha (−308 G/A) polymorphism and PCOS in the overall population or subgroup analysis by ethnicity, Hardy–Weinberg equilibrium (HWE) in controls, genotyping method, PCOS diagnosis criteria, and study sample size. Also, no obvious association was found between the TNF-alpha (−308 G/A) polymorphism and obesity in patients with PCOS (body mass index [BMI] ≥ 25 kg/m2 vs. BMI < 25 kg/m2). Regarding the IL-6 (−174 G/C) polymorphism, also no association was found in the overall population in heterozygote comparison, dominant model, and recessive model. Even though an allelic model (odds ratio [OR] = 0.63, 95% confidence interval [CI] = 0.41–0.96) and a homozygote comparison (OR = 0.52, 95% CI = 0.30–0.93) showed that the IL-6 (−174 G/C) polymorphism was marginally associated with PCOS. Further subgroup analysis suggested that the effect size was not significant among HWE in controls (sample size ≤ 200) and genotyping method of pyrosequencing under all genetic models. Similarly, there was no association between the IL-1beta (−511 C/T) polymorphism and PCOS in the overall population or subgroup analysis under all genetic models. Furthermore, no significant association was found between the IL-1beta (−511 C/T) polymorphism and several clinical and biochemical parameters in patients with PCOS.

Conclusions

The results of this meta-analysis suggest that the TNF-alpha (−308 G/A), IL-6 (−174 G/C), and IL-1beta (−511 C/T) polymorphisms may not be associated with PCOS risk. However, further case–control studies with larger sample sizes are needed to confirm our results.

Electronic supplementary material

The online version of this article (doi:10.1186/s12863-015-0165-4) contains supplementary material, which is available to authorized users.  相似文献   

13.
Acetate oxidation in Italian rice field at 50 °C is achieved by uncultured syntrophic acetate oxidizers. As these bacteria are closely related to acetogens, they may potentially also be able to synthesize acetate chemolithoautotrophically. Labeling studies using exogenous H2 (80%) and 13CO2 (20%), indeed demonstrated production of acetate as almost exclusive primary product not only at 50 °C but also at 15 °C. Small amounts of formate, propionate and butyrate were also produced from 13CO2. At 50 °C, acetate was first produced but later on consumed with formation of CH4. Acetate was also produced in the absence of exogenous H2 albeit to lower concentrations. The acetogenic bacteria and methanogenic archaea were targeted by stable isotope probing of ribosomal RNA (rRNA). Using quantitative PCR, 13C-labeled bacterial rRNA was detected after 20 days of incubation with 13CO2. In the heavy fractions at 15 °C, terminal restriction fragment length polymorphism, cloning and sequencing of 16S rRNA showed that Clostridium cluster I and uncultured Peptococcaceae assimilated 13CO2 in the presence and absence of exogenous H2, respectively. A similar experiment showed that Thermoanaerobacteriaceae and Acidobacteriaceae were dominant in the 13C treatment at 50 °C. Assimilation of 13CO2 into archaeal rRNA was detected at 15 °C and 50 °C, mostly into Methanocellales, Methanobacteriales and rice cluster III. Acetoclastic methanogenic archaea were not detected. The above results showed the potential for acetogenesis in the presence and absence of exogenous H2 at both 15 °C and 50 °C. However, syntrophic acetate oxidizers seemed to be only active at 50 °C, while other bacterial groups were active at 15 °C.  相似文献   

14.
Histone lysine specific demethylase 1 (LSD1) has emerged as an attractive molecule target for the discovery of potently anticancer drugs to treat leukaemia. In this study, a series of novel chalcone derivatives were designed, synthesised and evaluated for their inhibitory activities against LSD1 in vitro. Among all these compounds, D6 displayed the best LSD1 inhibitory activity with an IC50 value of 0.14 μM. In the cellular level, compound D6 can induce the accumulation of H3K9me1/2 and inhibit cell proliferation by inactivating LSD1. It exhibited the potent antiproliferative activity with IC50 values of 1.10 μM, 3.64 μM, 3.85 μM, 1.87 μM, 0.87 μM and 2.73 μM against HAL-01, KE-37, P30-OHK, SUP-B15, MOLT-4 and LC4-1 cells, respectively. Importantly, compound D6 significantly suppressed MOLT-4 xenograft tumour growth in vivo, indicating its great potential as an orally bioavailable candidate for leukaemia therapy.  相似文献   

15.

Background

Acute exercise in the heat has been shown to reduce appetite. However, the influence of exercise in the cold on appetite regulation remains unclear. The aim of this study was to compare exercise-induced appetite regulation under three different environmental temperatures.

Methods

Eleven male participants completed three experimental trials on the following separate days: exercise in the heat (36°C), exercise at neutral temperature (24°C), and exercise in the cold (12°C). The exercise trials consisted of pedaling exercises for 30 min at 65% of maximal oxygen uptake (VO2max). Blood samples were collected repeatedly to determine plasma ghrelin, peptide YY (PYY) and other hormonal concentrations. Subjective feelings of hunger and tympanic temperature were also monitored.

Results

Tympanic temperature was significantly higher in the 36°C trial than that of the other two trials (P < 0.05). The subjective feelings of hunger in the 36°C and 24°C trials were significantly lower than those in the 12°C trial (P < 0.05). Plasma ghrelin concentration decreased significantly with exercise in all conditions (P < 0.05), and the responses were not significantly different among the three conditions. Plasma PYY concentration increased significantly after the exercise in the 24°C trial only (P < 0.05), with no significant difference among the three trials.

Conclusions

These results suggest that exposure to hot or cold temperatures during exercise did not affect exercise-induced plasma ghrelin and PYY responses. However, the exercise-induced reduction of subjective hunger was significantly attenuated in a cold environment.  相似文献   

16.
Crustose coralline algae (CCA) are key reef-building primary producers that are known to induce the metamorphosis and recruitment of many species of coral larvae. Reef biofilms (particularly microorganisms associated with CCA) are also important as settlement cues for a variety of marine invertebrates, including corals. If rising sea surface temperatures (SSTs) affect CCA and/or their associated biofilms, this may in turn affect recruitment on coral reefs. Herein, we report that the CCA Neogoniolithon fosliei, and its associated microbial communities do not tolerate SSTs of 32 °C, only 2–4 °C above the mean maximum annual SST. After 7 days at 32 °C, the CCA exhibited clear signs of stress, including bleaching, a reduction in maximum quantum yield (Fv/Fm) and a large shift in microbial community structure. This shift at 32 °C involved an increase in Bacteroidetes and a reduction in Alphaproteobacteria, including the loss of the primary strain (with high-sequence similarity to a described coral symbiont). A recovery in Fv/Fm was observed in CCA exposed to 31 °C following 7 days of recovery (at 27 °C); however, CCA exposed to 32 °C did not recover during this time as evidenced by the rapid growth of endolithic green algae. A 50% reduction in the ability of N. fosliei to induce coral larval metamorphosis at 32 °C accompanied the changes in microbiology, pigmentation and photophysiology of the CCA. This is the first experimental evidence to demonstrate how thermal stress influences microbial associations on CCA with subsequent downstream impacts on coral recruitment, which is critical for reef regeneration and recovery from climate-related mortality events.  相似文献   

17.

Background

The combination of aclidinium bromide, a long-acting anticholinergic, and formoterol fumarate, a long-acting beta2-agonist (400/12 μg twice daily) achieves improvements in lung function greater than either monotherapy in patients with chronic obstructive pulmonary disease (COPD), and is approved in the European Union as a maintenance treatment. The effect of this combination on symptoms of COPD and exacerbations is less well established. We examined these outcomes in a pre-specified analysis of pooled data from two 24-week, double-blind, parallel-group, active- and placebo-controlled, multicentre, randomised Phase III studies (ACLIFORM and AUGMENT).

Methods

Patients ≥40 years with moderate to severe COPD (post-bronchodilator forced expiratory volume in 1 s [FEV1]/forced vital capacity <70 % and FEV1 ≥30 % but <80 % predicted normal) were randomised (ACLIFORM: 2:2:2:2:1; AUGMENT: 1:1:1:1:1) to twice-daily aclidinium/formoterol 400/12 μg or 400/6 μg, aclidinium 400 μg, formoterol 12 μg or placebo via Genuair™/Pressair®. Dyspnoea (Transition Dyspnoea Index; TDI), daily symptoms (EXAcerbations of Chronic pulmonary disease Tool [EXACT]-Respiratory Symptoms [E-RS] questionnaire), night-time and early-morning symptoms, exacerbations (Healthcare Resource Utilisation [HCRU] and EXACT definitions) and relief-medication use were assessed.

Results

The pooled intent-to-treat population included 3394 patients. Aclidinium/formoterol 400/12 μg significantly improved TDI focal score versus placebo and both monotherapies at Week 24 (all p < 0.05). Over 24 weeks, significant improvements in E-RS total score, overall night-time and early-morning symptom severity and limitation of early-morning activities were observed with aclidinium/formoterol 400/12 μg versus placebo and both monotherapies (all p < 0.05). The rate of moderate or severe HCRU exacerbations was significantly reduced with aclidinium/formoterol 400/12 μg compared with placebo (p < 0.05) but not monotherapies; the rate of EXACT-defined exacerbations was significantly reduced with aclidinium/formoterol 400/12 μg versus placebo (p < 0.01) and aclidinium (p < 0.05). Time to first HCRU or EXACT exacerbation was longer with aclidinium/formoterol 400/12 μg compared with placebo (all p < 0.05) but not the monotherapies. Relief-medication use was reduced with aclidinium/formoterol 400/12 μg versus placebo and aclidinium (p < 0.01).

Conclusions

Aclidinium/formoterol 400/12 μg significantly improves 24-hour symptom control compared with placebo, aclidinium and formoterol in patients with moderate to severe COPD. Furthermore, aclidinium/formoterol 400/12 μg reduces the frequency of exacerbations compared with placebo.

Trial registration

NCT01462942 and NCT01437397 (ClinicalTrials.gov)

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0250-2) contains supplementary material, which is available to authorized users.  相似文献   

18.

Introduction

Both genetic variation in ATP-binding cassette sub-family G member 2 (ABCG2) and intake of fructose-containing beverages are major risk factors for hyperuricemia and gout. This study aimed to test the hypothesis that the ABCG2 gout risk allele 141 K promotes the hyperuricaemic response to fructose loading.

Methods

Healthy volunteers (n = 74) provided serum and urine samples immediately before and 30, 60, 120 and 180 minutes after ingesting a 64 g fructose solution. Data were analyzed based on the presence or absence of the ABCG2 141 K gout risk allele.

Results

The 141 K risk allele was present in 23 participants (31%). Overall, serum urate (SU) concentrations during the fructose load were similar in those with and without the 141 K allele (PSNP = 0.15). However, the 141 K allele was associated with a smaller increase in SU following fructose intake (PSNP <0.0001). Those with the 141 K allele also had a smaller increase in serum glucose following the fructose load (PSNP = 0.002). Higher fractional excretion of uric acid (FEUA) at baseline and throughout the fructose load was observed in those with the 141 K risk allele (PSNP <0.0001). However, the change in FEUA in response to fructose was not different in those with and without the 141 K risk allele (PSNP = 0.39). The 141 K allele effects on serum urate and glucose were more pronounced in Polynesian participants and in those with a body mass index ≥25 kg/m2.

Conclusions

In contrast to the predicted responses for a hyperuricemia/gout risk allele, the 141 K allele is associated with smaller increases in SU and higher FEUA following a fructose load. The results suggest that ABCG2 interacts with extra-renal metabolic pathways in a complex manner to regulate SU and gout risk.

Clinical Trials Registration

The study was registered by the Australian Clinical Trials Registry (ACTRN12610001036000).  相似文献   

19.
Nine compounds (MO1–MO9) containing the morpholine moiety were assessed for their inhibitory activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE). Most of the compounds potently inhibited MAO-B; MO1 most potently inhibited with an IC50 value of 0.030 µM, followed by MO7 (0.25 µM). MO5 most potently inhibited AChE (IC50 = 6.1 µM), followed by MO9 (IC50 = 12.01 µM) and MO7 most potently inhibited MAO-A (IC50 = 7.1 µM). MO1 was a reversible mixed-type inhibitor of MAO-B (Ki = 0.018 µM); MO5 reversibly competitively inhibited AChE (Ki = 2.52 µM); and MO9 reversibly noncompetitively inhibited AChE (Ki = 7.04 µM). MO1, MO5 and MO9 crossed the blood–brain barrier, and were non-toxic to normal VERO cells. These results show that MO1 is a selective inhibitor of MAO-B and that MO5 is a dual-acting inhibitor of AChE and MAO-B, and that both should be considered candidates for the treatment of Alzheimer’s disease.  相似文献   

20.

Background

The aim of the present study was to evaluate the in vitro antioxidant and free radical scavenging capacity of bioactive metabolites present in Newbouldia laevis leaf extract.

Results

Chromatographic and spectrophotometric methods were used in the study and modified where necessary in the study. Bioactivity of the extract was determined at 10 μg/ml, 50 μg/ml, 100 μg/ml, 200 μg/ml and 400 μg/ml concentrations expressed in % inhibition. The yield of the ethanolic leaf extract of N.laevis was 30.3 g (9.93%). Evaluation of bioactive metabolic constituents gave high levels of ascorbic acid (515.53 ± 12 IU/100 g [25.7 mg/100 g]), vitamin E (26.46 ± 1.08 IU/100 g), saponins (6.2 ± 0.10), alkaloids (2.20 ± 0.03), cardiac glycosides(1.48 ± 0.22), amino acids and steroids (8.01 ± 0.04) measured in mg/100 g dry weight; moderate levels of vitamin A (188.28 ± 6.19 IU/100 g), tannins (0.09 ± 0.30), terpenoids (3.42 ± 0.67); low level of flavonoids (1.01 ± 0.34 mg/100 g) and absence of cyanogenic glycosides, carboxylic acids and aldehydes/ketones. The extracts percentage inhibition of DPPH, hydroxyl radical (OH.), superoxide anion (O2.-), iron chelating, nitric oxide radical (NO), peroxynitrite (ONOO), singlet oxygen (1O2), hypochlorous acid (HOCl), lipid peroxidation (LPO) and FRAP showed a concentration-dependent antioxidant activity with no significant difference with the controls. Though, IC50 of the extract showed significant difference only in singlet oxygen (1O2) and iron chelating activity when compared with the controls.

Conclusions

The extract is a potential source of antioxidants/free radical scavengers having important metabolites which maybe linked to its ethno-medicinal use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号