首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Background and AimsBranch biomass and other attributes are important for estimating the carbon budget of forest stands and characterizing crown structure. As destructive measuring is time-consuming and labour-intensive, terrestrial laser scanning (TLS) as a solution has been used to estimate branch biomass quickly and non-destructively. However, branch information extraction from TLS data alone is challenging due to occlusion and other defects, especially for estimating individual branch attributes in coniferous trees.MethodsThis study presents a method, entitled TSMtls, to estimate individual branch biomass non-destructively and accurately by combining tree structure models and TLS data. The TSMtls method constructs the stem-taper curve from TLS data, then uses tree structure models to determine the number, basal area and biomass of individual branches at whorl level. We estimated the tree structural model parameters from 122 destructively measured Scots pine (Pinus sylvestris) trees and tested the method on six Scots pine trees that were first TLS-scanned and later destructively measured. Additionally, we estimated the branch biomass using other TLS-based approaches for comparison.Key ResultsTree-level branch biomass estimates derived from TSMtls showed the best agreement with the destructive measurements [coefficient of variation of root mean square error (CV-RMSE) = 9.66 % and concordance correlation coefficient (CCC) = 0.99], outperforming the other TLS-based approaches (CV-RMSE 12.97–57.45 % and CCC 0.43–0.98 ). Whorl-level individual branch attributes estimates produced from TSMtls showed more accurate results than those produced from TLS data directly.ConclusionsThe results showed that the TSMtls method proposed in this study holds promise for extension to more species and larger areas.  相似文献   

2.
To predict future changes in forest ecosystems, it is crucial to understand the complex processes involved in decline of tree species populations and to evaluate the implications for potential vegetation shifts. Here, we study patterns of decline (canopy defoliation and mortality of adults) of four Scots pine populations at the southern edge of its distribution and characterized by different combinations of climate dryness and intensity of past management. General linear and structural equation modeling were used to assess how biotic, abiotic, and management components interacted to explain the spatial variability of Scots pine decline across and within populations. Regeneration patterns of Scots pine and co-occurring oak species were analyzed to assess potential vegetation shifts. Decline trends were related to climatic dryness at the regional scale, but, ultimately, within-population forest structure, local site conditions, and past human legacies could be the main underlying drivers of Scots pine decline. Overall, Scots pine regeneration was negatively related to decline both within and between populations, whereas oak species responded to decline idiosyncratically across populations. Taken together, our results suggest that (1) patterns of decline are the result of processes acting at the plot level that modulate forest responses to local environmental stress and (2) decline of adult Scots pine trees seems not to be compensated by self-recruitment so that the future dynamics of these forest ecosystems are uncertain.  相似文献   

3.
《Dendrochronologia》2014,32(3):210-219
European black pine (Pinus nigra ssp. nigra Arnold) encroachment at increasing elevation has been analyzed at four treeline ecotones of the central Apennines (Italy). The study sites are located along a North-South gradient of 170 km across Marche and Abruzzo regions in Central Italy. The aims of this study were: (i) to detect possible common patterns of structural attributes of black pine regeneration at the treeline ecotone; (ii) to date the seedlings germination and (iii) to assess the climate influence on the pine upward encroachment process also using intra-annual density fluctuations (IADFs) in tree-rings. We sampled 658 encroached black pine trees above the current treeline to the mountain top. All individuals were mapped and their basal stem diameter, total height, annual height increments and other structural attributes measured. One increment core was extracted from stem base of most samples for cambial age determination and detection of intra-annual density fluctuations (IADF). At two sites we also extracted cores at DBH from forest trees to assess climate–growth relationships of black pine. We used multivariate analysis (PCA) to explore the correlation structure of the main tree attributes, regression analysis to relate radial and height increment and dendroclimatic analysis to assess the influence of climate on tree growth and IADF formation.Most black pine trees were located at high altitude and their structural attributes were similar at the four sites where the pine encroachment process started between 30 and 40 years ago featuring similar germination peaks and growth patterns. Black pine is particularly sensitive to maximum temperatures and IADF occurred in mid-late summer with highest frequency peaks between 2003 and 2004. The pine encroachment process, besides the differences of environmental features and land use histories of the four study sites, appears synchronic and spatially diffused. Consistent tree-growth dynamics and the species adaptation to a warming climate are signals envisaging a possible treeline upward shift.  相似文献   

4.

Background and Aims

Proper characterization of the clumped structure of forests is needed for calculation of the absorbed radiation and photosynthetic production by a canopy. This study examined the dependency of crown-level clumping on tree size and growth conditions in Scots pine (Pinus sylvestris), and determined the ability of statistical canopy radiation models to quantify the degree of self-shading within crowns as a result of the clumping effect.

Methods

Twelve 3-D Scots pine trees were generated using an application of the LIGNUM model, and the crown-level clumping as quantified by the crown silhouette to total needle area ratio (STARcrown) was calculated. The results were compared with those produced by the stochastic approach of modelling tree crowns as geometric shapes filled with a random medium.

Key Results

Crown clumping was independent of tree height, needle area and growth conditions. The results supported the capability of the stochastic approach in characterizing clumping in crowns given that the outer shell of the tree crown is well represented.

Conclusions

Variation in the whole-stand clumping index is induced by differences in the spatial pattern of trees as a function of, for example, stand age rather than by changes in the degree of self-shading within individual crowns as they grow bigger.  相似文献   

5.
Background and Aims Although extreme climatic events such as drought are known to modify forest dynamics by triggering tree dieback, the impact of extreme cold events, especially at the low-latitude margin (‘rear edge’) of species distributional ranges, has received little attention. The aim of this study was to examine the impact of one such extreme cold event on a population of Scots pine (Pinus sylvestris) along the species’ European southern rear-edge range limit and to determine how such events can be incorporated into species distribution models (SDMs).Methods A combination of dendrochronology and field observation was used to quantify how an extreme cold event in 2001 in eastern Spain affected growth, needle loss and mortality of Scots pine. Long-term European climatic data sets were used to contextualize the severity of the 2001 event, and an SDM for Scots pine in Europe was used to predict climatic range limits.Key Results The 2001 winter reached record minimum temperatures (equivalent to the maximum European-wide diurnal ranges) and, for trees already stressed by a preceding dry summer and autumn, this caused dieback and large-scale mortality. Needle loss and mortality were particularly evident in south-facing sites, where post-event recovery was greatly reduced. The SDM predicted European Scots pine distribution mainly on the basis of responses to maximum and minimum monthly temperatures, but in comparison with this the observed effects of the 2001 cold event at the southerly edge of the range limit were unforeseen.Conclusions The results suggest that in order to better forecast how anthropogenic climate change might affect future forest distributions, distribution modelling techniques such as SDMs must incorporate climatic extremes. For Scots pine, this study shows that the effects of cold extremes should be included across the entire distribution margin, including the southern ‘rear edge’, in order to avoid biased predictions based solely on warmer climatic scenarios.  相似文献   

6.
J. Liira  K. Kohv 《Plant biosystems》2013,147(1):211-220
Abstract

We quantified the effects of anthropogenic disturbances on the structure and biodiversity of boreal forests on acidic soils and created a statistically supported rational set of indicators to monitor the stand “naturalness”. For that, we surveyed various traits of tree layer, understory, herb layer, forest floor and several widely accepted biodiversity epiphytic indicators in 252 old‐aged boreal stands in Estonia, mostly dominated by Scots pine or Norway spruce. Multifactorial general linear model analyses showed that many forest characteristics and potential indicators were confounded by the gradient of soil productivity (reflected by the forest site type), local biogeographic gradients and also by stand age. Considering confounding effects, boreal forests in a near‐natural state have more large‐diameter trees (diameter at breast height >40 cm) and larger variety of diameter classes, higher proportion of spruce or deciduous trees, a larger amount of coarse woody debris in various stages, a more closed tree canopy and denser understory than managed mature forests. By increasing light availability above the field layer, forest management indirectly increases the coverage of herbs and lichens on the forest floor but reduces the alpha‐ and beta‐diversity of herbs and the proportion of graminoids. Human disturbances reduce the relative incidence of many commonly accepted biodiversity indicators such as indicator lichens, woodpeckers, wood‐dwelling insects or fungi on trees. The test for the predictive power of characteristics reacting on disturbance revealed that only a fraction of them appeared to be included in a diagnostic easy‐to‐apply set of indicators to assess the nature quality of boreal forest: the amount of dead wood, the proportion of deciduous trees, the presence of specially shaped trees and woodpeckers and, as an indicator of disturbances, the forest herb Melampyrum pratensis. Many of these indicators have already been implemented in practice.  相似文献   

7.
8.
Some models, based on the latitudinal variation in sun angle distribution, predict that trees at high latitudes have narrowly conical crowns and constitute simple-layered forests, whereas trees at low latitudes have shallowly dome-shaped and form more structurally complex multilayered forests. There is a hypothesis that structurally complex habitats can harbor potentially more species than simple ones. In this study, we examined latitudinal correlations between tree shape, forest structure and diversity in drosophilid communities, comparing boreal and cool-temperate forests. We selected secondary birch forests with a common canopy tree species, white birch (Betula platyphylla Sukatchev), as study sites. The crown shape of white birch tended to be spherical in the cool-temperate forest, but narrowly conical in the boreal forest. The foliage structure differed between the two forests. The cool-temperate forest was characterized by a clearly two-layered structure, whereas foliage in the boreal forest was less clearly stratified, being distributed somewhat continuously from the ground to the canopy at lower densities. The structural complexity expressed by foliage height diversity was greater in the cool-temperate forest than in the boreal forest. Various measures of drosophilid diversity were higher in the cool-temperate forest than in the boreal forest, probably resulting from the impoverishment of the canopy subcommunity in the boreal forest. Thus, a physical environmental factor (i.e. the angle of solar inclination) could be a potentially important factor in structuring latitudinal patterns of sylvan animal communities through changes in plant structure at the individual and community levels.  相似文献   

9.
This study aimed to explore if changes in stem increment of Scots pines (Pinus sylvestris L.) could be related to changes in ambient ozone concentration when the impact of tree dendrometric parameters (age, diameter) and crown defoliation are accounted for. More than 200 dominant and codominant trees from 12 pine stands, for which crown defoliation had been assessed since 1994, were chosen for increment boring and basal area increment computing. Stands are located in Lithuanian national parks, where since 1994-95 Integrated Monitoring Stations have been operating. Findings of the study provide statistical evidence that peak concentrations of ambient ozone (O3) can have a negative impact on pine tree stem growth under field conditions where O3 exposure is below phytotoxic levels.  相似文献   

10.
A field experiment with a 2 x2 factorial block design (WxSx)was conducted in northern Sweden where the mechanical loadsin the crowns of sixteen 2.5m high Scots pine (Pinus sylvestrisL.)trees were increased during one winter (W1, dormant period)and (or) summer (S1, growth period). Trees treated were loadedwith five 2kg bags hung over mid-crown branches close to thestem, i.e. 10kg per tree. After treatment, all trees were leftto grow untreated for one additional year. Trees were then cutat ground level and annual ring widths for the last 5 yearswere measured on stem discs taken at 1, 5, 10, 15, 20, 30 and50% of tree height. Differences between treatments were analysedwith two-way factorial ANOVA. Accumulated treatment responsewas positive for winter loading (W1Sx) at all levels, and statisticallysignificant at 1, 15 and 20% of tree height. Summer loading(WxS1) had positive effects at the lowest and middle parts ofthe stem, and negative in between. No statistically significanttwo-way interaction (W xS) was observed. Results support thehypothesis that Scots pine trees can retain information aboutmechanical forces acting on their stems during winter, and respondto this during the following growth period. The results alsosuggest that stem form of trees in boreal forests may be stronglyaffected by winter conditions. Stem form; mechanical perturbation; Scots pine; Pinus sylvestris; dendrometer; diameter; growth; dormancy; thigmomorphogenesis; wind; sway  相似文献   

11.
Traits of Masson Pine Affecting Attack of Pine Wood Nematode   总被引:2,自引:0,他引:2  
Masson pine characteristics were analyzed in five sample plots in Zhejiang Province, China. Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle (pine wood nematode, PWN) carried by Monochamus alternatus predominately attacked Masson pines in the lower diameter classes. Among the 10 tree characteristics examined, mean crown width, percentage of bole with crown, 5-year cumulative diameter growth, and resin amount showed significant variation between successfully attacked and unattacked trees. The attacked trees had a lower percentage of the bole covered with tree crown, lower crown width, lower radial growth in the last 5 years, and produced less induced resinosis than unattacked trees. Results allowed for effective ranking of the pine forest based on individual tree resistance to PWN. This index of resistance should be considered throughout the development of an "Evaluation Criterion and Indicator System". The preceding ranking can be used to evaluate the resistance and resiliency of the pine forest ecosystem to PWN's invasion, which is similar to Pest Risk Analysis (PRA).  相似文献   

12.
Drought-related tree mortality has become a widespread phenomenon. Scots pine (Pinus sylvestris L.) is a boreal species with high ecological amplitude that reaches its southwestern limit in the Iberian Peninsula. Thus, Iberian Scots pine populations are particularly good models to study the effects of the increase in aridity predicted by climate change models. A total of 78 living and 39 dead Scots pines trees were sampled at two sites located in the NE of the Iberian Peninsula, where recent mortality events have been recorded. Annual tree rings were used to (1) date dead trees; (2) investigate if there was an association between the occurrence of tree death and severe drought periods characterized by exceptionally low ratios of summer precipitation to potential evapotranspiration (P/PET); and (3) to compare the growth patterns of trees that died with those of surviving ones. Mixed models were used to describe the relationships between tree growth (in terms of basal area increment, BAI, and the percentage of latewood, LW%) and climate variables. Our results showed a direct association between Scots pine mortality and severe drought periods characterized by low summer water availability. At the two sites, the growth patterns of dead trees were clearly distinguishable from those of the trees that survived. In particular, the BAI of dead trees was more sensitive to climate dryness (low P/PETsummer, high temperatures) and started to decline below the values of surviving neighbors 15–40 years before the time of death, implying a slow process of growth decline preceding mortality.  相似文献   

13.
  • 1 The mutualism between wood ants of the Formica rufa group and aphids living in the canopy of trees is a widespread phenomenon in boreal forests, and it can affect tree growth. However, not all trees in the forest are involved in this interaction.
  • 2 To assess the incidence of host trees involved in this ant–aphid mutualism and its spatial distribution in boreal forests, we inventoried sample plots with a radius of 10–15 m around wood ant mounds in 12 forest stands of two age classes (5–12‐year‐old sapling stands and 30–45‐year‐old pole stands) and two dominant tree species (Scots pine and silver birch) in Eastern Finland from 2007 to 2009.
  • 3 The proportion of trees visited by ants out of all trees on the individual study plots were in the range 4–62%, and 1.5–39% of the trees on the plots were consistently visited by ants during all 3 years. The percentage of host trees increased with the ant mound base area on the plots. Trees visited by ants were larger and closer to the mound than trees not visited by ants. Within the group of visited trees, more ants were found on bigger trees and on trees close to the ant mounds.
  • 4 Extrapolated from plot to stand level, we estimated that 0.5–6.6% of the trees were host trees in at least one of the three study years, and that only 0.01–2.3% of all the trees were consistently visited by ants during all 3 years. It is concluded that ant–aphid mutualism is a minor occurrence at the stand level.
  相似文献   

14.
Remote sensing is revolutionizing the way we study forests, and recent technological advances mean we are now able – for the first time – to identify and measure the crown dimensions of individual trees from airborne imagery. Yet to make full use of these data for quantifying forest carbon stocks and dynamics, a new generation of allometric tools which have tree height and crown size at their centre are needed. Here, we compile a global database of 108753 trees for which stem diameter, height and crown diameter have all been measured, including 2395 trees harvested to measure aboveground biomass. Using this database, we develop general allometric models for estimating both the diameter and aboveground biomass of trees from attributes which can be remotely sensed – specifically height and crown diameter. We show that tree height and crown diameter jointly quantify the aboveground biomass of individual trees and find that a single equation predicts stem diameter from these two variables across the world's forests. These new allometric models provide an intuitive way of integrating remote sensing imagery into large‐scale forest monitoring programmes and will be of key importance for parameterizing the next generation of dynamic vegetation models.  相似文献   

15.
This paper presents an empirical model for the distribution of diameter growth along the stem in Scots pine (Pinus sylvestris L.) and for the consequent stem form over time. First, the distribution of annual mass growth in the stem is determined as a function of the total annual growth in stem mass, current stem mass and the distribution of the latter along the stem. Second, the distribution of diameter growth is obtained by converting the fraction of annual growth in the stem mass at a given height in the stem into the thickness of the annual ring at the same height. Application of the model to Scots pine data sets including both young and mature trees not used in parameter estimation showed that the model was capable of reconstructing the distribution of diameter growth from the stem butt to the apex and from the pith to the stem surface at any height in the stem in both young and mature trees. The resulting empirical model was also linked to a physiological, process-based model in order to study its performance in a simulated stand. Simulations representing trees grown in unthinned and thinned Scots pine stands with trees of different status (from dominant to suppressed) showed that the response in tree growth to thinning in terms of the distribution of diameter growth along the stem was quite realistic relative to measured data.  相似文献   

16.
F Wang  V Letort  Q Lu  X Bai  Y Guo  P de Reffye  B Li 《PloS one》2012,7(8):e43531
Mongolian Scots pine (Pinus sylvestris var. mongolica) is one of the principal tree species in the network of Three-North Shelterbelt for windbreak and sand stabilisation in China. The functions of shelterbelts are highly correlated with the architecture and eco-physiological processes of individual tree. Thus, model-assisted analysis of canopy architecture and function dynamic in Mongolian Scots pine is of value for better understanding its role and behaviour within shelterbelt ecosystems in these arid and semiarid regions. We present here a single-tree functional and structural model, derived from the GreenLab model, which is adapted for young Mongolian Scots pines by incorporation of plant biomass production, allocation, allometric rules and soil water dynamics. The model is calibrated and validated based on experimental measurements taken on Mongolian Scots pines in 2007 and 2006 under local meteorological conditions. Measurements include plant biomass, topology and geometry, as well as soil attributes and standard meteorological data. After calibration, the model allows reconstruction of three-dimensional (3D) canopy architecture and biomass dynamics for trees from one- to six-year-old at the same site using meteorological data for the six years from 2001 to 2006. Sensitivity analysis indicates that rainfall variation has more influence on biomass increment than on architecture, and the internode and needle compartments and the aboveground biomass respond linearly to increases in precipitation. Sensitivity analysis also shows that the balance between internode and needle growth varies only slightly within the range of precipitations considered here. The model is expected to be used to investigate the growth of Mongolian Scots pines in other regions with different soils and climates.  相似文献   

17.
Forest structural reference conditions are widely used to understand how ecosystems have been altered and guide restoration and management objectives. We used six stem‐mapped permanent plots established in the early twentieth century to provide precise structural reference conditions for ponderosa pine forests of northern Arizona prior to Euro‐American settlement. Reference conditions for these plots in 1873–1874 included the following historical attributes: tree densities of 45–127 trees/ha, mean tree diameter at breast height (dbh) of 43.8 cm with a corresponding quadratic mean diameter range of 41.5–51.3 cm, and a stand basal area of 9.2–18.0 m2/ha. The reconstructed diameter distributions (for live ponderosa pine trees with dbh ≥9.14 cm) prior to fire exclusion varied in shape but generally displayed an irregular unimodal distribution. We suggest that management objectives for the structural restoration of ponderosa pine forests of northern Arizona emphasize: (1) conservation and retention of all pre‐settlement (>130 years) trees; (2) reduction of tree densities with a restoration objective ranging between 50 and 150 trees/ha having a large‐tree component between 25 and 50% of the total trees per hectare, respectively; (3) manipulation of the diameter distribution to achieve a unimodal or irregular, uneven‐aged shape (possibly targeting a balanced, uneven‐aged shape on cinder soil types) through the use of harvest and thinning practices that mimic gap disturbances (i.e., individual tree selection system); and (4) retention of 3–11 snags and logs per hectare resulting from natural mortality.  相似文献   

18.
Scots pine ( Pinus sylvestris L.) trees were grown in open top chambers for three years under ambient and elevated CO2 concentrations. The trees were aged 3 y at the beginning of the CO2 exposure, and the effects of the treatment on total stem volume, stem wood biomass, wood quality and wood anatomy were examined at the end of the exposure. The elevated CO2 treatment lead to a 49% and 38% increase in stem biomass and stem wood volume, respectively. However, no significant effects of the elevated CO2 treatment on wood density were observed, neither when green wood density was estimated from stem biomass and stem volume, nor when oven-dry wood density was measured on small wood samples. Under elevated CO2 significantly wider growth rings were observed. The effect of elevated CO2 on growth ring width was primarily the result of an increase in earlywood width. Wood compression strength decreased under elevated CO2 conditions, which could be explained by significantly larger tracheids and the increased earlywood band, that has thinner walls and larger cavities. A significant decrease of the number of resin canals in the third growth ring was observed under the elevated treatment; this might indicate that trees produced and contained less resin, which has implications for disease and pest resistance. So, although wood volume yield in Scots pine increased significantly with elevated CO2 after three years of treatment, wood density remained unchanged, while wood strength decreased. Whilst wood volume and stem biomass production may increase in this major boreal forest tree species, wood quality and resin production might decrease under future elevated CO2 conditions.  相似文献   

19.
The distribution of the above-ground and below-ground biomass of Scots pine in southern Finland were investigated in trees of different ages (18–212 years) from two types of growth site. Secondly, some structural regularities were tested for their independence of age and growth site. Trees were sampled from dominant trees which could be expected to have a comparable position in stands of all ages. All stands were on sorted sediments. The biomass of the sample trees (18 trees) was divided into needles, branch sapwood and heartwood, stem sapwood and heartwood, stem bark, stump, large roots (diameter >20 cm), coarse roots (five classes) and fine roots. The amount of sapwood and heartwood was also estimated from the below-ground compartments. Trees on both types of growth site followed the same pattern of development of the relative shares of biomass compartments, although the growth rates were faster on the more fertile site. The relative amount of sapwood peaked after canopy closure, coinciding with the start of considerable heartwood accumulation. The relative amount of needles and fine roots decreased with age. The same was true of branches but to a lesser degree. The relative share of the below-ground section was independent of tree age. Foliage biomass and sapwood cross-sectional area were linearly correlated, but there were differences between the growth sites. Needle biomass was linearly correlated with crown surface area. The fine root to foliage biomass ratio showed an increasing trend with tree age.  相似文献   

20.
Global climate change is expected to further raise the frequency and severity of extreme events, such as droughts. The effects of extreme droughts on trees are difficult to disentangle given the inherent complexity of drought events (frequency, severity, duration, and timing during the growing season). Besides, drought effects might be modulated by trees’ phenotypic variability, which is, in turn, affected by long‐term local selective pressures and management legacies. Here we investigated the magnitude and the temporal changes of tree‐level resilience (i.e., resistance, recovery, and resilience) to extreme droughts. Moreover, we assessed the tree‐, site‐, and drought‐related factors and their interactions driving the tree‐level resilience to extreme droughts. We used a tree‐ring network of the widely distributed Scots pine (Pinus sylvestris) along a 2,800 km latitudinal gradient from southern Spain to northern Germany. We found that the resilience to extreme drought decreased in mid‐elevation and low productivity sites from 1980–1999 to 2000–2011 likely due to more frequent and severe droughts in the later period. Our study showed that the impact of drought on tree‐level resilience was not dependent on its latitudinal location, but rather on the type of sites trees were growing at and on their growth performances (i.e., magnitude and variability of growth) during the predrought period. We found significant interactive effects between drought duration and tree growth prior to drought, suggesting that Scots pine trees with higher magnitude and variability of growth in the long term are more vulnerable to long and severe droughts. Moreover, our results indicate that Scots pine trees that experienced more frequent droughts over the long‐term were less resistant to extreme droughts. We, therefore, conclude that the physiological resilience to extreme droughts might be constrained by their growth prior to drought, and that more frequent and longer drought periods may overstrain their potential for acclimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号