首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we explored the precise mechanisms underlying the receptor for advanced glycation end products (RAGE)‐mediated neuronal loss and behavioral dysfunction induced by hyperglycemia. We used immunoprecipitation (IP) and GST pull‐down assays to assess the interaction between RAGE and mitogen‐activated protein kinase kinase 3 (MKK3). Then, we investigated the effect of specific mutation of RAGE on plasticity at hippocampal synapses and behavioral deficits in db/db mice through electrophysiological recordings, morphological assays, and behavioral tests. We discovered that RAGE binds MKK3 and that this binding is required for assembly of the MEKK3‐MKK3‐p38 signaling module. Mechanistically, we found that activation of p38 mitogen‐activated protein kinase (MAPK)/NF‐κB signaling depends on mediation of the RAGE‐MKK3 interaction by C‐terminal RAGE (ctRAGE) amino acids (AAs) 2‐5. We found that ctRAGE R2A‐K3A‐R4A‐Q5A mutation suppressed neuronal damage, improved synaptic plasticity, and alleviated behavioral deficits in diabetic mice by disrupting the RAGE‐MKK3 conjugation. High glucose induces direct binding of RAGE and MKK3 via ctRAGE AAs 2‐5, which leads to assembly of the MEKK3‐MKK3‐p38 signaling module and subsequent activation of the p38MAPK/NF‐κB pathway, and ultimately results in diabetic encephalopathy (DE).  相似文献   

2.
Signaling processes are primarily promoted by molecular recognition and corresponding protein-protein interactions. One of the key eukaryotic signaling pathways is the MAP kinase cascade involved in vital cellular processes such as cell proliferation, differentiation, apoptosis, and stress response. The principle recognition site of MAP kinases, the common docking (CD) region, forms selective interactions with substrates, upstream activators, and phosphatases. A second docking site, defined as the DEF site interaction pocket (DEF pocket), is formed subsequent to ERK2 and p38α activation. Both crystal structures of p38α in its dually phosphorylated form and of intrinsically active mutants showed the DEF pocket, giving motivation for studying its role in substrate activation and selectivity. Mutating selected DEF pocket residues significantly decreased the phosphorylation levels of three p38α substrates (ATFII, Elk-1, and MBP) with no apparent effect on the phosphorylation of MK2 kinase. Conversely, mutating the CD region gave the opposite effect, suggesting p38α substrates can be classified into DEF-dependent and DEF-independent substrates. In addition, mutating DEF pocket residues decreased the autophosphorylation capability of intrinsically active p38α mutants, suggesting DEF-mediated trans-autophosphorylation in p38α. These results could contribute to understanding substrate selectivity of p38α and serve as a platform for designing p38α-selective DEF site blockers, which partially inhibit p38α binding DEF-dependent substrates, whereas maintaining its other functions intact. In this context, preliminary results using synthetic peptides reveal significant inhibition of substrate phosphorylation by activated p38α.  相似文献   

3.
The p21-activated kinases (PAKs) contain an N-terminal Cdc42/Rac interactive binding domain, which in the group 1 PAKs (PAK1, 2, and 3) regulates the activity of an adjacent conserved autoinhibitory domain. In contrast, the group 2 PAKs (PAK4, 5, and 6) lack this autoinhibitory domain and are not activated by Cdc42/Rac binding, and the mechanisms that regulate their kinase activity have been unclear. This study found that basal PAK6 kinase activity was repressed by a p38 mitogen-activated protein (MAP) kinase antagonist and could be strongly stimulated by constitutively active MAP kinase kinase 6 (MKK6), an upstream activator of p38 MAP kinases. Mutation of a consensus p38 MAP kinase target site at serine 165 decreased PAK6 kinase activity. Moreover, PAK6 was directly activated by MKK6, and mutation of tyrosine 566 in a consensus MKK6 site (threonine-proline-tyrosine, TPY) in the activation loop of the PAK6 kinase domain prevented activation by MKK6. PAK6 activation by MKK6 was also blocked by mutation of an autophosphorylated serine (serine 560) in the PAK6 activation loop, indicating that phosphorylation of this site is necessary for MKK6-mediated activation. PAK4 and PAK5 were similarly activated by MKK6, consistent with a conserved TPY motif in their activation domains. The activation of PAK6 by both p38 MAP kinase and MKK6 suggests that PAK6 plays a role in the cellular response to stress-related signals.  相似文献   

4.
Mitogen-activated protein kinase (MAPK) p38 has been implicated in the pathogenesis of Alzheimer's disease, but the upstream cascade leading to p38 activation has not been elucidated in the disease. In the present study, we focused on mitogen-activated protein kinase kinase 6 (MKK6), one of the upstream activators of p38 MAPK. We found that MKK6 was not only increased but also specifically associated with granular structures in the susceptible neurons in the hippocampus and cortex of Alzheimer's disease patients, but was only weakly diffuse in the cytoplasm in neurons in control cases. Immunoblot analysis demonstrated a significant increase of MKK6 level in Alzheimer's disease compared with age-matched controls. In this regard, in hippocampal and cortical regions of individuals with Alzheimer's disease, the activated phospho-MKK6 was localized exclusively in association with pathological alterations including neurofibrillary tangles, senile plaques, neuropil threads and granular structures, overlapping with activated p38 MAPK suggesting both a functional and mechanic link. By immunoblot analysis, phospho-MKK6 is also significantly increased in AD compared with control cases. Together, these findings lend further credence to the notion that the p38 MAPK pathway is dysregulated in Alzheimer's disease and also indicates an active role for this pathway in disease pathogenesis.  相似文献   

5.
Mitogen-activated protein kinases (MAPKs) fulfill essential biological functions and are key pharmaceutical targets. Regulation of MAPKs is achieved via a plethora of regulatory proteins including activating MAPKKs and an abundance of deactivating phosphatases. Although all regulatory proteins use an identical interaction site on MAPKs, the common docking and hydrophobic pocket, they use distinct kinase interaction motif (KIM or D-motif) sequences that are present in linear, peptide-like, or well folded protein domains. It has been recently shown that a KIM-containing MAPK-specific dual specificity phosphatase DUSP10 uses a unique binding mode to interact with p38α. Here we describe the interaction of the MAPK binding domain of DUSP16 with p38α and show that despite belonging to the same dual specificity phosphatase (DUSP) family, its interaction mode differs from that of DUSP10. Indeed, the DUSP16 MAPK binding domain uses an additional helix, α-helix 4, to further engage p38α. This leads to an additional interaction surface on p38α. Together, these structural and energetic differences in p38α engagement highlight the fine-tuning necessary to achieve MAPK specificity and regulation among multiple regulatory proteins.  相似文献   

6.
Mammalian mitogen-activated protein kinase (MAPK) cascades control various cellular events, ranging from cell growth to apoptosis, in response to external stimuli. A conserved docking site, termed DVD, is found in the mammalian MAP kinase kinases (MAPKKs) belonging to the three major subfamilies, namely MEK1, MKK4/7, and MKK3/6. The DVD sites bind to their specific upstream MAP kinase kinase kinases (MAPKKKs), including MTK1 (MEKK4), ASK1, TAK1, TAO2, MEKK1, and Raf-1. DVD site is a stretch of about 20 amino acids immediately on the C-terminal side of the MAPKK catalytic domain. Mutations in the DVD site strongly inhibited MAPKKs from binding to, and being activated by, their specific MAPKKKs, both in vitro and in vivo. DVD site mutants could not be activated by various external stimuli in vivo. Synthetic DVD oligopeptides inhibited specific MAPKK activation, both in vitro and in vivo, demonstrating the critical importance of the DVD docking in MAPK signaling.  相似文献   

7.
IL-13 is a Th2 cytokine that promotes alternative activation (M2 polarization) in primary human monocytes. Our studies have characterized the functional IL-13 receptor complex and the downstream signaling events in response to IL-13 stimulation in alternatively activated monocytes/macrophages. In this report, we present evidence that IL-13 induces the activation of a Src family tyrosine kinase, which is required for IL-13 induction of M2 gene expression, including 15-lipoxygenase (15-LO). Our data show that Src kinase activity regulates IL-13-induced p38 MAPK tyrosine phosphorylation via the upstream kinases MKK3 or MKK6. Our findings also reveal that the IL-13 receptor-associated tyrosine kinase Jak2 is required for the activation of both Src kinase as well as p38 MAPK. Further, we found that Src tyrosine kinase-mediated activation of p38 MAPK is required for Stat1 and Stat3 serine 727 phosphorylation in alternatively activated monocytes/macrophages. Additional studies identify Hck as the specific Src family member, stimulated by IL-13 and involved in regulating both p38 MAPK activation and p38 MAPK-mediated 15-LO expression. Finally we show that the Hck regulates the expression of other alternative state (M2)-specific genes (Mannose receptor, MAO-A, and CD36) and therefore conclude that Hck acts as a key regulator controlling gene expression in alternatively activated monocytes/macrophages.  相似文献   

8.
p38 Mitogen-activated protein kinases (MAPK) are a family of Ser/Thr kinases that regulate important cellular processes such as stress responses, differentiation, and cell-cycle control . Activation of MAPK is achieved through a linear signaling cascade in which upstream kinases (MAPKKs) dually phosphorylate MAPKs at a conserved 3-amino-acid motif (Thr-X-Tyr) . G-protein-coupled receptor kinases (GRKs) are known to selectively phosphorylate G-protein-coupled receptors (GPCRs) and thus trigger desensitization . We report that GRK2 is a novel inactivating kinase of p38MAPK. p38 associates with GRK2 endogenously and is phosphorylated by GRK2 at Thr-123, a residue located at its docking groove. Mimicking phosphorylation at this site impairs the binding and activation of p38 by MKK6 and diminishes the capacity of p38 to bind and phosphorylate its substrates. Accordingly, p38 activation is decreased or increased when cellular GRK2 levels are enhanced or reduced, respectively. Changes in GRK2 levels and activity can modify p38-dependent processes such as differentiation of preadipocytic cells and LPS-induced cytokine release, enhanced in macrophages from GRK2(+/-) mice. Phosphorylation of p38 at a region key for its interaction with different partners uncovers a new mechanism for the regulation of this important family of kinases.  相似文献   

9.
The mitogen-activated protein kinase (MAPK) p38α is a key regulator in many cellular processes, whose activity is tightly regulated by upstream kinases, phosphatases and other regulators. Transforming growth factor-β activated kinase 1 (TAK1) is an upstream kinase in p38α signaling, and its full activation requires a specific activator, the TAK1-binding protein (TAB1). TAB1 was also shown to be an inducer of p38α’s autophosphorylation and/or a substrate driving the feedback control of p38α signaling. Here we determined the complex structure of the unphosphorylated p38α and a docking peptide of TAB1, which shows that the TAB1 peptide binds to the classical MAPK docking groove and induces long-range conformational changes on p38α. Our structural and biochemical analyses suggest that TAB1 is a reasonable substrate of p38α, yet the interaction between the docking peptide and p38α may not be sufficient to trigger trans-autophosphorylation of p38α.  相似文献   

10.
In this study, we investigated the involvement of Akt and members of the mitogen-activated protein kinase (MAPK) superfamily, including ERK, JNK, and p38 MAPK, in gemcitabine-induced cytotoxicity in human pancreatic cancer cells. We found that gemcitabine induces apoptosis in PK-1 and PCI-43 human pancreatic cancer cell lines. Gemcitabine specifically activated p38 MAPK in a dose- and time-dependent manner. A selective p38 MAPK inhibitor, SB203580, significantly inhibited gemcitabine-induced apoptosis in both cell lines, suggesting that phosphorylation of p38 MAPK may play a key role in gemcitabine-induced apoptosis in pancreatic cancer cells. A selective JNK inhibitor, SP600125, failed to inhibit gemcitabine-induced apoptosis in both cell lines. MKK3/6, an upstream activator of p38 MAPK, was phosphorylated by gemcitabine, indicating that the MKK3/6-p38 MAPK signaling pathway is indeed involved in gemcitabine-induced apoptosis. Furthermore, gemcitabine-induced cleavage of the caspase substrate poly(ADP-ribose) polymerase was inhibited by pretreatment with SB203580, suggesting that activation of p38 MAPK by gemcitabine induces apoptosis through caspase signaling. These results together suggest that gemcitabine-induced apoptosis in human pancreatic cancer cells is mediated by the MKK3/6-p38 MAPK-caspase signaling pathway. Further, these results lead us to suggest that p38 MAPK should be investigated as a novel molecular target for human pancreatic cancer therapies.  相似文献   

11.
Accurate DNA replication is crucial for the maintenance of genome integrity. To this aim, cells have evolved complex surveillance mechanisms to prevent mitotic entry in the presence of partially replicated DNA. ATR and Chk1 are key elements in the signal transduction pathways of DNA replication checkpoint; however, other kinases also make significant contributions. We show here that the stress kinases p38 and JNK are activated when DNA replication is blocked, and that their activity allows S/M, but not G₂/M, checkpoint maintenance when Chk1 is inhibited. Activation of both kinases by DNA replication inhibition is not mediated by the caffeine-sensitive kinases ATR or ATM. Phosphorylation of MKK3/6 and MKK4, p38 and JNK upstream kinases was also observed upon DNA replication inhibition. Using a genetic approach, we dissected the p38 pathway and showed that both p38α and p38β isoforms collaborate to inhibit mitotic entry. We further defined MKK3/6 and MK2/3 as the key upstream and downstream elements in the p38 signaling cascade after replication arrest. Accordingly, we found that the stress signaling pathways collaborate with Chk1 to keep cyclin B1/Cdk1 complexes inactive when DNA replication is inhibited, thereby preventing cell cycle progression when DNA replication is stalled. Our results show a complex response to replication stress, where multiple pathways are activated and fulfill overlapping roles to prevent mitotic entry with unreplicated DNA.  相似文献   

12.
13.
G protein-coupled receptor kinases (GRKs) are serine/threonine kinases first discovered by its role in receptor desensitization. Phosphorylation of the C-terminal tail of GPCRs by GRKs triggers the docking of β-arrestins and the functional uncoupling of G proteins and receptors. In addition, we and others have uncovered new direct ways by which GRKs could impinge into intracellular signalling pathways independently of receptor phosphorylation. In particular, we have characterized that elevated GRK2 levels can reduce CCR2-mediated activation of the ERK MAPK route in a manner that is independent of kinase activity and also of G proteins. This inhibition of ERK occurred in the absence of any reduction on MEK phosphorylation, what implicates that GRK2 is acting at the level of MEK or at the MEK-ERK interface to achieve a downregulation of ERK phosphorylation. In fact, we describe here that a direct association between GRK2 and MEK proteins can be detected in vitro. p38 MAPK pathway also appears to be regulated directly by GRK2 in a receptor-independent manner. p38 can be phosphorylated by GRK2 in threonine 123, a residue sitting at the entrance of a docking groove by which this MAPK associates to substrates and upstream activators. The T123phospho-mimetic mutant of p38 shows a reduced ability to bind to MKK6, concomitant with an impaired p38 activation, and a decreased phosphorylation of downstream substrates such as MEF2, MK2 and ATF2. Elevated levels of GRK2 downregulate p38-dependent cellular responses, such as differentiation of preadipocytic cells, while LPS-induced cytokine release is enhanced in macrophages from GRK2 (+/?) mice. In sum, we describe in this article different ways by which GRK2 directly regulates MAPK-mediated cellular events. This regulation of the MAPK modules by GRK2 could be relevant in pathological situations where the levels of this kinase are altered, such as during inflammatory diseases or cardiovascular pathologies.  相似文献   

14.
15.
Mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) lie immediately downstream of the mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK), and p38 MAPK. Although the family of MAPKAPKs shares sequence similarity, it demonstrates selectivity for the upstream activator. Here we demonstrate that each of the ERK- and p38 MAPK-regulated MAPKAPKs contains a MAPK docking site positioned distally to the residue(s) phosphorylated by MAPKs. The isolated MAPK docking sites show specificity for the upstream activator similar to that reported for the full-length proteins. Moreover, replacement of the ERK docking site of p90 ribosomal S6 kinase with the p38 MAPK docking site of MAPKAPK2 converts p90 ribosomal S6 kinase into a stress-activated kinase in vivo. It is apparent that mechanisms controlling events downstream of the proline-directed MAPKs involve specific MAPK docking sites within the carboxyl termini of the MAPKAPKs that determine the cascade in which the MAPKAPK functions.  相似文献   

16.
Protein kinases are regulated by a large number of mechanisms that vary from one kinase to another. However, a fundamental activation mechanism shared by all protein kinases is phosphorylation of a conserved activation loop threonine residue. This is achieved in many cases via autophosphorylation. The mechanism and structural basis for autophosphorylation are not clear and are in fact enigmatic because this phosphorylation occurs when the kinase is in its inactive conformation. Unlike most protein kinases, MAP kinases are not commonly activated by autophosphorylation but rather by MEK-dependent phosphorylation. Here we show that p38β, a p38 isoform that is almost identical to p38α, is exceptional and spontaneously autoactivates by autophosphorylation. We identified a 13-residue-long region composed of part of the αG-helix and the MAPK insert that triggers the intrinsic autophosphorylation activity of p38β. When inserted into p38α, this fragment renders it spontaneously active in vitro and in mammalian cells. We further found that an interaction between the N terminus and a particular region of the C-terminal extension suppresses the intrinsic autophosphorylation of p38β in mammalian cells. Thus, this study identified the structural motif responsible for the unique autophosphorylation capability of p38β and the motif inhibiting this activity in living cells. It shows that the MAPK insert and C-terminal extension, structural motifs that are unique to MAPKs, play a critical role in controlling autophosphorylation.  相似文献   

17.
Complement component C3, the central player in the complement cascade and the pro-inflammatory cytokine IL-1β is expressed by activated glial cells and may contribute to neurodegeneration. This study examines the regulation of the expression of C3 by IL-1β in astroglial cells focusing on the role of the upstream kinase MKK6, p38-α MAPK, and C/EBP-β isoforms (LAP1, LAP2, or LIP) in astroglial cells. Activation of human astroglial cell line, U373 with IL-1β, led to the induction of C3 mRNA and protein expression as determined by real-time RT-PCR and Western blot analysis, respectively. This induction was suppressed by the pharmacological inhibitor of p38 MAPK (i.e., SB202190-HCl), suggesting the involvement of p38 MAPK in C3 gene expression. IL-1β also induced C3 promoter activity in U373 cells in a MAP kinase- and C/EBP-β-dependent manner. Cotransfection of C3 luciferase reporter construct with constitutively active form of the upstream kinase in the MAP kinase cascade, that is, MKK6 (the immediate upstream activator of p38 kinase) resulted in marked stimulation of the promoter activity, whereas overexpression of a dominant negative forms of MKK6 and p38α MAPK inhibited C3 promoter activity. Furthermore, a mutant form of C/EBP-β, LAP(T235A) showed reduction in IL-1β-mediated C3 promoter activation. These results suggest that the p38α, MAPK, and MKK6 play prominent roles in IL-1β and C/EBP-β-mediated C3 gene expression in astrocytes.  相似文献   

18.
The p38 mitogen-activated protein kinase (p38MAPK) is activated in response to various stimuli, including cellular stress, inflammatory cytokines and cell surface receptors. The activation of p38MAPK is predominantly mediated by the two upstream MAPK kinases MKK3 and MKK6. To study the role of the p38MAPK pathway in vivo, we generated Mkk6–/– mice. We examined whether T-cell apoptosis is affected in these mice and in our previously reported Mkk3–/– mice. Strikingly, in vivo deletion of double positive thymocytes in Mkk6–/– mice was impaired, whereas Mkk3–/– mice showed no apparent abnormality. Conversely, CD4+T cells from Mkk3–/– but not from Mkk6–/– mice were resistant to activation-induced cell death and cytokine-withdrawal-induced apoptosis. In peripheral CD4+T cells, MKK3 is induced upon stimulation, whereas MKK6 is downregulated. These results suggest a novel mechanism regulating T-cell apoptosis differentially through the p38MAPK pathway by MKK3 and MKK6.  相似文献   

19.
We have investigated the ability of the mitogen-activated protein kinase (MAPK) kinase MKK6 to activate different members of the p38 subfamily of MAPKs and found that some MKK6 mutants can efficiently activate p38alpha but not p38gamma. In contrast, a constitutively active MKK6 mutant activated both p38 MAPK isoforms to similar extents. The same results were obtained upon co-expression in Xenopus oocytes and in vitro using either MKK6 immunoprecipitates from transfected cells or bacterially produced recombinant proteins. We also found that the preferential activation of p38alpha by MKK6 correlated with more efficient binding of MKK6 to p38alpha than to p38gamma. Furthermore, increasing concentrations of constitutively active MKK6 differentially activated either p38alpha alone (low MKK6 activity) or both p38alpha and p38gamma (high MKK6 activity), both in vitro and in injected oocytes. The determinants for selectivity are located at the carboxyl-terminal lobe of p38 MAPKs but do not correspond to the activation loop or common docking sequences. We also showed that different stimuli can induce different levels of endogenous MKK6 activity that correlate with differential activation of p38 MAPKs. Our results suggest that the level of MKK6 activity triggered by a given stimulus may determine the pattern of downstream p38 MAPK activation in the particular response.  相似文献   

20.
All four members of the mammalian p38 mitogen-activated protein kinase (MAPK) family (p38α, p38β, p38γ and p38δ) are activated by dual phosphorylation in the TGY motif in the activation loop. This phosphorylation is mediated by three kinases, MKK3, MKK6 and MKK4, at least in vitro. The role of these MKK in the activation of p38α has been demonstrated in studies using fibroblasts that lack MKK3 and/or MKK6. Nonetheless, the physiological upstream activators of the other p38MAPK isoforms have not yet been reported using MKK knockout cells. In this study, we examined p38β, γ and δ activation by MKK3 and MKK6, in cells lacking MKK3, MKK6 or both. We show that MKK3 and MKK6 are both essential for the activation of p38γ and p38β induced by environmental stress, whereas MKK6 is the major p38γ activator in response to TNFα. In contrast, p38δ activation by ultraviolet radiation, hyperosmotic shock, anisomycin or by TNFα is mediated by MKK3. Moreover, in response to osmotic stress, MKK3 and MKK6 are crucial in regulating the phosphorylation of the p38γ substrate hDlg and its activity as scaffold protein. These data indicate that activation of distinct p38MAPK isoforms is regulated by the selective and synchronized action of two kinases, MKK3 and MKK6, in response to cell stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号