首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Organismal movement is an essential component of ecological processes and connectivity among ecosystems. However, estimating connectivity and identifying corridors of movement are challenging in oceanic organisms such as young turtles that disperse into the open sea and remain largely unobserved during a period known as ‘the lost years’. Using predictions of transport within an ocean circulation model and data from published genetic analysis, we present to our knowledge, the first basin-scale hypothesis of distribution and connectivity among major rookeries and foraging grounds (FGs) of green turtles (Chelonia mydas) during their ‘lost years’. Simulations indicate that transatlantic dispersal is likely to be common and that recurrent connectivity between the southwestern Indian Ocean and the South Atlantic is possible. The predicted distribution of pelagic juvenile turtles suggests that many ‘lost years hotspots’ are presently unstudied and located outside protected areas. These models, therefore, provide new information on possible dispersal pathways that link nesting beaches with FGs. These pathways may be of exceptional conservation concern owing to their importance for sea turtles during a critical developmental period.  相似文献   

2.
Population connectivity resulting from larval dispersal is essential for the maintenance or recovery of populations in marine ecosystems, including coral reefs. Studies of species diversity and genetic connectivity within species are essential for the conservation of corals and coral reef ecosystems. We analyzed mitochondrial DNA sequence types and microsatellite genotypes of the broadcast‐spawning coral, Galaxea fascicularis, from four regions in the subtropical Nansei Islands in the northwestern Pacific Ocean. Two types (soft and hard types) of nematocyst morphology are known in G. fascicularis and are significantly correlated with the length of a mitochondrial DNA noncoding sequence (soft type: mt‐L; hard type: mt‐S type). Using microsatellites, significant genetic differentiation was detected between the mitochondrial DNA sequence types in all regions. We also found a third genetic cluster (mt‐L+), and this unexpected type may be a cryptic species of Galaxea. High clonal diversity was detected in both mt‐L and mt‐S types. Significant genetic differentiation, which was found among regions within a given type (F ST = 0.009–0.024, all Ps ≤ 0.005 in mt‐L; 0.009–0.032, all Ps ≤ 0.01 in mt‐S), may result from the shorter larval development than in other broadcast‐spawning corals, such as the genus Acropora. Nevertheless, intraspecific genetic diversity and connectivity have been maintained, and with both sexual and asexual reproduction, this species appears to have a potential for the recovery of populations after disturbance.  相似文献   

3.
L Thomas  J J Bell 《Heredity》2013,111(4):345-354
Connectivity is widely recognized as an important component in developing effective management and conservation strategies. Although managers are generally most interested in demographic, rather than genetic connectivity, new analytic approaches are able to provide estimates of both demographic and genetic connectivity measures from genetic data. Combining such genetic data with mathematical models represents a powerful approach for accurately determining patterns of population connectivity. Here, we use microsatellite markers to investigate the genetic population structure of the New Zealand Rock Lobster, Jasus edwardsii, which has one of the longest known larval durations of all marine species (>2 years), a very large geographic range (>5500 km), and has been the subject of extensive dispersal modeling. Despite earlier mitochondrial DNA studies finding homogeneous genetic structure, the mathematical model suggests that there are source-sink dynamics for this species. We found evidence of genetic structure in J. edwardsii populations with three distinct genetic groups across New Zealand and a further Australian group; these groups and patterns of gene flow were generally congruent with the earlier mathematical model. Of particular interest was the consistent identification of a self-recruiting population/region from both modeling and genetic approaches. Although there is the potential for selection and harvesting to influence the patterns we observed, we believe oceanographic processes are most likely responsible for the genetic structure observed in J. edwardsii. Our results, using a species at the extreme end of the dispersal spectrum, demonstrate that source-sink population dynamics may still exist for such species.  相似文献   

4.
Calcareous nannofossil assemblages have been investigated at Ocean Drilling Program (ODP) Site 1090 located in the modern Subantarctic Zone, through the Pleistocene Marine Isotope Stages (MIS) 34–29, between 1150 and 1000 ka. A previously developed age model and new biostratigraphic constraints provide a reliable chronological framework for the studied section and allow correlation with other records. Two relevant biostratigraphic events have been identified: the First Common Occurrence of Reticulofenestra asanoi, distinctly correlated to MIS 31–32; the re-entry of medium Gephyrocapsa at MIS 29, unexpectedly similar to what was observed at low latitude sites.The composition of the calcareous nannofossil assemblage permits identification of three intervals (I–III). Intervals I and III, correlated to MIS 34–32 and MIS 30–29 respectively, are identified as characteristic of water masses located south of the Subtropical Front and reflecting the southern border of Subantarctic Zone, at the transition with the Polar Front Zone. This evidence is consistent with the hypothesis of a northward shift of the frontal system in the early Pleistocene with respect to the present position and therefore a northernmost location of the Subantarctic Front. During interval II, which is correlated to MIS 31, calcareous nannofossil assemblages display the most significant change, characterized by a distinct increase of Syracosphaera spp. and Helicosphaera carteri, lasting about 20 ky. An integrated analysis of calcareous nannofossil abundances and few mineralogical proxies suggests that during interval II, Site 1090 experienced the influence of subtropical waters, possibly related to a southward migration of the Subtropical Front, coupled with an expansion of the warmer Agulhas Current at the core location. This pronounced warming event is associated to a minimum in the austral summer insolation. The present results provide a broader framework on the Mid-Pleistocene dynamic of the ocean frontal system in the Atlantic sector of the Southern Ocean, as well as additional evidence on the variability of the Indian–Atlantic ocean exchange.  相似文献   

5.
Many species endemic to deep-sea methane seeps have broad geographical distributions, suggesting that they produce larvae with at least episodic long-distance dispersal. Cold-seep communities on both sides of the Atlantic share species or species complexes, yet larval dispersal across the Atlantic is expected to take prohibitively long at adult depths. Here, we provide direct evidence that the long-lived larvae of two cold-seep molluscs migrate hundreds of metres above the ocean floor, allowing them to take advantage of faster surface currents that may facilitate long-distance dispersal. We collected larvae of the ubiquitous seep mussel “Bathymodiolus” childressi and an associated gastropod, Bathynerita naticoidea, using remote-control plankton nets towed in the euphotic zone of the Gulf of Mexico. The timing of collections suggested that the larvae might disperse in the water column for more than a year, where they feed and grow to more than triple their original sizes. Ontogenetic vertical migration during a long larval life suggests teleplanic dispersal, a plausible explanation for the amphi-Atlantic distribution of “B.” mauritanicus and the broad western Atlantic distribution of B. naticoidea. These are the first empirical data to demonstrate a biological mechanism that might explain the genetic similarities between eastern and western Atlantic seep fauna.  相似文献   

6.
Interpreting contemporary patterns of population structure requires an understanding of the interactions among microevolutionary forces and past demographic events. Here, 4,122 SNP‐containing loci were used to assess structure in southern flounder (Paralichthys lethostigma) sampled across its range in the US Atlantic Ocean (Atlantic) and Gulf of Mexico (Gulf) and relationships among components of genomic variation and spatial and environmental variables were assessed across estuarine population samples in the Gulf. While hierarchical amova revealed significant heterogeneity within and between the Atlantic and Gulf, pairwise comparisons between samples within ocean basins demonstrated that all significant heterogeneity occurred within the Gulf. The distribution of Tajima''s D estimated at a genome‐wide scale differed significantly from equilibrium in all estuaries, with more negative values occurring in the Gulf. Components of genomic variation were significantly associated with environmental variables describing individual estuaries, and environment explained a larger component of variation than spatial proximity. Overall, results suggest that there is genetic spatial autocorrelation caused by shared larval sources for proximal nurseries (migration/drift), but that it is modified by environmentally driven differentiation (selection). This leads to conflicting signals in different parts of the genome and creates patterns of divergence that do not correspond to paradigms of strong local directional selection.  相似文献   

7.
To gain insight into whale shark (Rhincodon typus) movement patterns in the Western Indian Ocean, we deployed eight pop‐up satellite tags at an aggregation site in the Arta Bay region of the Gulf of Tadjoura, Djibouti in the winter months of 2012, 2016, and 2017. Tags revealed movements ranging from local‐scale around the Djibouti aggregation site, regional movements along the coastline of Somaliland, movements north into the Red Sea, and a large‐scale (>1,000 km) movement to the east coast of Somalia, outside of the Gulf of Aden. Vertical movement data revealed high occupation of the top ten meters of the water column, diel vertical movement patterns, and deep diving behavior. Long‐distance movements recorded both here and in previous studies suggest that connectivity between the whale sharks tagged at the Djibouti aggregation and other documented aggregations in the region are likely within annual timeframes. In addition, wide‐ranging movements through multiple nations, as well as the high use of surface waters recorded, likely exposes whale sharks in this region to several anthropogenic threats, including targeted and bycatch fisheries and ship‐strikes. Area‐based management approaches focusing on seasonal hotspots offer a way forward in the conservation of whale sharks in the Western Indian Ocean.  相似文献   

8.
Seabirds, particularly Procellariiformes, are highly mobile organisms with a great capacity for long dispersal, though simultaneously showing high philopatry, two conflicting life‐history traits that may lead to contrasted patterns of genetic population structure. Landmasses were suggested to explain differentiation patterns observed in seabirds, but philopatry, isolation by distance, segregation between breeding and nonbreeding zones, and oceanographic conditions (sea surface temperatures) may also contribute to differentiation patterns. To our knowledge, no study has simultaneously contrasted the multiple factors contributing to the diversification of seabird species, especially in the gray zone of speciation. We conducted a multilocus phylogeographic study on a widespread seabird species complex, the little shearwater complex, showing highly homogeneous morphology, which led to considerable taxonomic debate. We sequenced three mitochondrial and six nuclear markers on all extant populations from the Atlantic (lherminieri) and Indian Oceans (bailloni), that is, five nominal lineages from 13 populations, along with one population from the eastern Pacific Ocean (representing the dichrous lineage). We found sharp differentiation among populations separated by the African continent with both mitochondrial and nuclear markers, while only mitochondrial markers allowed characterizing the five nominal lineages. No differentiation could be detected within these five lineages, questioning the strong level of philopatry showed by these shearwaters. Finally, we propose that Atlantic populations likely originated from the Indian Ocean. Within the Atlantic, a stepping‐stone process accounts for the current distribution. Based on our divergence time estimates, we suggest that the observed pattern of differentiation mostly resulted from historical and current variation in sea surface temperatures.  相似文献   

9.
P. Koubbi 《Polar Biology》1993,13(8):557-564
One of the aims of oceanographic campaign MD 68/SUZIL, carried out in austral autumn 1991 in the Indian sector of the Southern Ocean and its adjacent subtropical waters, was to investigate the influence of hydrography on the ichthyoplankton and mesopelagic fish assemblages in the Crozet Basin. It appears that, in contrast to other sectors of the Southern Ocean, the main biogeographical barriers are the Subantarctic Front and the Agulhas Front which appear to be vertical convergence fronts. The importance of the Antarctic Polar Front and the Subtropical Front as barriers to fish seems to be minimized in this area because of its particular hydrological features, such as the lack of a subantarctic zone, the maximum current intensity of the Subantarctic Front between these fronts, and their structures — they are horizontal convergence fronts.  相似文献   

10.
The vertical distribution of heterotrophic bacteria and four ultraphytoplanktonic (<10 µm) groups (Prochlorococcus, Synechococcus, pico- and nanoeukaryotes) was investigated by flow cytometry at three process stations located in three different sub-systems belonging to the Antarctic Circumpolar Current frontal zone and to the Southern Indian Ocean (60–66°E, 43–46°S; ANTARES 4 cruise, January-February 1999): the Subtropical Zone (STZ), the Convergence Zone and the Polar Frontal Zone (PFZ). In each sub-system, short-term variability of cell abundance and flow cytometric parameters (right-angle light scatter and chlorophyll autofluorescence) was assessed through a times series of up to 24 h with a 2 h sampling frequency. The ultraphytoplankton vertical distribution exhibited a high spatial variability, with dominance of Prochlorococcus in the STZ (mean: 762.85×1010 cells m–2), whereas picoeukaryotes (<3 µm) were dominant in the PFZ (55.46×1010 cells m–2), a typically high-nutrient low-chlorophyll zone. Heterotrophic bacteria abundance was maximum (9.84×1013 cells m–2) in the frontal zone, between the Agulhas Front and the Subtropical Front. Nanoeukaryotes showed the largest (up to 80%) variations between two consecutive sampling periods (2 h). Abundance variations could not be assigned to the same water mass during the time series due to the highly variable hydrodynamics of the study area. Trends of short-term abundance variations were opposite between the PFZ (lowest at night) and north of the Subtropical Front (highest at night). The observed spatial and short-term variations illustrate the complexity of the water masses in the Indian sector of the Southern Ocean, and highlight the challenge of extrapolating discrete measurements over space and time for use in evaluating carbon budgets in such dynamic areas.  相似文献   

11.
Population genetic structure in the marine environment can be influenced by life‐history traits such as developmental mode (biphasic, with distinct adult and larval morphology, and direct development, in which larvae resemble adults) or habitat specificity, as well as geography and selection. Developmental mode is thought to significantly influence dispersal, with direct developers expected to have much lower dispersal potential. However, this prediction can be complicated by the presence of geophysical barriers to dispersal. In this study, we use a panel of 8,020 SNPs to investigate population structure and biogeography over multiple spatial scales for a direct‐developing species, the New Zealand endemic marine isopod Isocladus armatus. Because our sampling range is intersected by two well‐known biogeographic barriers (the East Cape and the Cook Strait), our study provides an opportunity to understand how such barriers influence dispersal in direct developers. On a small spatial scale (20 km), gene flow between locations is extremely high, suggestive of an island model of migration. However, over larger spatial scales (600 km), populations exhibit a clear pattern of isolation‐by‐distance. Our results indicate that I. armatus exhibits significant migration across the hypothesized barriers and suggest that large‐scale ocean currents associated with these locations do not present a barrier to dispersal. Interestingly, we find evidence of a north‐south population genetic break occurring between Māhia and Wellington. While no known geophysical barrier is apparent in this area, it coincides with the location of a proposed border between bioregions. Analysis of loci under selection revealed that both isolation‐by‐distance and adaption may be contributing to the degree of population structure we have observed here. We conclude that developmental life history largely predicts dispersal in the intertidal isopod I. armatus. However, localized biogeographic processes can disrupt this expectation, and this may explain the potential meta‐population detected in the Auckland region.  相似文献   

12.
Dispersal ability plays a key role in the maintenance of species in spatially and temporally discrete niches of deep-sea hydrothermal vent environments. On the basis of population genetic analyses in the eastern Pacific vent fields, dispersal of animals in the mid-oceanic ridge systems generally appears to be constrained by geographical barriers such as trenches, transform faults, and microplates. Four hydrothermal vent fields (the Kairei and Edmond fields near the Rodriguez Triple Junction, and the Dodo and Solitaire fields in the Central Indian Ridge) have been discovered in the mid-oceanic ridge system of the Indian Ocean. In the present study, we monitored the dispersal of four representative animals, Austinograea rodriguezensis, Rimicaris kairei, Alviniconcha and the scaly-foot gastropods, among these vent fields by using indirect methods, i.e., phylogenetic and population genetic analyses. For all four investigated species, we estimated potentially high connectivity, i.e., no genetic difference among the populations present in vent fields located several thousands of kilometers apart; however, the direction of migration appeared to differ among the species, probably because of different dispersal strategies. Comparison of the intermediate-spreading Central Indian Ridge with the fast-spreading East Pacific Rise and slow-spreading Mid-Atlantic Ridge revealed the presence of relatively high connectivity in the intermediate- and slow-spreading ridge systems. We propose that geological background, such as spreading rate which determines distance among vent fields, is related to the larval dispersal and population establishment of vent-endemic animal species, and may play an important role in controlling connectivity among populations within a biogeographical province.  相似文献   

13.
Population structure and genetic connectivity are pivotal contributions to the establishment of conservation strategies for fisheries management, in particular for highly migratory species that are affected by commercial fisheries. This study used partial sequences of mitochondrial DNA control region to determine the genetic structure of the bigeye thresher shark Alopias superciliosus in the Atlantic and Indian Oceans. A total of 858 base pairs of mtDNA CR from 228 individuals were analyzed. The resulting nucleotide diversity (π) was 0.0011?±?0.0008 and the haplotype diversity (h) was 0.127?±?0.030. These are the lowest diversities registered in elasmobranchs with this genetic marker. Two genetically distinct lineages were identified, one of them represented by 3.9% of the analyzed individuals and none restricted to any particular area. Simulated scenarios of population structure, tested with AMOVA and pairwise ΦST did not result in significant values indicating high connectivity among all sampled groups. The absence of population structure, even between Atlantic and Indian Oceans, corroborates the high dispersal ability of this species. The low genetic diversity detected in this species and the identification of two historical lineages occurring in sympatry, one represented by a very small number of individuals, should be considered in the conservation efforts and management plans of A. superciliosus.  相似文献   

14.
Inferring parameters related to the aggregation pattern of parasites and to their dispersal propensity are important for predicting their ecological consequences and evolutionary potential. Nonetheless, it is notoriously difficult to infer these parameters from wildlife parasites given the difficulty in tracking these organisms. Molecular‐based inferences constitute a promising approach that has yet rarely been applied in the wild. Here, we combined several population genetic analyses including sibship reconstruction to document the genetic structure, patterns of sibship aggregation, and the dispersal dynamics of a non‐native parasite of fish, the freshwater copepod ectoparasite Tracheliastes polycolpus. We collected parasites according to a hierarchical sampling design, with the sampling of all parasites from all host individuals captured in eight sites spread along an upstream–downstream river gradient. Individual multilocus genotypes were obtained from 14 microsatellite markers, and used to assign parasites to full‐sib families and to investigate the genetic structure of Tpolycolpus among both hosts and sampling sites. The distribution of full‐sibs obtained among the sampling sites was used to estimate individual dispersal distances within families. Our results showed that Tpolycolpus sibs tend to be aggregated within sites but not within host individuals. We detected important upstream‐to‐downstream dispersal events of Tpolycolpus between sites (modal distance: 25.4 km; 95% CI [22.9, 27.7]), becoming scarcer as the geographic distance from their family core location increases. Such a dispersal pattern likely contributes to the strong isolation‐by‐distance observed at the river scale. We also detected some downstream‐to‐upstream dispersal events (modal distance: 2.6 km; 95% CI [2.2–23.3]) that likely result from movements of infected hosts. Within each site, the dispersal of free‐living infective larvae among hosts likely contributes to increasing genetic diversity on hosts, possibly fostering the evolutionary potential of T. polycolpus.  相似文献   

15.
Dispersal plays a vital role in the geographical distribution, population genetic structure, quantity dynamics, and evolution of a species. Sex‐biased dispersal is common among vertebrates and many studies have documented a tendency toward male‐biased dispersal in mammals and female‐biased dispersal in birds. However, dispersal patterns in reptiles remain poorly understood. In this study, we explored the genetic diversity and dispersal patterns of the widely distributed Asian pitviper Protobothrops mucrosquamatus. In total, 16 polymorphic microsatellite loci were screened in 150 snakes (48 males, 44 females, 58 samples without sex information) covering most of their distribution. Microsatellite analysis revealed high genetic diversity in Pmucrosquamatus. Bayesian clustering of population assignment identified two major clusters for all populations, somewhat inconsistent with the mitochondrial DNA phylogeny of Pmucrosquamatus reported in previous research. Analyses based on 92 sex‐determined and 37 samples of Pmucrosquamatus from three small sites in Sichuan, China (Mingshan, Yibin, and Zizhong) consistently suggested female‐biased dispersal in Pmucrosquamatus, which is the first example of this pattern in snakes. The female‐biased dispersal patterns in Pmucrosquamatus may be explained by local resource competition.  相似文献   

16.
Unravelling the genetic structure and phylogeographic patterns of deep-sea sharks is particularly challenging given the inherent difficulty in obtaining samples. The deep-sea shark Centroscymnus crepidater is a medium-sized benthopelagic species that exhibits a circumglobal distribution occurring both in the Atlantic and Indo-Pacific Oceans. Contrary to the wealth of phylogeographic studies focused on coastal sharks, the genetic structure of bathyal species remains largely unexplored. We used a fragment of the mitochondrial DNA control region, and microsatellite data, to examine genetic structure in C. crepidater collected from the Atlantic Ocean, Tasman Sea, and southern Pacific Ocean (Chatham Rise). Two deeply divergent (3.1%) mtDNA clades were recovered, with one clade including both Atlantic and Pacific specimens, and the other composed of Atlantic samples with a single specimen from the Pacific (Chatham Rise). Bayesian analyses estimated this splitting in the Miocene at about 15 million years ago. The ancestral C. crepidater lineage was probably widely distributed in the Atlantic and Indo-Pacific Oceans. The oceanic cooling observed during the Miocene due to an Antarctic glaciation and the Tethys closure caused changes in environmental conditions that presumably restricted gene flow between basins. Fluctuations in food resources in the Southern Ocean might have promoted the dispersal of C. crepidater throughout the northern Atlantic where habitat conditions were more suitable during the Miocene. The significant genetic structure revealed by microsatellite data suggests the existence of present-day barriers to gene flow between the Atlantic and Pacific populations most likely due to the influence of the Agulhas Current retroflection on prey movements.  相似文献   

17.
Knowledge of the degree to which populations are connected through larval dispersal is imperative to effective management, yet little is known about larval dispersal ability or population connectivity in Lophelia pertusa, the dominant framework-forming coral on the continental slope in the North Atlantic Ocean. Using nine microsatellite DNA markers, we assessed the spatial scale and pattern of genetic connectivity across a large portion of the range of L. pertusa in the North Atlantic Ocean. A Bayesian modeling approach found four distinct genetic groupings corresponding to ocean regions: Gulf of Mexico, coastal southeastern U.S., New England Seamounts, and eastern North Atlantic Ocean. An isolation-by-distance pattern was supported across the study area. Estimates of pairwise population differentiation were greatest with the deepest populations, the New England Seamounts (average F ST = 0.156). Differentiation was intermediate with the eastern North Atlantic populations (F ST = 0.085), and smallest between southeastern U.S. and Gulf of Mexico populations (F ST = 0.019), with evidence of admixture off the southeastern Florida peninsula. Connectivity across larger geographic distances within regions suggests that some larvae are broadly dispersed. Heterozygote deficiencies were detected within the majority of localities suggesting deviation from random mating. Gene flow between ocean regions appears restricted, thus, the most effective management scheme for L. pertusa involves regional reserve networks.  相似文献   

18.
Little is known about the extent of genetic connectivity along continuous coastlines in manta rays, or whether site visitation is influenced by relatedness. Such information is pertinent to defining population boundaries and understanding localized dispersal patterns and behaviour. Here, we use 3057 genome-wide single-nucleotide polymorphisms (SNPs) to evaluate population genetic structure and assess the levels of relatedness at aggregation sites of reef manta rays (Mobula alfredi) in southern Mozambique (n = 114). Contrary to indications of limited dispersal along the southern Mozambican coastline inferred from photo-identification and telemetry studies, our results show no evidence of population structure (non-significant FST < 0.001) for M. alfredi along this coast. We also found no evidence that individuals sampled at the same site were more related than expected by chance for males, females or across both sexes, suggesting that kinship may not influence visitation patterns at these sites. We estimated the effective population size (Ne) of this population to be 375 (95% CI = 369–380). Comparison to a distant eastern Indian Ocean site (Western Australia, n = 15) revealed strong genetic differentiation between Mozambique and Western Australia (FST = 0.377), identifying the Indian Ocean basin as a barrier to dispersal. Our findings show that genetic connectivity in M. alfredi extends for several hundred kilometres along continuous coastlines. We therefore recommend that the population in Mozambique be considered a discrete management unit, and future conservation plans should prioritize integrated strategies along the entire southern coastline.Subject terms: Conservation genomics, Structural variation  相似文献   

19.
Few at-sea behavioural data exist for oceanic-stage neonate sea turtles, a life-stage commonly referred to as the sea turtle ‘lost years’. Historically, the long-term tracking of small, fast-growing organisms in the open ocean was logistically or technologically impossible. Here, we provide the first long-term satellite tracks of neonate sea turtles. Loggerheads (Caretta caretta) were remotely tracked in the Atlantic Ocean using small solar-powered satellite transmitters. We show that oceanic-stage turtles (i) rarely travel in Continental Shelf waters, (ii) frequently depart the currents associated with the North Atlantic Subtropical Gyre, (iii) travel quickly when in Gyre currents, and (iv) select sea surface habitats that are likely to provide a thermal benefit or refuge to young sea turtles, supporting growth, foraging and survival. Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use, allowing us to re-examine sea turtle ‘lost years’ paradigms.  相似文献   

20.
Mid‐ocean ridges generate a myriad of physical oceanographic processes that favor the supply of food and nutrients to suspension‐ and filter‐feeding organisms, such as cold‐water corals and deep‐sea sponges. However, the pioneering work conducted along the Mid‐Atlantic Ridge failed to report the presence of large and dense living coral reefs, coral gardens, or sponge aggregations. Here, we describe the densest, near‐natural, and novel octocoral garden composed of large red and white colonies of Paragorgia johnsoni Gray, 1862 discovered at 545–595 m depth on the slopes of the Mid‐Atlantic Ridge, in the Azores region. This newly discovered octocoral garden is a good candidate for protection since it fits many of the FAO criteria that define what constitutes a Vulnerable Marine Ecosystem. The observations described here corroborate the existence of a close relationship between the octocoral structure and the ambient currents on ridge‐like topographies, providing new insights into the functioning of mid‐ocean ridges'' ecosystems. The ubiquitous presence of biogenic and geological topographies associated with mid‐ocean ridges, which could act as climate refugia, suggests their global importance for deep‐sea biodiversity. A better understanding of the processes involved is, therefore, required. Our observations may inspire future deep‐sea research initiatives to narrow existing knowledge gaps of biophysical connections with benthic fauna at small spatial scales along mid‐ocean ridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号