首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eighty-one fresh isolates of Pseudomonas pseudomallei from melioidosis patients were subjected to the analysis for the fatty acid composition by gas-liquid chromatography (GLC) and pH-dependent pattern of nonspecific phosphatase activity. All the test strains were identical in the GLC profile showing the three peaks of characteristic hydroxy acids (3-OH 14:0, 2-OH 16:0, 3-OH 16:0) and the two prominent peaks of cyclopropane acids (17:0 delta, 19:0 delta). They had also basically the same pH-dependent curves of the enzymatic activity with paranitrophenyl phosphate as substrate, showing two to three peaks or shoulders only in the acidic side of the curve. These two biochemical characteristics could differentiate P. pseudomallei distinctly from P. aeruginosa, but not from P. cepacia.  相似文献   

2.
In a whole cell assay system with p-nitrophenyl phosphate as substrate, strains of Pseudomonas pseudomallei showed a two-peak pattern in pH activity curve of acid phosphatase, suggesting the presence of two enzyme components different in pH optimum (4.2 and 5.2). The component of 5.2 pH optimum was detected in the outer membrane fraction and the activity was resistant to heating at 70 C for 30 min. The other component of 4.2 pH optimum was heat-labile. No substantial difference was observed in the enzymatic activity between R and S type colonies.  相似文献   

3.
In this paper, we describe a study concerning the determination of some characteristics of soybean seedlings and the detection of acid phosphatase activities towards different substrates during the germination. Enzyme activities with p-nitrophenylphosphate (pNPP) and inorganic pyrophosphate (PPi) as substrates were detected from the 5th and 7th days after germination, respectively. Acid phosphatase activities with tyrosine phosphate (TyrP), glucose-6-phosphate (G6P) and phosphoenol pyruvate (PEP) were also observed but to a lesser extent. Under the same conditions, no enzyme activity was detected with phytic acid (PhyAc) as substrate. The appearance of phosphatase activity was coincident with the decrease of inorganic phosphate content during germination; over the same period, the protein content increased up to the 5th day, decreased until the 8th day, and remained constant after this period. Relative to phosphatase activity in the cotyledons, the activities detected in the hypocotyl and roots were 82% and 38%, respectively. During storage the enzyme maintained about 63% of its activity for 3 months at 5 degrees C. The specificity constant (Vmax/Km) values for pNPP and PPi were 212 and 64 mu kat mM-1 mg-1, respectively. Amongst the substrates tested, PPi could be a potential physiological substrate for acid phosphatase during the germination of soybean seeds.  相似文献   

4.
An alkaline phosphatase mutant of Pseudomonas aeruginosa exhibiting both regulatory and catalytic changes was isolated. Under repression conditions (i.e. high inorganic phosphate (Pi)) the mutant culture produced an alkaline phosphatase (APase) displaying significant activity against both beta-glycerol phosphate (betaGP) and p-nitrophenyl phosphate (pNPP), while the wild type displayed no activity directed towards these substrates under the same conditions. In vivo, the mutant enzyme's ratio of specific activities was 45:1 in favour of betaGP versus pNPP, whereas this ratio was reversed to 1:9 betaGP versus pNPP for the same enzyme isolated from mutant cells. In addition, the kinetic parameters and stability requirements for the mutant-derived enzyme was altered in comparison with those of the wild type. A study of lipopolysaccharide (LPS) preparations from both the mutant and wild type indicated the mutant to be deficient in the core region of its LPS. The authors propose that the modifications in the catalytic activity of the mutant enzyme, demonstrated in vivo, are due to a change in the enzyme's microenvironment.  相似文献   

5.
In this work, phosphatase activity was characterized in the ovary and the haemolymph of Periplaneta americana. The optimum pH for these activities was 4.0, and a temperature of 44 degrees C was ideal for the maximal enzyme activity. The phosphatase activities were inhibited by NaF, sodium tartrate, Pi, sodium orthovanadate, and ammonium molybdate. The ovarian phosphatase activity at pH 4.0 was almost exclusive against phosphotyrosine, with little or no effect on the residues of phosphoserine or phosphothreonine. These results indicate that this phosphatase activity is due to the presence of an acid tyrosine phosphatase. The phosphatase activities of acid extracts from P. americana ovaries (OEX) and an acid extract from P. americana haemolymph (HEX) were analyzed in non-denaturant gel electrophoresis using an analog substrate beta-naphtyl phosphate. The gel revealed two bands with phosphatase activity in the ovary and one band in the haemolymph; these bands were excised and submitted to a 10% SDS-PAGE showing a single 70-kDa polypeptide in both samples. Histochemistry of the ovary with alpha-naphtyl phosphate for localization of acid phosphatase activity showed mainly labeling associated to the oocyte peripheral vesicles, basal lamina, and between follicle cells. Electron microscopy analysis showed that acid phosphatase was localized in small peripheral vesicles in the oocyte, but not inside yolk granules. The possible role of this phosphatase during oogenesis and embryogenesis is also discussed in this article.  相似文献   

6.
In this paper evidences are presented strongly confirming that an extracellular 32P-phosphopeptide phosphatase activity of yeast is accounted for by acid phosphatase. Dephosphorylation of 32P phosphoseryl peptides was achieved with whole yeast cells, thus demonstrating extracellular location of protein phosphatase activity. The acid phosphatase and protein phosphatase activity copurified throughout purification procedure. Purified enzyme showed the same pH-profile and had the same Km value with phosphopeptide substrate as intact cells. Protein phosphatase activity is repressed by phosphate in the same manner as acid phosphatase activity, showing that not only repressible but also constitutive acid phosphatase displays protein phosphatase activity. Using mutant strains defective in acid phosphatase activity it was confirmed that acid phosphatase and protein phosphatase activities are the products of the same gene(s).  相似文献   

7.
Abstract The effect of the inorganic phosphate concentration on the activity of the enzyme of alternate peripheral pathways of glucose catabolism was studied in Pseudomonas cepacia ATCC 17759. Growth with low glucose concentration (0.5% w/v) and 20 mM phosphate resulted in induced levels of the phosphorylative pathway enzymes when compared with the levels of these same enzymes in high glucose concentration (2% w/v). However, an expansion of the oxidative pathway was detected during growth with 0.5% (w/v) of glucose and high phosphate concentration (160 mM). Moreover, under high phosphate (160 mM) and high glucose (2% w/v) growth conditions, glucokinase activity was increased preferentially relative to levels of direct oxidative pathway enzymes.  相似文献   

8.
Acid phosphatase activity (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) increased during the first 24 h of maize (Zea mays) seed germination. The enzyme displayed a pH optimum of 4.5-5.5. Catalytic activity in vitro displayed a linear time course (60 min) and reached its half maximum value at 0.47 mM p-nitrophenyl phosphate (pNPP). Phosphatase activity towards phosphoamino acids was greatest for phosphotyrosine. The phosphatase activity was strongly inhibited by ammonium molybdate, vanadate and NaF and did not require divalent cations for the catalysis. The temperature optimum for pNPP hydrolysis was 37 degrees C. Under the same conditions, no enzyme activity was detected with phytic acid as substrate. Western blotting of total homogenates during seed germination revealed proteins/polypeptides that were phosphorylated on tyrosine residues; a protein of approximately 14 kDa is potentially a major biological substrate for the phosphatase activity. The results presented in this study suggest that the acid phosphatase characterized under the tested conditions is a member of the phosphotyrosine phosphatase family.  相似文献   

9.
Antagonistic activity of the bacterium Pseudomonas cepacia against Trichoderma viride was greatly influenced by nutritional and environmental conditions. Xylose and trehalose strongly enhanced the antifungal activity of P. cepacia, whereas mannitol and glucose had little effect. The carbon sources that enhanced the antagonistic activity also inhibited sporulation of T. viride. Antagonism of P. cepacia was enhanced by ammonium nitrogen; however, with nitrite or nitrate there was only a little antagonism. The antagonism of P. cepacia was optimal at pH 5.0. Although P. cepacia showed maximum antagonism against T. viride at 37 degrees C, the antagonism was fairly good at temperatures as low as 18 degrees C, indicating that there is a broad range of temperature for the antifungal activity of P. cepacia.  相似文献   

10.
Three dual-specific phosphatases [DSPs], IphP, VHR, and Cdc14, and three protein-tyrosine phosphatases [PTPs], PTP-1B, PTP-H1, and Tc-PTPa, were challenged with a set of low molecular weight phosphoesters to probe the factors underlying the distinct substrate specificities displayed by these two mechanistically homologous families of protein phosphatases. It was observed that beta-naphthyl phosphate represented an excellent general substrate for both PTPs and DSPs. While DSPs tended to hydrolyze alpha-naphthyl phosphate at rates comparable to that of the beta-isomer, the PTPs PTP-1B and Tc-PTPa did not. PTP-H1, however, displayed high alpha-naphthyl phosphatase activity. Intriguingly, PTP-H1 also displayed much higher protein-serine phosphatase activity in vitro, 0.2-0.3% that toward equivalent tyrosine phosphorylated proteins, than did PTP-1B or Tc-PTPa. The latter two PTPs discriminated between the serine- and tyrosine-phosphorylated forms of two test proteins by factors of >/=10(4)-10(6). While free phosphoserine represented an extremely poor substrate for all of the DSPs examined, the addition of a hydrophobic "handle" to form N-(cyclohexanecarboxyl)-O-phospho-l-serine produced a compound that was hydrolyzed by IphP with high efficiency, i.e., at a rate comparable to that of free phosphotyrosine or p-nitrophenyl phosphate. VHR also hydrolyzed N-(cyclohexanecarboxyl)-O-phospho-l-serine (1 mM) at a rate approximately one-tenth that of beta-naphthyl phosphate. None of the PTPs tested exhibited significant activity against this compound. However, N-(cyclohexanecarboxyl)-O-phospho-l-serine did not prove to be a universal substrate for DSPs as Cdc14 displayed little propensity to hydrolyze it.  相似文献   

11.
Toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 was induced by trichloroethylene (TCE), and induction was followed by the degradation of TCE. Higher levels of toluene oxidation activity were achieved in the presence of a supplemental growth substrate such as glutamate, with levels of activity of up to 86% of that observed with toluene-induced cells. Activity in P. mendocina KR1 was also induced by cis-1,2-dichloroethylene, perchloroethylene, chloroethane, hexane, pentane, and octane, but not by trans-1,2-dichloroethylene. Toluene oxidation was not induced by TCE in Burkholderia (Pseudomonas) cepacia G4, P. putida F1, Pseudomonas sp. strain ENV110, or Pseudomonas sp. strain ENV113.  相似文献   

12.
Action of protein kinases and phosphatases contributes to myocardial hypertrophy. PRL-3, a protein tyrosine phosphatase, was identified in a cDNA library from an explanted human heart obtained from a patient with idiopathic cardiomyopathy. PRL-3 is expressed in heart and skeletal muscle, exhibiting approximately 76% identity to the ubiquitous tyrosine phosphatase PRL-1, which was reported to increase cell proliferation. PRL-3 was cloned into E. coli and purified using affinity chromatography. PRL-3 activity was determined using the substrate 6,8-difluoro-4-methylumbelliferyl phosphate, and was inhibited by vanadate and analogs. HEK293 cells expressing PRL-3 demonstrated increased growth rates versus nontransfected cells or cells transfected with the catalytically inactive C104S PRL-3 mutant. The tyrosine phosphatase inhibitor, potassium bisperoxo (bipyridine) oxovanadate V, normalizes the growth rate of PRL-3 expressing cells to that of parental HEK293 cells in a concentration-dependent manner. Using FLIPR analysis, parental HEK293 cells mobilize calcium when stimulated with angiotensin-II (AngII). However, calcium mobilization is inhibited in cells expressing wild-type PRL-3 when stimulated with AngII, while cells expressing the inactive mutant of PRL-3 mobilize calcium to the same extent as parental HEK293 cells. Western blots comparing PRL-3 transfected cells to parental HEK293 cells showed dephosphorylation of p130(cas) in response to AngII. These data suggest a role for PRL-3 in the modulation of intracellular calcium transients induced by AngII.  相似文献   

13.
An extracellular phosphatase was purified to homogeneity from the entomopathogenic fungus Metarhizium anisopliae with a 41.0% yield. The molecular mass and isoelectric point of the purified enzyme were about 82.5 kDa and 9.5 respectively. The optimum pH and temperature were about 5.5 and 75 degrees C when using O-phospho-L-tyrosine as substrate. The protein displayed high stability in a pH range 3.0-9.5 at 30 degrees C and was remarkably thermostable at 70 degrees C. The purified enzyme showed high activity on O-phospho-L-tyrosine and protein tyrosine phosphatase substrate monophosphate (a specific substrate of protein tyrosine phosphatase). Although one peptide of the phosphatase shared identity with one alkaline phosphatase of Neurospora crassa, its substrate specificity and inhibitor sensitivity indicate that the enzyme is a protein tyrosine phosphatase.  相似文献   

14.
We investigated the response of extracellular phosphatase to heat shock in heterotrophic Chenopodium rubrum L. cell cultures. Surprisingly, in contrast to the generally used acid phosphatase, an extracellular alkaline phosphatase showed the most sensitive response. This phosphatase was characterized as a marker for cellular stimulation by its high correlations with induced changes of extracellular pH: 10microM nigericin (correlation coefficient r=0.91), 100microM salicylic acid (r=0.84), heat shock 5min 37 degrees C (r=0.79), and heat shock after pre-treatment with 5microM fusicoccin (r=0.92) or 0.5% ethanol (r=0.90). Cellular stimulation was estimated with concentrations of acids and bases, yielding similar levels of pH change (0.5 pH) in cell-free supernatant: salicylic acid (200microM), benzoic acid (600microM), HCl (140microM), NaOH (100microM), and KOH (100microM). The Golgi apparatus inhibitor Brefeldin A (200microM) reduced the heat-shock-induced phosphatase (-33%). The pH optimum of heat-shock-induced phosphatase was 3; however, there the proportion of constitutive phosphatase was higher than at pH 8-9.5, indicating different pH dependence of constitutive and induced activity. Thus, heat-shock-induced phosphatase was characterized by alkaline activity with inhibitors (10microM molybdate: -52%, 2.5mM phosphate: -64%, 10microM ZnCl(2): -82%), substrates (2.5mM, tyrosine phosphate: 255pkat g(-1), p-nitrophenyl phosphate: 92pkat g(-1), serine phosphate: 0, threonine phosphate: 0), Hill coefficient (nH=1.4) indicating two binding sites, and the extent of heat-shock stimulation (p-nitrophenyl phosphate: +190%, tyrosine phosphate: +180%). SDS-PAGE showed a correlation of alkaline phosphatase with the heat-shock-induced release of highly N-glycosylated 53kDa protein, detected by peroxidase-labeled concanavalin A affinoblotting after endoglycosidase H treatment. The 53kDa protein showed no in-gel phosphatase activity after SDS-PAGE and regeneration treatment, in contrast to a putative dimer (105kDa).  相似文献   

15.
Degradation of 2-chlorobenzoate by Pseudomonas cepacia 2CBS   总被引:10,自引:0,他引:10  
A bacterium was isolated from water by enrichment on 2-chlorobenzoate as sole source of carbon and energy. Based on morphological and physiological properties, this microorganism was assigned to the species Pseudomonas cepacia. The organism was designated Pseudomonas cepacia 2CBS. During growth on 2-chlorobenzoate, the chlorine substituent was released quantitatively, and a small amount of 2,3-dihydroxybenzoate accumulated in the culture medium. Mutants of Pseudomonas cepacia 2CBS were induced by treatment with N-methyl-N'-nitro-N-nitrosoguanidine. Some of these mutants produced catechol from 2-chlorobenzoate. Other mutants accumulated the meta-cleavage product of catechol, 2-hydroxy-cis,cis-muconic acid semialdehyde. In crude cell-free extracts of Pseudomonas cepacia 2CBS, an enzyme was detected which catalysed the conversion of 2-chlorobenzoate to catechol. Molecular oxygen, NADH and exogenous Fe2+ were required for activity. Stoichiometric amounts of chloride were released. Experiments with 18O2 revealed that both oxygen atoms in the hydroxyl groups of the product were derived from molecular oxygen. Thus, the enzyme catalysing the conversion of 2-chlorobenzoate was identified as 2-chlorobenzoate 1,2-dioxygenase (1,2-hydroxylating, dehalogenating, decarboxylating). 2-Chlorobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS was shown to be a multicomponent enzyme system. The activities of catechol 2,3-dioxygenase and catechol 1,2-dioxygenase were detected in crude cell-free extracts. The activity of catechol 2,3-dioxygenase was 60 times higher than the activity of catechol 1,2-dioxygenase, indicating that catechol is mainly degraded via meta-cleavage in Pseudomonas cepacia 2CBS. No enzyme was found which converted 2,3-dihydroxybenzoate, suggesting that this compound is a dead-end metabolite of 2-chlorobenzoate catabolism. A pathway for the degradation of 2-chlorobenzoate by Pseudomonas cepacia 2CBS is proposed.  相似文献   

16.
J Kato  A Ito  T Nikata    H Ohtake 《Journal of bacteriology》1992,174(15):5149-5151
Pseudomonas aeruginosa was shown to be attracted to phosphate. The chemotactic response was induced by phosphate starvation. The specificity of chemoreceptors for phosphate was high so that no other tested phosphorus compounds elicited a chemotactic response as strong as that elicited by phosphate. Competition experiments showed that the chemoreceptors for phosphate appeared to be different from those for the common amino acids. Mutants constitutive for alkaline phosphatase showed the chemotactic response to phosphate regardless of whether the cells were starved for phosphate.  相似文献   

17.
Abstract Burkholderia cepacia has emerged as an important multiresistant pathogen in cystic fibrosis (CF), associated in 20% of colonised patients with a rapid and fatal decline in lung function. Although knowledge of B. cepacia epidemiology has improved, the mechanisms involved in pathogenesis remain obscure. In this study, B. cepacia lipopolysaccharide (LPS) was assessed for endotoxic potential and the capacity to induce tumour necrosis factor (TNF). LPS preparations from clinical and environmental isolates of B. cepacia and from the closely related species Burkholderia gladioli exhibited a higher endotoxic activity and more pronounced cytokine response in vitro compared to preparations from the major CF pathogen Pseudomonas aeruginosa . This study may help to explain the vicious host immune response observed during pulmonary exacerbations in CF patients colonised by B. cepacia and lead to therapeutic advances in clinical management.  相似文献   

18.
Summary Choline, betaine and N,N-dimethylglycine as the sole carbon and nitrogen source induced a periplasmic acid phosphatase activity in Pseudomonas aeruginosa. This enzyme produced the highest rates of hydrolysis in phosphorylcholine and phosphorylethanolamine among the various phosphoric esters tested. At saturating concentrations of Mg2+, the Km values were 0.2 and 0.7 mM for phosphorylcholine and phosphorylethanolamine respectively. At high concentrations both compounds were inhibitors of the enzyme activity. The K inf1 sups values for phosphorylcholine and phosphorylethanolamine were 1.0 and 3.0 mM respectively. The higher catalytic efficiency was that of phosphorylcholine. Considering these results it is possible to suggest that the Pseudomonas aeruginosa acid phosphatase is a phosphorylcholine phosphatase. The existence of this activity which is induced jointly with phospholipase C by different choline metabolites, in a high phosphate medium, suggests that the attack of Pseudomonas aeruginosa on the cell host may also be produced under conditions of high phosphate concentrations, when the alkaline phosphatase is absent.  相似文献   

19.
PTP69D is a receptor protein tyrosine phosphatase that was identified as a key regulator of neuromuscular axon guidance in Drosophila, and has subsequently been shown to play a similar role in the central nervous system and retina. Three Ptp69D alleles with mutations involving catalytically important residues exhibit a high degree of phenotypic variation with viability of mutant adult flies ranging from 0 to 96%, and ISNb motor nerve defects ranging from 11 to 57% [Desai and Purdy, 2003]. To determine whether mutations in Ptp69D affecting axon guidance and viability demonstrate losses of phosphatase activity and whether differences in catalytic potential underlie phenotypic variability, we expressed full-length wild-type and mutant PTP69D protein in Schneider 2 cells, and assessed phosphatase activity using the fluorogenic substrate 6,8-difluoro-4-methylumbelliferone phosphate (DiFMUP). Detailed biochemical characterization of wild-type PTP69D, including an examination of sensitivity to various inhibitors, in vitro catalytic efficiency, and the pH-k(cat) profile of the enzyme, suggests a common tyrosine phosphatase reaction mechanism despite lack of sequence conservation in the WPD loop. Analysis of mutant proteins revealed that every mutant had less than 1% activity relative to the wild-type enzyme, and these rates did not differ significantly from one another. These results indicate that mutations in Ptp69D resulting in axon guidance defects and lethality significantly compromise catalytic activity, yet the range of biological activity exhibited by Ptp69D mutants cannot be explained by differences in catalytic activity, as gauged by their ability to hydrolyze the substrate DiFMUP.  相似文献   

20.
Polyamine-activated protein phosphatase activity in HeLa cell nuclei   总被引:2,自引:0,他引:2  
Protein phosphatase activity towards endogenous nuclear substrates in sonicates of isolated nuclei was activated 2-4-fold by spermine. Exogenous casein was dephosphorylated by these preparations only in the presence of spermine. Activation by spermine was half maximal at about 0.1 mM. Spermidine also activated, with half maximal stimulation at 1mM; putrescine activated poorly. Mg++ and Ca++ appeared to activate the same phosphatase activity but were only 50% as effective as spermine. Spermine activation was inhibited by 200 mM NaCl, 50 mM NaF, or 40 mM beta-glycerol phosphate. Nuclear phosphatase activity, with or without spermine, was inhibited 50% by inhibitor 2 of protein phosphatase 1. These observations suggest that protein phosphatase 1 is a major nuclear protein phosphatase and that its activity against endogenous nuclear substrates is activated by physiological concentrations of spermine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号