首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human endogenous metabolite 2-methoxyoestradiol (2-MeOE2) has been shown to inhibit the proliferation of breast cancer cells. We have previously shown that sulphamoylation of a series of 2-substituted oestrogens greatly enhances their ability to inhibit breast cancer cell proliferation and induce apoptosis. In this study, we have investigated the ability of a number of 2-substituted oestrogens and their sulphamoylated derivatives to inhibit the proliferation of two prostate cancer cell lines, an ovarian cancer cell line and its drug-resistant derivatives. 2-Methoxyoestrone, 2-ethyloestrone and 2-ethyloestradiol had little effect on the growth of the cell lines tested (IC(50)>10 microM). 2-MeOE2 did inhibit the growth of the cells (IC(50)<10 microM), but to a lesser extent than any of the sulphamoylated derivatives tested (IC(50)<1.0 microM). Cells treated with the sulphamoylated derivatives became detached and rounded, displaying a characteristic apoptotic appearance. FACS analysis revealed induced G(2)/M cell cycle arrest. Treatment of cells and subsequent drug removal indicated that the effects of the drugs on the cells were irreversible. Immunoblot analysis indicated that apoptosis may be induced by phosphorylation of BCL-2. From these studies, 2-substituted oestrogen sulphamates are emerging as a potent new class of drug that may be effective against AR+/AR- prostate and ovarian tumours, and against tumours that are resistant to conventional chemotherapeutic regimens.  相似文献   

2.
The green tea polyphenol epigallocatechin-3-gallate (EGCG) has cancer chemopreventive properties against various types of cancers. The compound is known to attack various targets in transformed cells. In this report, we examined the action of EGCG on ovarian cancer cells. Eight ovarian cancer cell lines were tested (SKOV3, CAOV3, OVCAR3, OVCAR10, A2780, CP70, C30, and C200) and showed IC50s for EGCG at the micromolar range, including ones that are resistant to the chemotherapeutic drug cisplatin. The ovarian cancer cells were sensitive to H2O2 at similar concentrations, and EGCG treatment led to enhanced intracellular H2O2. Neutralization with pyruvate, a scavenger of H2O2, suggests that the toxicity of EGCG may be mediated by oxidative stress from the free radical. Addition of Tempol, a superoxide dismutase mimetic, demonstrates that H2O2 might be generated endogenously from superoxide. The toxicity of cisplatin and the development of cisplatin resistance are major obstacles in treatment of ovarian cancer. We found that addition of EGCG amplified the toxicity of cisplatin. EGCG increased cisplatin potency by three to six-fold in SKOV3, CAOV3, and C200 cells, the latter being a cell line induced to have several hundred fold resistant to cisplatin above the parental line. Our findings suggest that EGCG may accentuate oxidative stress to inhibit growth of ovarian cancer cells and sensitize them to cisplatin.  相似文献   

3.
In this study, A2780 human ovarian carcinoma cells were grown in folinic acid in contrast to folic acid, and the molecular and biochemical properties of cisplatin-resistant A2780 cells were analyzed for changes in the dTMP synthase cycle. At concentrations of folinic acid that were optimal for cell growth (10(-8) M), the ED50 for cisplatin was 2.5 and 43 microM in the A2780S and A2780DDP cells, respectively. Resistance to cisplatin was associated with a 2-fold cross-resistance to 5-fluorodeoxyuridine and 5-fluorouracil as well as a 3-fold increase in both dTMP synthase activity and mRNA. The ED50 for methotrexate was similar in both A2780S and A2780DDP cells (1.2 microM). When both the A2780S and A2780DDP cells were grown in folinic acid, there was no significant difference in the level of dihydrofolate reductase activity. This data would suggest that cisplatin resistance is associated with changes in folate metabolism.  相似文献   

4.
The majority of ovarian tumors eventually recur in a drug resistant form. Using cisplatin sensitive and resistant cell lines assembled into 3D spheroids we profiled gene expression and identified candidate mechanisms and biological pathways associated with cisplatin resistance. OVCAR-8 human ovarian carcinoma cells were exposed to sub-lethal concentrations of cisplatin to create a matched cisplatin-resistant cell line, OVCAR-8R. Genome-wide gene expression profiling of sensitive and resistant ovarian cancer spheroids identified 3,331 significantly differentially expressed probesets coding for 3,139 distinct protein-coding genes (Fc >2, FDR < 0.05) (S2 Table). Despite significant expression changes in some transporters including MDR1, cisplatin resistance was not associated with differences in intracellular cisplatin concentration. Cisplatin resistant cells were significantly enriched for a mesenchymal gene expression signature. OVCAR-8R resistance derived gene sets were significantly more biased to patients with shorter survival. From the most differentially expressed genes, we derived a 17-gene expression signature that identifies ovarian cancer patients with shorter overall survival in three independent datasets. We propose that the use of cisplatin resistant cell lines in 3D spheroid models is a viable approach to gain insight into resistance mechanisms relevant to ovarian tumors in patients. Our data support the emerging concept that ovarian cancers can acquire drug resistance through an epithelial-to-mesenchymal transition.  相似文献   

5.
Alteration of appropriate cell‐cycle progression and of closely related apoptotic process is a basic feature of tumour cells, and development of new tumour‐targeted agents focus on apoptosis, either during cell‐cycle arrest or following premature cell‐cycle checkpoint exit. Increasingly, epidemiological and experimental studies suggest that curcumin protects against cancer, not only because of its well‐known antioxidant properties, but also because it modulates intracellular signalling, which is related to cell proliferation and apoptosis. Cisplatin and oxaliplatin are first‐line drugs in treatment of many types of epithelial cancer and their combination with other cytostatics are under investigation to limit their side effects and resistance to them. Objectives: The aim of this study was to evaluate effects of a combined treatment using curcumin with cisplatin or with oxaliplatin, in a human ovarian cancer cell line (2008) and in its cisplatin‐resistant variant (C13). Results: Curcumin per se caused concentration‐dependent (0.1–100 µm ) and time‐persistent (24–72 h) reduction in cell proliferation, as well as altered cell cycle parameters and induced apoptosis, in both cell lines. When carcinoma cells were simultaneously exposed to curcumin and to cisplatin or oxaliplatin (at concentrations lower than IC50) cell viability was reduced more than with single‐drug treatment. Moreover, dose and time related effects of curcumin, when combined with platinum drugs, were linked to consistent reduction in cell cycling and increased apoptosis, in comparison with single‐drug treatment. These effects were significant both in wild type and in cisplatin‐resistant cells, indicating that curcumin was also able to increase sensitivity of resistant ovarian cancer cells to cisplatin. Conclusions: The data suggests that curcumin is an interesting natural compound capable of limiting cell proliferation and possibly increasing clinical impact of platinum drugs, in ovarian cancer patients.  相似文献   

6.
Tryprostatin A is an inhibitor of breast cancer resistance protein, consequently a series of structure-activity studies on the cell cycle inhibitory effects of tryprostatin A analogues as potential antitumor antimitotic agents have been carried out. These analogues were assayed for their growth inhibition properties and their ability to perturb the cell cycle in tsFT210 cells. SAR studies resulted in the identification of the essential structural features required for cytotoxic activity. The absolute configuration L-Tyr-L-pro in the diketopiperazine ring along with the presence of the 6-methoxy substituent on the indole moiety of 1 was shown to be essential for dual inhibition of topoisomerase II and tubulin polymerization. Biological evaluation also indicated the presence of the 2-isoprenyl moiety on the indole scaffold of 1 was essential for potent inhibition of cell proliferation. Substitution of the indole N(a)-H in 1 with various alkyl or aryl groups, incorporation of various L-amino acids into the diketopiperazine ring in place of L-proline, and substitution of the 6-methoxy group in 1 with other functionality provided active analogues. The nature of the substituents present on the indole N(a)-H or the indole C-2 position influenced the mechanism of action of these analogues. Analogues 68 (IC(50)=10 microM) and 67 (IC(50)=19 microM) were 7-fold and 3.5-fold more potent, respectively, than 1 (IC(50)=68 microM) in the inhibition of the growth of tsFT210 cells. Diastereomer-2 of tryprostatin B 8 was a potent inhibitor of the growth of three human carcinoma cell lines: H520 (IC(50)=11.9 microM), MCF-7 (IC(50)=17.0 microM) and PC-3 (IC(50)=11.1 microM) and was equipotent with etoposide, a clinically used anticancer agent. Isothiocyanate analogue 71 and 6-azido analogue 72 were as potent as 1 in the tsFT210 cell proliferation and may be useful tools in labeling BCRP.  相似文献   

7.
ZD9331 is an antifolate drug that potently and specifically inhibits thymidylate synthase (TS). In contrast with TS inhibitors such as raltitrexed, it cannot be polyglutamated, leading to antitumour activity independent of folylpolyglutamyl synthetase (FPGS) activity.The growth inhibition IC50 values for ZD9331 and raltitrexed were determined for a panel of 18 human tumour cell lines, that included six colon and six ovarian. The colon lines largely displayed overlapping sensitivities to both drugs with only one of the six lines being drug resistant. In contrast, the ovarian cell lines displayed non-overlapping sensitivities with four being highly resistant to raltitrexed and only one was cross-resistant to ZD9331. Studies were undertaken to explain these results. The colon and ovarian cell lines were characterised for TS activity, and TS and FPGS mRNA expression. TS activity correlated with sensitivity to ZD9331 (r=0.50; p=0.097) and raltitrexed (r=0.74; p=0.0063). Provided the data from the highly drug-resistant cell lines (BE and 41 M) were omitted, TS mRNA expression levels also correlated with ZD9331 (r=0.77; p=0.013) and raltitrexed IC50 (r=0.84; p=0.0031). FPGS mRNA expression correlated with higher sensitivity to raltitrexed relative to ZD9331 (higher ZD9331/raltitrexed IC50 ratios) (r=0.62; p=0.048). Similarly, cell lines with IC50 ratios>median expressed a 1.8-fold higher median level of FPGS mRNA (p=0.0087) compared with those with ratios相似文献   

8.
贾绍辉  姜华  杜仲夏  陈正望 《生物磁学》2013,(3):405-407,540
目的:探讨炎症因子Daintain/AIF-1对肝癌细胞耐药性产生的影响。方法:利用MTT法测定耐药HepG2细胞株的IC50,流式细胞术测定耐药细胞株期凋亡率,HPLC方法检测隔耐药细胞株胞内顺铂的外排。结果:Daintain/AIF-1提高了HepG2耐药细胞株的IC50;再次受到相同剂量顺铂的攻击时,Daintain/AIF-1与顺铂联合运用构建的耐药细胞株凋亡率明显下降;Daintain/AIF-1促进了耐药细胞株胞内顺铂的外排。结论:此研究表明Daintain/AIF-1通过影响胞内顺铂的外排而促进了肝癌细胞对顺铂耐药性的产生。  相似文献   

9.
We have studied molecular mechanisms of cisplatin sensitivity and resistance in 3 non-malignant, non-drug-selected human T lymphocyte cell lines. HuT 78, H9, and MOLT-4 cells were assessed for sensitivity to cisplatin, DNA damage levels following defined drug exposures, drug accumulation, and DNA repair efficiency as measured by adduct removal from cellular DNA and by host-cell reactivation of cisplatin-modified plasmid DNA. Based on 3-day continuous drug exposures, the IC50 values for the cell lines were: HuT 78, 0.83 microM; H9, 0.45 microM; and MOLT-4, 0.33 microM. These cells retained this order with respect to DNA repair capability, whether measured by platinum-DNA adduct removal from cellular DNA or by host-cell reactivation assays. DNA repair values measured by these two assays were directly related to one another with a linear correlation coefficient of 0.993. At sublethal cisplatin doses the more resistant cells showed the highest levels of drug uptake. When drug uptake levels were 'corrected' for drug-induced cell kill, there were equal levels of DNA repair efficiency for a given level of drug uptake. Absolute levels of cisplatin-DNA adduct repair increased with increasing drug dose. However, at supralethal doses of drug, efficient DNA repair could be overcome in all 3 cell lines with percentage-adduct-removal dropping from a 60-80% range to a less than 30% range. We conclude that in non-malignant non-drug-selected human T cells, DNA repair appears to be the primary determinant of cisplatin sensitivity/resistance and that enhanced DNA repair may be a biologic compensatory mechanism for cells that cannot prevent cellular uptake of DNA-damaging agents.  相似文献   

10.
Four classes of UK-1 analogues were synthesized and their cytotoxicity testing against human A-549, BFTC-905, RD, MES-SA, and HeLa carcinoma cell lines was determined. The results revealed that UK-1 and four of these analogues (15-18) are potent against the cancer cell lines. In particular, compound 16 is more potent than UK-1 against A-549 and HeLa cell lines, and compounds 15, 17, and 18 selectively exhibit potent cytotoxic activity against the BFTV-905 cells (IC50 9.6 microM), A-549 cells (IC50 6.6 microM), and MES-SA cells (IC50 9.2 microM), respectively.  相似文献   

11.
In this investigation, we report a relationship between the terbium (Tb3+) binding protein and the cytotoxicity of cisplatin in human head and neck cancer cells. In the FaDu cell line, the cytotoxic action of cisplatin was shown to be approximately six times more potent than the cytotoxicity of Tb3+. When cisplatin was combined with 80 microM Tb3+, the IC20 and IC50 values for cisplatin were reduced by 70% and 24%, respectively. The IC80 value, however, was increased by 124%. The results suggest that the cytotoxicity of cisplatin is enhanced by Tb3+ at low cisplatin concentrations. In agreement with previous studies, calcium and cisplatin were found to be mixed-type and noncompetitive inhibitors, respectively, of the Tb3+ -FaDu intensity. These findings imply that the receptor binding of Tb3+ can modulate the cytotoxic activity of cisplatin.  相似文献   

12.
目的:探讨生长分化因子GDF15(Growth Differentiation Factor 15)基因在卵巢上皮性癌组织中的表达及其与铂类耐药的相关性。方法:应用免疫组化、western blot、RT-PCR等方法对80例原发性卵巢癌组织和卵巢癌顺铂敏感/耐药株A2780和CP70、SKOV3和SKOV3/DDP中生长分化因子GDF15表达水平进行测定。结果:生长分化因子GDF15的表达强度与卵巢癌铂类耐药性显著相关。在卵巢癌顺铂耐药株CP70、SKOV3/DDP中GDF15表达水平较顺铂敏感株A2780、SKOV3明显增高。结论:GDF15表达水平与卵巢癌发生发展及铂类耐药相关,对于卵巢癌患者早期筛选、预测预后具有一定的临床指导价值。  相似文献   

13.
In order to widen our knowledge on antitumour trans-[PtCl2(iminoether)2] complexes, we have synthesised two new derivatives, trans-[PtCl2?E-HN = C(OEt)Me?2] (1) and trans-[PtCl2?Z-HN = C(OEt)Me?2] (2), which differ in the configuration of the iminoether ligands. Isomer 1 showed an in vitro cytotoxicity similar to that of cisplatin in a panel of human tumour cell lines (mean IC50 = 8 and 7.7 microM, respectively), whereas isomer 2 showed a lower activity (IC50 = 14.3 microM). Both 1 and 2 isomers overcame cisplatin resistance of ovarian cancer cell line A2780/Cp8. In agreement with the n-octanol/saline partition ratios, intracellular platinum content (and DNA platination) after a 2-h exposure to equimolar drug concentrations was in the order 1 > 2 > cisplatin, thus indicating that substitution of imminoethers for ammines determines a major lipophilicity and cellular uptake of the platinum drug. Both 1 and 2 showed a major toxic effect towards an excision repair-defective Drosophila strain, thus indicating cellular DNA as cytotoxic target. Finally, both 1 and 2 were active in vivo against the murine P388 system, but, contrary to the in vitro activity, isomer 2 was slightly more active than 1. On the whole, the results confirm the antitumour activity of trans-[PtCl2(iminoether)2] complexes, and indicate that the configuration of the iminoether ligands may affect the pharmacological properties of this class of complexes.  相似文献   

14.
Although cisplatin is a very effective anticancer agent against several types of cancer including ovarian cancer, the mechanisms of acquired resistance are not fully understood. By chronically exposing cisplatin to ovarian cancer cell lines, we established two cisplatin-resistant cell lines OV433 and TOV112D. Our results indicate that the mechanisms underlying their cisplatin resistance are distinct. In OV433 cells, cisplatin resistance is associated with increased expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1). By knocking down MKP-1 expression by siRNA or inhibiting MKP-1 expression by its pharmacological inhibitor triptolide, cisplatin-resistant OV433 cells became cisplatin-sensitive and subsequently increased cisplatin-induced apoptosis. In TOV112D cells, on the other hand, acquired cisplatin resistance is associated with increased levels of Bcl-2 protein. By inhibiting the activity of Bcl-2 protein with its pharmacological inhibitor gossypol or knocking down Bcl-2 expression by siRNA, cisplatin-resistant TOV112D cells became cisplatin-sensitive and subsequently increased cisplatin-induced apoptosis. Therefore, our data suggest that the mechanisms of acquired cisplatin resistance vary among ovarian cancer cells, which involve up-regulation of molecules associated with the cell survival pathways.  相似文献   

15.
While multiple changes are frequently found to be associated with cisplatin resistance in a variety of tumor cell lines, a cause-effect relationship of these alterations with the resistant phenotype has not been established. In order to identify the resistance-relevant determinants, a series of cisplatinresistant sublines with different degrees of resistance to cisplatin was developed in a human ovarian carcinoma cell line (O-129). Three derived resistant cell lines displayed 2.1-fold (O-129/DDP4, low), 4.1-fold (O-129/DDP8, moderate) and 6.3-fold (O-129/DDP16, high) resistance, respectively, to cisplatin, compared with the sensitive parental line O-129. While the activity of poly(ADP-ribose) polymerase, an enzyme proposed to be involved in DNA repair, was elevated in all three resistant lines, a significant karyotypic change was observed only in the high-resistance line with the karyotype alteration from near diploidy to heteroploidy. The moderate (4.1-fold) and high (6.3-fold) DDP resistance was associated with a slow proliferation rate in drug-free medium, but cellular glutathione level was highly correlated with DDP sensitivity in all four cell lines. Taken together, the present studies establish that while many changes at cellular level can occur with development of cisplatin resistance, only elevation of intracellular glutathione concentration appears to be related to the resistance phenotype in these human ovarian cancer cells.Abbreviations DDP cisplatin - FBS fetal bovine serum - GSH glutathione - IC50 drug concentration required to result in 50% growth inhibition - PARP poly(ADP-ribose) polymerase  相似文献   

16.
戚玉言  陈爱平  张红玲  张春梅  牛兆园 《生物磁学》2009,(13):2443-2446,2450
目的:探讨载体表达的小干扰RNA(siRNA)影响卵巢癌耐药细胞株EGFR基因的表达并逆转其顺铂耐药的可行性。方法:体外构建EGFR小发卡状RNA(shRNA)的表达质粒,脂质体法介导将其转染入SKOV3/DDP细胞。实验分为正常对照组、空质粒转染组、非特异性转染组和特异性转染组。采用逆转录聚合酶链反应(RT-PCR)检测EGFR mRNA的表达;使用免疫细胞化学法(ICC)检测EGFR蛋白的表达;使用四甲基偶氮唑蓝法(MTT)测定各组细胞对顺铂的半数抑制浓度(IC50)。结果:EGFR shRNA转染组细胞EGFR mRNA的表达与其他两组相比明显减弱(P〈0.01),EGFR蛋白表达明显下调(P〈0.01);顺铂敏感性比正常对照组提高了约2.5倍。结论:针对EGFR合成的siRNA能够有效地抑制EGFR mRNA和蛋白的表达,并能恢复其对顺铂的敏感性。应用RNAi技术,能够逆转卵巢癌细胞对化疗药物的耐药性。  相似文献   

17.
Tai J  Cheung S  Wu M  Hasman D 《Phytomedicine》2012,19(5):436-443
Rosemary (Rosmarinus officinalis L.) is a popular culinary/medicinal herb. Recent studies have shown it has pharmacologic activities for cancer chemoprevention and therapy. This study evaluated the antiproliferation activity of rosemary extract (RE) against human ovarian cancer cells, and whether the extract and its three main active ingredients carnosol (CS), carnosic acid (CA) and rosmarinic acid (RA) can enhance the antiproliferation activity of cisplatin (CDDP). Our study showed that RE has significant antiproliferation activity on human ovarian cancer A2780 and its CDDP resistant daughter cell line A2780CP70, with IC(50) (50% inhibitory concentration) estimated at 1/1000 and 1/400 dilutions respectively. RE enhanced the antiproliferation effect with CDDP on both A2780 and A2780CP70 cells. A2780 cells were consistently more sensitive to CS, CA, and RA than A2780CP70 cells between 2.5 and 20μg/ml. CS and RA also showed synergistic antiproliferation effect with CDDP on A2780 cells at some concentrations. RE treated by ultrafiltration, dialysis, and removal of phenolics lost the antiproliferation activity suggested that the activity resides in phenolics with MW<1000Da. Apoptosis array study of A2780 cells treated with RE showed that the expression of a number of genes regulating apoptosis were modulated by the treatment. This study showed that RE inhibited the proliferation of ovarian cancer cell lines by affecting the cell cycle at multiple phases. It induced apoptosis by modifying the expression of multiple genes regulating apoptosis, and holds potential as an adjunct to cancer chemotherapy.  相似文献   

18.
Several 1,8-naphthyridine-3-carboxamide derivatives (8-23) were synthesized and tested for in vitro cytotoxicity against eight cancer cell lines and a normal cell line. Compound 12 exhibited high cytotoxicity (IC(50)=1.37microM) in HBL-100 (breast) cell line while compounds 17 (IC(50)=3.7microM) and 22 (IC(50)=3.0microM) have shown high cytotoxicity in KB (oral) and SW-620 (colon) cell lines, respectively. The synthesized 1,8-naphthyridine-3-carboxamides were also evaluated for anti-inflammatory and myeloprotective activities, indicated by modulation in cytokine and chemokine levels secreted by dendritic cells.  相似文献   

19.
The emergence of resistance to cisplatin is a serious drawback of cancer therapy. To help elucidate the molecular basis of this resistance, we examined matched ovarian cancer cell lines that differ in their DNA mismatch repair (MMR) status and the response to cisplatin. Checkpoint activation by cisplatin was identical in both lines. However, sensitive cells delayed S-phase transition, arrested at G2/M and died by apoptosis. The G2/M block was characterized by selective disappearance of homologous recombination (HR) proteins, which likely resulted in incomplete repair of the cisplatin adducts. In contrast, resistant cells transiently arrested at G2/M, maintained constant levels of HR proteins and ultimately resumed cell cycle progression. The net contribution of MMR to the cisplatin response was examined using matched semi-isogenic (HCT116±chr3) or strictly isogenic (293T-Lα-/+) cell lines. Delayed transition through S-phase in response to cisplatin was also observed in the MMR-proficient HCT116+chr3 cells. Unlike in the ovarian cell lines, however, both HCT116+chr3 and HCT116 permanently arrested at G2/M with an intact complement of HR proteins and died by apoptosis. A similar G2/M arrest was observed in the strictly isogenic 293T-Lα-/+ cells. This confirmed that although MMR undoubtedly contributes towards the cytotoxicity of cisplatin, it is only one of several pathways that modulate the cellular response to this drug. However, our data highlighted the importance of HR to cisplatin cytotoxicity and suggested that HR status might represent a novel prognostic marker and possibly also a therapeutic target, the inhibition of which would substantially sensitize cells to cisplatin chemotherapy.  相似文献   

20.
Lee EJ  Min HY  Joo Park H  Chung HJ  Kim S  Nam Han Y  Lee SK 《Life sciences》2004,75(23):2829-2839
Stilbenoids, including resveratrol (3,5,4'-trihydroxy-trans-stilbene) which is a naturally occurring phytoalexin abundant in grapes and several plants, have been shown to be active in inhibiting proliferation and inducing apoptosis in human cancer cell lines. Using resveratrol as the prototype, we have synthesized various analogs and evaluated their growth inhibitory effects in cultured human cancer cells. In the present study, we show that one of the stilbenoids, 3,4,5-trimethoxy-4'-bromo-cis-stilbene (BCS), was more effective than its corresponding trans-isomer and resveratrol on the inhibition of cancer cell growth. Prompted by the strong growth inhibitory activity of BCS (IC50; 0.03 microM) compared to its trans-isomer (IC50; 6.36 microM) and resveratrol (IC50; 33.0 microM) in cultured human lung cancer cells (A549), we investigated its mechanism of action. BCS induced arrest at the G2/M phase cell cycle in the early time and subsequently increased in the sub-G1 phase DNA contents in a time-dependent manner, indicating induction of apoptosis. Morphological observation with round-up shape and DNA fragmentation was also revealed the apoptotic phenomena. BCS treatment elevated the expression levels of the pro-apoptotic protein p53, the cyclin-dependent kinase inhibitor p21, and the release of cytochrome c in the cytosol. The down-regulation of checkpoint protein cyclin B1 by BCS was well correlated with the cell cycle arrest at G2/M. These data suggest the potential of BCS to serve as a cancer chemotherapeutic or chemopreventive agent by virtue of arresting the cell cycle and induction of apoptosis of human lung cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号