首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-Acetyl-, N-propionyl-, N-butyryl- and N-valerylglucosamines were synthesized as topographical probes to localize further the interaction site of alpha-lactalbumin on galactosyltransferase. All these compounds were found to be substrates for galactosyltransferase with Km values in the millimolar range. In the presence of alpha-lactalbumin, the Michaelis-Menten constants were diminished. However, the effect on the initial rates of these reactions varied. Thus, at low N-acylglucosamine concentrations, alpha-lactalbumin activated the enzyme activity, but at high concentrations, alpha-lactalbumin became inhibitory. This mixed-type inhibition kinetics indicated that a quaternary complex between galactosyltransferase, alpha-lactalbumin, Mn2+-UDPgalactose and N-acylglucosamine existed during the catalytic process. The ability of these N-acylglucosamine substrates to bind to lactose synthase complex was further substantiated by the physical association of galactosyltransferase onto the solid-bound alpha-lactalbumin in the presence of any one of these compounds. The data revealed that the presence of the N-acyl group up to five carbons in length did not interfere with the interaction between alpha-lactalbumin and galactosyltransferase, suggesting that alpha-lactalbumin was not bound in the vicinity of the C-2 region of the monosaccharide site. The inhibitory effect of alpha-lactalbumin on N-acyllactosamine formation is probably a consequence of conformational changes of galactosyltransferase.  相似文献   

2.
We have isolated five Chinese hamster ovary cell mutants defective in galactosyltransferase I (UDP-D-galactose:xylose beta-1,4-D-galactosyltransferase) and studied the effect of p-nitrophenyl-beta-D-xyloside supplementation on glycosaminoglycan biosynthesis in the mutant cells. Assays of galactosyltransferase I showed that the mutants contained less than 2% of the enzyme activity present in wild-type cells, and enzyme activity was additive in mixtures of mutant and wild-type cell extracts, suggesting that the mutations most likely defined the structural gene encoding the enzyme. Cell hybridization studies showed that the mutations in all five strains were recessive and that the mutants belonged to the same complementation group. The mutants contained wild-type levels of xylosyltransferase (UDP-D-xylose:core protein (serine) beta-D-xylosyltransferase), lactose synthase (UDP-D-galactose:N-acetyl-glucosaminide beta-1,4-D-galactosyltransferase), and lactosylceramide synthase (UDP-D-galactose:glucosylceramide beta-1,4-D-galactosyltransferase). Their sensitivity to lectin-mediated cytotoxicity was virtually identical to that of the wild-type, indicating that there were no gross alterations in glycoprotein or glycolipid compositions. Anion-exchange high performance liquid chromatography of 35S-glycosaminoglycans from one of the galactosyltransferase I-deficient mutants showed a dramatic reduction in both heparan sulfate and chondroitin sulfate, demonstrating that galactosyltransferase I is responsible for the formation of both glycosaminoglycans in intact cells. Surprisingly, the addition of 1 mM-p-nitrophenyl-beta-D-xyloside, a substrate for galactosyltransferase I, restored glycosaminoglycan synthesis in mutant cells. This finding suggested that another galactosyltransferase, possibly lactose synthase, can transfer galactose to xylose in intact cells.  相似文献   

3.
Photoaffinity labeling of lactose synthase with a UDP-galactose analogue   总被引:1,自引:0,他引:1  
A photoaffinity analogue of UDP-galactose, 4-azido-2-nitrophenyluridylyl pyrophosphate (ANUP), has been synthesized for the investigation of the binding topography of alpha-lactalbumin on galactosyltransferase. Results obtained from steady state kinetics show that ANUP is an effective competitive inhibitor against UDP-galactose in the reactions of lactose and N-acetyllactosamine syntheses. The specific binding of ANUP to the UDP-galactose-binding site is further demonstrated by its ability to facilitate the formation of the lactose synthase complex on solid supports, either alone or in the presence of glucose or N-acetyl-glucosamine. ANUP inactivates galactosyltransferase on irradiation. One mole of ANUP was incorporated per mol of enzyme inactivated. This process is Mn2+-dependent and can be prevented by UDP-galactose. Glucose and N-acetylglucosamine render only partial protection. Photoaffinity labeling of lactose synthase either free in solution or immobilized on Sepharose does not result in any reduction of the alpha-lactalbumin modifier activity. In addition, no incorporation of radioactivity into alpha-lactalbumin was observed when radioactive ANUP was used, whereas galactosyltransferase was labeled. These data indicate that alpha-lactalbumin does not bind to galactosyltransferase in the region of the ANUP site, suggesting that the location of protein-protein interaction between the two subunits of lactose synthase may be removed from the UDP-galactose-binding domain.  相似文献   

4.
Membrane-bound 4-beta-galactosyltransferase (lactose synthase; UDP galactose: D-glucose 4-beta-galactosyltransferase, EC 2.4.1.22) was purified 1500-fold to near homogeneity from pig thyroid microsomes with about 30% yield. The purified enzyme behaved as a lipophilic protein, rapidly losing activity and aggregating if not supplemented with either Triton X-100 or serum albumin (both of these were equally effective for long-term stabilization). The enzyme preparation showed an absolute requirement for Mn2+, which could not be replaced by other cations. Catalytic properties were very similar to those reported for soluble forms of the enzyme in biological fluids. The purified galactosyltransferase showed a major protein band of approx. 74,000 daltons on sodium dodecyl sulfate gel electrophoresis. On gel filtration, enzyme activity was eluted at approx. 70,000 daltons. It is concluded that the membrane-bound thyroid galactosyltransferase is a monomeric protein significantly larger than the soluble forms of this enzyme described earlier; but it resembles recently reported galactosyltransferases from sheep mammary Golgi membranes and liver microsomes.  相似文献   

5.
The important xenoepitope Galalpha(1,3)Gal was thought to be exclusively synthesized by a single alpha(1,3)galactosyltransferase. However, the cloning of the distant family member rat iGb3 synthase, which is also capable of synthesizing Galalpha(1,3)Gal as the glycolipid structure iGb3, challenges the notion that alpha(1,3)galactosyltransferase is the sole Galalpha(1,3)Gal-synthesizing enzyme. We describe the cloning of the rat homolog of alpha(1,3)galactosyltransferase, showing that indeed the rat expresses two distinct alpha(1,3)galactosyltransferases, alpha(1,3)GT and iGb3 synthase. Rat alpha(1,3)galactosyltransferase shows a high amino acid sequence identity with the alpha(1,3)galactosyltransferase of mouse (90%), pig (76%), and ox (75%), in contrast to the low amino acid sequence identity (42%) with iGb3 synthase. The rat alpha(1,3)galactosyltransferase is expressed in heart, brain, spleen, kidney, and liver and has a similar intron/exon structure to the mouse alpha(1,3)galactosyltransferase. Transfection studies show that in contrast to the iGb3 synthase, rat alpha(1,3)galactosyltransferase can synthesize Galalpha(1,3)Gal on glycoproteins but cannot synthesize the glycolipid iGb3, defining two separate glycosylation pathways for the synthesis of Galalpha(1,3)Gal. Furthermore iGb3 synthase was found to be distinct from alpha(1,3)GT with its ability to synthesize poly-alpha-Gal glycolipid structures.  相似文献   

6.
β1,4-galactosyltransferase is unusual among the glycosyltransferases in that it is found in two subcellular compartments where it performs two distinct functions. In the trans-Golgi complex, galactosyltransferase participates in oligosaccharide biosynthesis, as do the other glycosyltransferases. On the cell surface, however, galactosyltransferase associates with the cytoskeleton and functions as a receptor for extracellular oligosaccharide ligands. Although we now know much regarding galactosyltransferase function in these two compartments, little is known about how it is targeted to these different sites. By cloning the galactosyltransferase gene products, certain features of the protein have been identified that may be critical for its expression on the cell surface or retention within the Golgi complex. This article discusses recent studies which suggest that a cytoplasmic sequence unique to one galactosyltransferase isoform is required for targeting a portion of this protein to the plasma membrane, enabling it to function as a cell adhesion molecule. These findings allow one to manipulate surface galactosyltransferase expression, either positively or negatively, and perturb galactosyltransferase-dependent cellular interactions during fertilization and development.  相似文献   

7.
In this study, we have described the biological activity of various hydrolysates and its effect on cell growth, growth rate and doubling time. A potent cell culture enhancer factor was observed in the yeastolate hydrolysates, mainly in the protein fractions with low molecular weight. In this case, a growth enhancer of 60.66% was obtained. Despite a lower efficiency of crude lactalbumin hydrolysates (14%), when lactalbumin and yeastolate were added together to the culture, the cell yields were of 102%, showing a synergic effect. Nevertheless, sub fraction from LMW, of lactalbumin, obtained by Sephadex G-10 gel filtration chromatography showed a higher positive effect (23.3%) than low molecular weight fraction of lactalbumin without this chromatography step (11.3%). It is suggested that low molecular weight lactalbumin could have some inhibitory protein. On the other hand, NZCase low molecular weight showed a positive effect of 29.33%, while its sub fractions showed a negative effect of 5.5%. With these data we can suggest that these hydrolysates could be an important element to design new media, serum free, being helpful in protein recombinant production.  相似文献   

8.
The fluorescence properties of 1,8 anilinonaphthalene sulfonate (ANS) in the presence of high concentrations of bovine alpha lactalbumin have been studied. While ANS was shown to bind to aggregated or partially denatured bovine alpha lactalbumin, at neutral pH, 0.1 M phosphate, no significant binding of ANS to alpha lactalbumin or any associated fluorescence enhancement was detected. Sedimentation velocity experiments suggest that near the isoelectric point of the protein the binding of ANS stabilizes aggregates of alpha lactalbumin and therefore promotes association.  相似文献   

9.
We have previously described the construction of a P-selectin glycoprotein ligand-1-mouse immunoglobulin Fc fusion protein, which when transiently coexpressed with the porcine alpha1,3 galactosyltransferase in COS cells becomes a very efficient adsorber of xenoreactive, anti-pig antibodies. To relate the adsorption capacity with the glycan expression of individual fusion proteins produced in different cell lines, stable CHO-K1, COS, and 293T cells producing this fusion protein have been engineered. On alpha1,3 galactosyltransferase coexpression, high-affinity adsorbers were produced by both COS and 293T cells, whereas an adsorber of lower affinity was derived from CHO-K1 cells. Stable coexpression of a core 2 beta1,6 N-acetylglucosaminyltransferase in CHO-K1 cells led to increased alpha-Gal epitope density and improved anti-pig antibody adsorption efficacy. ESI-MS/MS of O-glycans released from PSGL-1/mIgG(2b) produced in an alpha1,3 galactosyl- and core 2 beta1,6 N-acetylglucosaminyltransferase expressing CHO-K1 cell clone revealed a number of structures with carbohydrate sequences consistent with terminal Gal-Gal. In contrast, no O-glycan structures with terminal Gal-Gal were identified on the fusion protein when expressed alone or in combination with the alpha1,3 galactosyltransferase in CHO-K1 cells. In conclusion, the density of alpha-Gal epitopes on PSGL-1/mIgG(2b) was dependent on the expression of O-linked glycans with core 2 structures and lactosamine extensions. The structural complexity of the terminal Gal-Gal expressing O-glycans with both neutral as well as sialic acid-containing structures is likely to contribute to the high adsorption efficacy.  相似文献   

10.
Galactosyltransferase (EC 2.4.1.22) requires bivalent metal ions for its activity. However, preparations of this enzyme solubilized from Golgi membranes of lactating rat mammary gland were shown to be activated not only by Mn2+, Ca2+ and Mg2+, but also by spermine, spermidine, lysyl-lysine, ethylenediamine and other diaminoalkanes, and by a range of basic proteins and peptides, including clupeine, histone, polylysine, ribonuclease, pancreatic trypsin inhibitor, cytochrome c, melittin, avidin and myelin basic protein. Both N-acetyl-lactosamine synthetase and lactose synthetase activities were enhanced. A basic protein fraction was isolated from bovine milk and shown to activate galactosyltransferase at low concentrations. The polyanions ATP, casein, chondroitin sulphate and heparin reversed the activation of galactosyltransferase by several of the above substances. Galactosyltransferase, assayed as a lactose synthetase, showed a 10-fold greater affinity for glucose when Mn2+ ions were replaced by clupeine or by ribonuclease as cationic activator. Evidence was obtained for the presence of an endogenous cationic activator in solubilized Golgi membrane preparations which evoked a similar low apparent Km,glucose. The findings are discussed in the light of cationic activations of glycosyltransferases generally, of the porous nature of the Golgi membrane, and of the unlikelihood of bivalent metal ions being the physiological activators of galactosyltransferase. It is suggested that the natural cationic activator of lactose synthetase may be a secretory protein acting in a manner analogous to the enzyme's activation by alpha-lactalbumin. A scheme is proposed for the two-stage synthesis of lactose and phosphorylation of casein within the cell, to accommodate the apparent incompatibility of these two processes.  相似文献   

11.
Galactomannan biosynthesis in vitro is catalysed by membrane preparations from developing fenugreek seed endosperms. Two enzymes interact: a GDP-mannose dependent (1-->4)-beta-D-mannan synthase and a UDP-galactose dependent (1-->6)-alpha-D-galactosyltransferase. The statistical distribution of galactosyl substituents along the mannan backbone, and the degree of galactose substitution of the primary product of galactomannan biosynthesis appear to be regulated by the specificity of the galactosyltransferase. We now report the detergent solubilisation of the fenugreek galactosyltransferase with retention of activity, the identification on gels of a putative 51 kDa galactosyltransferase protein, and the isolation, cloning and sequencing of the corresponding cDNA. The solubilised galactosyltransferase has an absolute requirement for added acceptor substrates. Beta-(1-->4)-linked D-manno-oligosaccharides with chain lengths greater than or equal to 5 acted as acceptors, as did galactomannans of low to medium galactose-substitution. The putative galactosyltransferase cDNA encodes a 51282 Da protein, with a single transmembrane alpha helix near the N terminus. We have also confirmed the identity of the galactosyltransferase by inserting the cDNA in frame into the genome of the methylotrophic yeast Pichia pastoris under the control of an AOX promoter and the yeast alpha secretion factor and observing the secretion of galactomannan alpha-galactosyltransferase activity. Particularly high activities were observed when a truncated sequence, lacking the membrane-spanning helix, was expressed.  相似文献   

12.
Turpentine induced inflammation has been shown to elevate liver sialyl- and galactosyltransferase activities (Turchen, B., Jamieson, J.C., Huebner, E., and van Caeseele, L. (1977) Can. J. Zool. 55, 1567-1571; Lombart, C., Sturgess, J., and Schachter, H. (1980) Biochem. Biophys. Acta 629, 1-12). We now report that serum sialyl-, but not galactosyltransferase activities are significantly elevated in turpentine inflammation. A liver slice system is used to demonstrate that liver releases large amounts of sialyltransferase activity into medium after inflammation, whereas only a low level of galactosyltransferase activity is released. Studies with rat and human asialo-alpha 1-acid glycoprotein as acceptors, coupled with the use of lactose to confirm the nature of the linkages formed, showed that Gal beta 1 leads to 4GlcNAc alpha 2 leads to 6 sialyltransferase is released from liver in turpentine inflammation and is mainly responsible for the elevated sialyltransferase activity found in serum. The alpha 2 leads to 6 sialyltransferase is exhibiting the properties of a typical acute phase reactant.  相似文献   

13.
Actin cytoskeleton undergoes rapid reorganization in response to internal and external cues. How the dynamics of actin cytoskeleton are regulated, and how its dynamics relate to its function are fundamental questions in plant cell biology. The pollen tube is a well characterized actin-based cell morphogenesis in plants. One of the striking features of actin cytoskeleton characterized in the pollen tube is its surprisingly low level of actin polymer. This special phenomenon might relate to the function of actin cytoskeleton in pollen tubes. Understanding the molecular mechanism underlying this special phenomenon requires careful analysis of actin-binding proteins that modulate actin dynamics directly. Recent biochemical and biophysical analyses of several highly conserved plant actin-binding proteins reveal unusual and unexpected properties, which emphasizes the importance of carefully analyzing their action mechanism and cellular activity. In this review, we highlight an actin monomer sequestering protein, a barbed end capping protein and an F-actin severing and dynamizing protein in plant. We propose that these proteins function in harmony to regulate actin dynamics and maintain the low level of actin polymer in pollen tubes.  相似文献   

14.
We have investigated the biological function of an unidentified human growth factor, the ligand of the putative HER2 receptor, by characterizing the signalling properties of its receptor. HER2 (or c-erbB-2), the human homolog of the rat neu proto-oncogene, encodes a transmembrane glycoprotein of the tyrosine kinase family that appears to play an important role in human breast carcinoma. Since a potential ligand for HER2 has not yet been identified, it has been difficult to analyze the biochemical properties and biological function of this cell surface protein. For this reason, we replaced the HER2 extracellular domain with the closely related ligand binding domain sequences of the epidermal growth factor (EGF) receptor, and examined the ligand-induced biological signalling potential of this chimeric HER1-2 protein. This HER1-2 receptor is targetted to the cell surface of transfected NIH 3T3 cells, forms high and low affinity binding sites, and generates normal mitogenic and cell transforming signals upon interaction with EGF or TGF alpha. The constitutive activation of wild-type HER2 in transfected NIH 3T3 cells suggests the possibility that these cells synthesize the as yet unidentified HER2 ligand and activate HER2 by an autocrine mechanism.  相似文献   

15.
When fed to a beta-galactosidase-negative (lacZ(-)) Escherichia coli strain that was grown on an alternative carbon source (such as glycerol), lactose accumulated intracellularly on induction of the lactose permease. We showed that intracellular lactose was efficiently glycosylated when genes of glycosyltransferase that use lactose as acceptor were expressed. High-cell-density cultivation of lacZ(-) strains that overexpressed the beta 1,3 N acetyl glucosaminyltransferase lgtA gene of Neisseria meningitidis resulted in the synthesis of 6 g x L(-1) of the expected trisaccharide (GlcNAc beta 1-3Gal beta 1-4Glc). When the beta 1,4 galactosyltransferase lgtB gene of N. meningitidis was coexpressed with lgtA, the trisaccharide was further converted to lacto-N-neotetraose (Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc) and lacto-N-neoheaxose with a yield higher than 5 g x L(-1). In a similar way, the nanA(-) E. coli strain that was devoid of NeuAc aldolase activity accumulated NeuAc on induction of the NanT permease and the lacZ(-) nanA(-) strain that overexpressed the N. meningitidis genes of the alpha2,3 sialyltransferase and of the CMP-NeuAc synthase efficiently produced sialyllactose (NeuAc alpha 2-3Gal beta 1-4Glc) from exogenous NeuAc and lactose.  相似文献   

16.
Group V sPLA(2) is unique among the family of secretory sPLA(2) enzymes in being able to bind to cell membranes through both interfacial-binding and through binding to proteoglycan. The function of group V sPLA(2) as an enzyme and its cross-talk with cPLA(2)alpha in initiating eicosanoid generation is well documented. Evidence, though, is emerging on the ability of this molecule to act as a regulator of several intracellular and extracellular pathways independently of its ability to provide arachidonic acid for eicosanoid generation, acting within the cell or as a secreted enzyme. In this article we will provide an overview of the properties of the enzyme and how they relate to our current understanding of its function.  相似文献   

17.
The synthesis of sufficient amounts of oligosaccharides is the bottleneck for the study of their biological function and their possible use as drug. As an alternative for chemical synthesis, we propose to use Escherichia coli as a "living factory." We have addressed the production of the Galp alpha(1-3)Galp beta(1-4)GlcNAc epitope, the major porcine antigen responsible for xenograft rejection. An E. coli strain was generated which simultaneously expresses NodC (to provide the chitin-pentaose acceptor), beta(1-4) galactosyltransferase LgtB, and bovine alpha(1-3) galactosyltransferase GstA. This strain produced 0.68 g/L of the heptasaccharide Galp alpha(1-3)Galp beta(1-4)(GlcNAc)(5), which harbours the xenoantigen at its non-reducing end, establishing the feasibility of this approach.  相似文献   

18.
Recent data demonstrate that transition metal ions such as copper not only bind the prion protein with high affinities, but also modify its biochemical properties. This has important consequences for the potential function of the protein in metal-ion transport or as an anti-oxidant molecule. In addition, this relationship between the prion protein and metal ions is likely to play a critical role in the physiopathology of prion diseases.  相似文献   

19.
Galactosyltransferase and alphalactalbumin-like activities have been reported to be present in the post-testicular fluids of the male reproductive tract. In the lactating mammary gland, these activities constitute the lactose synthetase complex. Kinetic parameters and acceptor specificities previously reported, along with recent amino acid sequence analysis argue against the mammary gland and epididymal activities being products of the same gene. In this paper we present cell-free translation of rat epididymal mRNA and Northern blot analysis of epididymal mRNA hybridized with authentic rat alpha-lactalbumin cDNA supporting this lack of identity and describe the differential synthesis and secretion of the androgen-regulated 18 kDa component of the so-called rat epididymal alphalactalbumin-like complex along the length of the epididymis. We conclude that although the 18 kDa component of the so-called epididymal alphalactalbumin moiety (E alpha LA) is capable, in common with a number of unrelated molecules, of modifying galactosyltransferase acceptor specificity in vitro, there is no primary structural similarity between it and authentic rat mammary alphalactalbumin. In view of the fact that the activity of E alpha LA is 1/100th that of authentic milk alphalactalbumin, we suggest that it may not be of physiological importance and that modification of galactosyltransferase activity may not be the function of the 18 kDa molecule.  相似文献   

20.
Two galactosyltransferases were identified in human kidney microsomes which both transfer galactose from UDP Gal to lactose as well as to lactosylceramide. Using a solubilized and a partially purified enzyme preparation sufficient product could be obtained for detailed structural analysis. The trisaccharide products were isolated by gel permeation chromatography and separated by preparative high performance thin layer chromatography. The anomeric configuration of the transferred galactose was determined by specific glycosidase digestion and the linkage was identified by methylation and gas-liquid-chromatography. The glycolipid products were not separated but analyzed directly, before and after alpha or beta galactosidase digestion, by methylation, hydrolysis and thin layer chromatography. Into both acceptor substrates galactose was incorporated in alpha 1-4 (30%) and beta 1-3 (70%) linkages. The alpha 1-4 galactosyltransferase is responsible for the synthesis of the Pk antigen Gal alpha 1-4 Gal beta 1-4 Glc-ceramide in human kidney. The beta 1-3 galactosyltransferase has not previously been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号