首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Dey K  Roy P 《Biotechnology letters》2011,33(6):1101-1105
A Bacillus sp., capable of degrading chloroform, was immobilized in calcium alginate. The beads in 20 g alginate l−1 (about 2 × 108 cells/bead) could be re-used nine times for degradation of chloroform at 40 μM. The immobilized cells had a higher range of tolerance (pH 6.5–9 and 20–41°C) than free cells (pH 7–8.5 and 28–32°C). At 5 g alginate l−1, leakage of the cells from the beads was 0.51 mg dry wt ml−1. This species is the first reported Bacillus that can degrade chloroform as the sole carbon source.  相似文献   

2.
Thermomucor indicae-seudaticae was immobilized in alginate, κ-carrageenan, agarose, agar, polyacrylamide and loofah (Luffa cylindrica) sponge (as such or coated with alginate/starch/Emerson YpSs agar), and used for the production of glucoamylase in submerged fermentation. The mycelium developed from alginate-immobilized sporangiospores secreted higher glucoamylase titres (22.7 U ml−1) than those immobilized in other gel matrices and the freely growing mycelial pellets (18.5 U ml−1). Loofah network provided a good support for mycelial growth, but the enzyme production was lower than that attained with alginate beads. Glucoamylase production increased with inoculum density and the optimum levels were achieved when 40 calcium alginate beads (∼5 × 106 immobilized spores) were used to inoculate 50 ml production medium. The alginate bead inoculum displayed high storage stability at 4°C and produced comparable enzyme titres up to 120 days. The glucoamylase production by hyphae emerged from the immobilized sporangiospores was almost stable over eight batches of repeated fermentation. Scanning electron micrographs of alginate beads, after batch fermentation, revealed extensive mycelial growth inside and around the beads.  相似文献   

3.
In this study, four real-time polymerase chain reaction (PCR) primer sets were developed for the 16S rRNA genes of specific ammonia-oxidizing bacteria (AOB) found in activated sludge of sewage treatment systems. The primer sets target two of several sequence types of the Nitrosomonas oligotropha cluster, members within the Nitrosomonas communis cluster, and all members of the Nitrosomonas europaeaNitrosococcus mobilis cluster. The detection limit of each primer set was in the range of 3×101–6×102 genes reaction−1. Reliable quantification of the target AOB DNA was obtained when the target AOB DNA comprised more than 0.1% of total AOB DNA in the sample. The application of the primer sets to samples taken from five sewage treatment systems showed that, in all systems, the majority of the AOB population was comprised of one sequence type of the N. oligotropha cluster (3.9±1.5×109–1.7±0.5×1010 cell l−1) and, in most systems, followed by members within the N. communis cluster (2.8±0.3×109–1.0±0.1×1010 cell l−1) or/and another sequence type of the N. oligotropha cluster (1.5±0.6×108–5.5±0.5×108 cell l−1). N. europaeaN. mobilis cluster arose solely in small numbers (4.9±0.8×108 cell l−1) in one system. Real-time PCR-amplified products obtained from genomic DNA extracted from samples were verified using clone library, and it revealed that only the target AOB DNA were PCR amplified, without amplification of the nontarget sequences.  相似文献   

4.
The mechanical properties of brush border membrane vesicles, BBMV, from rabbit kidney proximal tubule cells, were studied by measuring the initial and final equilibrium volumes of vesicles subjected to different osmotic shocks, using cellobiose as the impermeant solute in the preparation buffer. An elevated intracellular hydrostatic pressure was inferred from osmotic balance requirements in dilute solutions. For vesicles prepared in 18 and 85 mosm solutions, these pressures are close to 17 mosm (290 mm Hg). The corresponding membrane surface tension is 6.0 × 10−5 N cm−1 while the membrane surface area is expanded by at least 2.2%. When these vesicles are exposed to very dilute solutions the internal hydrostatic pressure rises to an estimated 84 mosm (1444 mm Hg) just prior to lysis. The corresponding maximal surface tension (pre-lysis) is 18.7 × 10−5 N cm−1, and the maximal expansion of membrane area is 6.8%. The calculated area compressibility elastic modulus was 2.8 × 10−3 N cm−1. Received: 8 August 1996/Revised: 4 March 1997  相似文献   

5.
Kim HT  Ko HJ  Kim N  Kim D  Lee D  Choi IG  Woo HC  Kim MD  Kim KH 《Biotechnology letters》2012,34(6):1087-1092
A gene, alg7D, from Saccharophagus degradans, coding for a putative alginate lyase belonging to the family of polysaccharide lyase-7, was overexpressed in Escherichia coli. The properties of the recombinant Alg7D were characterized. The enzyme endolytically depolymerized alginate by β-elimination into oligo-alginates with degrees of polymerization of 2–5. Its activity was maximal at 50°C and pH 7 and was slightly increased in the presence of Na+. The K M , V max , k cat , and k cat /K M values were: 3 mg ml−1, 6.2 U mg−1, 1.9 × 10−2 s−1, and 6.3 × 10−3 mg−1 ml s−1, respectively.  相似文献   

6.
We determined the structure of two compounds, namely, 5,8,11,14,17-eicosapentaenoic acid (EPA) and di-n-octylphthalate (DnOP), which have algicidal activity against the toxic dinoflagellate, Cochlodinium polykrikoides. The polyunsaturated fatty acid EPA and the anthropogenic DnOP were isolated from the MeOH extract of the red alga Corallina pilulifera. We also found that a commercial EPA has algicidal activity identical to that of the EPA purified from C. pilulifera. At low inoculum (5.0 × 102 cells mL−1), the highest algicidal activity of a commercial EPA exhibited approximately 92.6% algicidal activity after 1 h and 96.8% after 6 h treatment at 6 μg mL−1, respectively. At high inoculum (1.0 × 104 cells mL−1), the strongest algicidal activity of EPA showed 69.5% after 1 h and 75.5% algicidal activity after 6 h treatment at 6 μg mL−1, respectively. However, EPA did not show algicidal activity against several microalgae used in aquaculture such as Pavlova lutheri, Tetraselmis suecica, Isochrysis galbana, and Nannochloris oculata for 6 h treatment at 6 μg mL−1. The algicidal activity of the five red tide strains to EPA (3 μg mL−1) showed about 86.6%, 86.6%, and 67.3% algicidal activity against Skeletonema costatum, Chaetoceros curvisetus, and C. polykrikoides after 1 h treatment at low inoculum (5.0 × 102 cells mL−1), respectively, but not against Prorocentrum minimum and Scrippsiella trochoidea. We concluded that EPA might be useful as a controlling agent of harmful algal blooms.  相似文献   

7.
Reject water treatment performance was investigated by whole cell anammox sludge entrapped polyvinyl alcohol/sodium alginate gel in the stirred tank reactor (STR). The whole experiment was conducted through Phase 1 and Phase 2 in which synthetic wastewater and modified reject water were used as feeding medium, respectively. The anammox reactor demonstrated quick start-up after 22 days as well as stable and relatively high nitrogen removal rate of more than 8.0 kg-N m−3 day−1 during the two both phases even under moderately low temperature of 25 ± 0.5°C during the last 2 months of Phase 2. The matured brownish red PVA beads had good characteristics with buoyant density of 1.10 g cm−3, settling velocity of 141 m h−1 and diameter of 4 mm. The bacterial community was identified by 16S rDNA analysis revealing the concurrent existence of KSU-1 and new kind anammox bacterium Kumadai-I after changing influent from synthetic wastewater to reject water. It was speculated that Kumadai-I might play a role as “promotion” factor together with KSU-1 on high nitrogen removal rate. These results demonstrate the potential application of whole cell anammox entrapment by PVA/alginate gel for achieving stable and high-rate nitrogen removal from high ammonium with low C/N ratio contained wastewaters, such as reject water, digester liquor or landfill leachate.  相似文献   

8.
Four species of brown seaweeds, namely Sargassum baccularia, Sargassum binderi, Sargassum siliquosum and Turbinaria conoides, harvested from Port Dickson, Negeri Sembilan, Malaysia were analysed for ash content, alginate yield and alginate properties. Seaweeds calcined at 450°C were found to have low amount of non-combustible residue as these were not contaminated by calcareous animals. Alginate was extracted from these seaweeds by two methods: hot and cold. In the hot method, the storing time was 3 h and the processing temperature was 50°C, whilst in the cold method, the sample was stored overnight at room temperature. Higher yield of alginate was obtained by the hot method compared to the cold method, but alginate extracted by the cold method gave higher molecular weight. In the hot method, 49.9% of alginate was extracted from S. siliquosum, followed by T. conoides (41.4%), S. binderi (38.9%) and S. baccularia (26.7%). Alginate extracted from T. conoides has an average molecular weight, M w, of 8.06 × 105 g mol−1, whereas alginate from S. siliquosum was the lowest in M w (4.81 × 105 g mol−1) when the extraction was done at room temperature. Alginate extracted from S. baccularia was found to be very heat-sensitive. Its M w has dropped more than 83%, from 7.52 × 105 to 1.23 × 105 g mol−1, when the extraction temperature was raised. The effect of heat on the extent of depolymerisation of the alginate molecule of the other three brown seaweed species was less significant, with decrease in molecular weight ranging between 13% and 16%.  相似文献   

9.
The use of clove oil as a potential anaesthetic for freshwater amphipods was examined at 20 °C. Individuals of Gammarus minus, a common species in southern Illinois, USA, spanning the entire body size range (4.3–14.3 mm), were used to test four anaesthetic concentrations varying from 1.48 × 10−4 ml ml−1 to 5.9 × 10−4 ml ml−1. Small-bodied individuals (mean size = 5.4 mm ± 0.27SE) were used to test additional concentrations, up to 14.7 × 10−4 ml ml−1, a 10-fold span, to identify potential lethal concentrations. At the lowest concentration, time to anaesthesia and recovery was constant at all body sizes. For the three next higher concentrations, time to anaesthesia decreased with increasing concentration while recovery time increased. Activity of amphipods was not affected by the ethanol carrier. In addition, activity did not differ between amphipods that had recovered from anaesthesia and unexposed amphipods. At clove oil concentrations of 8.84 × 10−4 ml ml−1 and 14.7 × 10−4 ml ml−1, mortality was 7 and 40%, respectively, indicating, that 5.9 × 10−4 ml ml−1 was a safe working concentration. No mortality was observed with Gammarus acherondytes, a federally endangered cave amphipod on which the protocol with 80 μl of stock was used in the field. The method enabled us to obtain information on the endangered amphipod which normally would have required the sacrifice of individuals. Thus, research can continue on species for which population numbers are low and for which basic information is needed to formulate meaningful recovery plans.  相似文献   

10.
Summary The present study was undertaken to assess and compare the toxic effects of papaverine hydrochloride and its metabolites. Primary cell cultures of rat hepatocytes were treated with papavarine (papaver), 3′-O-desmethyl (3′-OH), 4′-O-desmethyl (4′-OH), and 6-O-desmethyl (6-OH) papaverine at 1×10−5, 1×10−4, and 1×10−3 M for 4,8, 12, and 24-h periods. Cell injury was determined by: a) cell viability using the trypan blue exclusion test; b) cytosolic enzyme leakage of lactate dehydrogenase and aspartate aminotransferase; c) morphologic alterations; and d) lactate: pyruvate (L:P) ratios. Cell cultures showed concentration-and time-dependent responses. For example, a decrease in cell viability and an increase in enzyme leakage were observed after cell treatment with 1×10−4 and 1×10−3 M papaver for 8 h; 1×10−3 M 6-OH papaverine for 8 h and 1×10−4 M for 24 h; and 1×10−3 M 4′-OH papaverine for 24 h (P<0.05). Furthermore, changes in morphology correlated to cell viability and enzyme release in those cultures treated with papaver, 4′-OH and 6-OH papaverine. Some of these changes included size deformation, cell detachment from the dishes, and cell necrosis. On the other hand, an increase in L:P ratios (P<0.05) was detected with papaver as early as 8 h with 1×10−4 and 1×10−3 M and 12 h with 1×10−5 M; 6-OH showed an increase, in L:P ratios at 8 h with 1×10−3 M and 12 h with 1×10−4 M; these changes were evident with 4′-OH at 12 h with 1×10−3 M. In contrast, cells treated with 3′-OH papaverine did not show significant damage with any time period and concentration used in this study. The results of this study indicate that papaverine-derived metabolites are less cytotoxic than its parent compound, papaver. The toxicity was ranked as follows: papaver>6-OH>4′-OH>−3′-OH. This work was supported in part by grant ES04200-02 from the National Institute of Environmental Health Sciences, Bethesda, MD. Presented in part at the fall ASPET meeting in Salt Lake City, August, 1989. Daniel Acosta is a Burroughs Wellcome Scholar in Toxicology.  相似文献   

11.
The mysterious death of Mr. Alexander Litvinenko who was most possibly poisoned by Polonium-210 (210Po) in November 2006 in London attracted the attention of the public to the kinetics, dosimetry and the risk of this high radiotoxic isotope in the human body. In the present paper, the urinary excretion of seven persons who were possibly exposed to traces of 210Po was monitored. The values measured in the GSF Radioanalytical Laboratory are in the range of natural background concentration. To assess the effective dose received by those persons, the time-dependence of the organ equivalent dose and the effective dose after acute ingestion and inhalation of 210Po were calculated using the biokinetic model for polonium (Po) recommended by the International Commission on Radiological Protection (ICRP) and the one recently published by Leggett and Eckerman (L&E). The daily urinary excretion to effective dose conversion factors for ingestion and inhalation were evaluated based on the ICRP and L&E models for members of the public. The ingestion (inhalation) effective dose per unit intake integrated over one day is 1.7 × 10−8 (1.4 × 10−7) Sv Bq−1, 2.0 × 10−7 (9.6 × 10−7) Sv Bq−1 over 10 days, 5.2 × 10−7 (2.0 × 10−6) Sv Bq−1 over 30 days and 1.0 × 10−6 (3.0 × 10−6) Sv Bq−1 over 100 days. The daily urinary excretions after acute ingestion (inhalation) of 1 Bq of 210Po are 1.1 × 10−3 (1.0 × 10−4) on day 1, 2.0 × 10−3 (1.9 × 10−4) on day 10, 1.3 × 10−3 (1.7 × 10−4) on day 30 and 3.6 × 10−4 (8.3 × 10−5) Bq d−1 on day 100, respectively. The resulting committed effective doses range from 2.1 × 10−3 to 1.7 × 10−2 mSv by an assumption of ingestion and from 5.5 × 10−2 to 4.5 × 10−1 mSv by inhalation. For the case of Mr. Litvinenko, the mean organ absorbed dose as a function of time was calculated using both the above stated models. The red bone marrow, the kidneys and the liver were considered as the critical organs. Assuming a value of lethal absorbed dose of 5 Gy to the bone marrow, 6 Gy to the kidneys and 8 Gy to the liver, the amount of 210Po which Mr. Litvinenko might have ingested is therefore estimated to range from 27 to 1,408 MBq, i.e 0.2–8.5 μg, depending on the modality of intake and on different assumptions about blood absorption.  相似文献   

12.
The aim of this work was to obtain experimental data depending on the properties of calcium stores and SERCAs, to analyse these data in terms of the models based on simulation of the cellular compartments as communicating vessels, and to relate this way the data to the above properties. The main characteristics of the stores and corresponding SERCAs have been estimated. Calcium content in the DTS is ∼1.5 × 106 ions per cell, that in the acidic stores, ∼0.64 × 106 ions per cell. The rate constant of background calcium leakage from the DTS is ∼0.0033 s−1, that from the acidic stores, ∼0.1 s−1. The background activity of SERCA2b is ∼0.22 × 106 s−1 ions per cell, that of SERCA3, ∼2.5 × 106 s−1 ions per cell. The properties of both calcium stores and the SERCAs and the characteristics found might be related to physiological or pathological state of the cells.  相似文献   

13.
An efficient method for asymmetric reduction of (S)-3-chloro-1-phenylpropanol from 3-chloropropiophenone was developed using preheated Candida utilis cells immobilized in calcium alginate gel beads. Heating the immobilized cells (bead diameter 1.5 mm) at 45°C for 50 min allowed the reaction to proceed with 99.5% enantiomeric excess (ee) and an 85% yield with 1 g substrate l−1 (batch addition in three aliquots) in 48 h. The immobilized cells retained approximately 50% of their original catalytic activity after being reused three times.  相似文献   

14.
The effects of benzyladenine (BAP), kinetin (KIN), zeatin (ZEA), isopentenyladenine (2iP), and thidiazuron (TDZ) were studied on in vitro growth of rudimentary embryos of Ilex paraguariensis St. Hil. Heart stage zygotic embryos were removed from seeds of immature, light green fruits and cultured aseptically on quarter-strength Murashige and Skoog medium containing 3% sucrose, 0.65% agar, and supplemented with or without three concentrations of BAP, KIN, ZEA, 2iP, or TDZ. Cultures were incubated in darkness at 27 ± 2°C. Media containing 4.4 × 10−6 m BAP, 4.6 × 10−6 m KIN, or 4.9 × 10−6 m 2iP were totally ineffective in inducing embryo growth after culture for 28 days. However, lower concentrations of these compounds (4.4 × 10−8 m BAP, 4.6 × 10−8 m KIN, 4.5 × 10−8 m ZEA, or 4.9 × 10−8 m 2iP) promoted embryo growth. TDZ at 9.9 × 10−9 m, 9.9 × 10−8 m, or 9.9 × 10−7 m induced embryo growth at similar rates. The maximum percentage of embryos converted to seedlings was achieved when the medium was supplemented with 4.5 × 10−7 m ZEA. Received August 1, 1997; accepted February 19, 1998  相似文献   

15.
Undifferentiated THP-1 cells from Cell Culture Collection of the Institute of Cytology, RAS (St. Petersburg), are characterized by weak expression of Toll-like receptor-4 (TLR4) on the cell surface (up to 2%) and by almost undetectable expression of CD14 and CD11b receptors. Differentiation agent phorbol-12-myristate-13-acetate independently of its concentration (2 × 10−7 M or 10−8 M) and incubation time (24 or 48 h) did not initiate CD11b surface expression and did not change the parameter Sapp (0.605 ± 0.005 at 37°C) reflecting the cell membrane viscosity. Differentiation of THP-1 cells induced by another differentiation agent, 1α,25-dihydroxyvitamin D3, caused expression of CD14 (up to 70–80%) and CD11b (up to 15–20%) receptors, again without changes in plasma membrane viscosity. The rate constants of the reduction of 5- and 16-doxyl-stearic acids by THP-1 cells were in the range of 6–8 × 10−3 s−1 at 37°C. During cell differentiation significant changes in cell electrophoretic mobility (EM, μm s−1 V−1 cm) were observed. Mean value of EM for undifferentiated THP-1 cells was −1.332 ± 0.011, whereas for phorbol-12-myristate-13-acetate- and 1α,25-dihydroxyvitamin D3-treated cells it was −1.432 ± 0.030 and −1.212 ± 0.016, respectively.  相似文献   

16.
In the present study, the optimum conditions for the production of xylanase by immobilized spores of Trichoderma reesei SAF3 in calcium alginate beads were determined. The operational stability of the beads during xylanase production under semi-continuous fermentation was also studied. The influence of alginate concentration (1, 2, 3, and 4%) and initial cell loading (100, 200, 300, 400, and 500 beads per flask) on xylanase production was considered. The production of xylanase was found to increase significantly with increasing concentration of alginate and reached a maximum yield of 3.12 ± 0.18 U ml−1 at 2% (w/v). The immobilized cells produced xylanase consistently up to 10 cycles and reached a maximum level at the forth cycle (3.36 ± 0.2 U ml−1).  相似文献   

17.
Abundance and biomass of pico- (<2 μm) and nanoplankton (2–20 μm) were investigated in relation to hydrography in Kongsfjorden, Svalbard (79°N, 12°E) during late summer 2006. Autotrophic and heterotrophic picoplankton abundance ranged from 0.1 × 106 to 35.2 × 106 cells L−1 and from 0.4 × 106 to 20.3 × 106 cells L−1, respectively. The highest number of bacteria in the entire water column was recorded at station 2 at 10 m (22.3 × 108 cells L−1); the lowest concentration was observed at station 1 (6.0 × 108 cells L−1). The abundance of autotrophic and heterotrophic nanoplankton varied from 0.4 × 105 cells L−1 to 46 × 105 cells L−1 and from 0.3 × 106 to 9.1 × 106 cells L−1, respectively. Our results demonstrated that heterotrophic nanoflagellates and bacteria in Kongsfjorden microbial community were relatively important. The structure of plankton communities integrated with environmental variables could act as indicators of the variability of the inflow of Atlantic Water into Kongsfjorden.  相似文献   

18.
The Raman spectra, water content, and biomass density of wild-type (WT) Pseudomonas aeruginosa PAO1, small colony variant (SCV) PAO1, and Pseudoalteromonas sp. NCIMB 2021 biofilms were compared in order to determine their variation with strain and species. Living, fully submerged biofilms were analyzed in situ by confocal Raman microspectroscopy for up to 2 weeks. Water to biomass ratios (W/BRs), which are the ratios of the O–H stretching vibration of water at 3,450 cm−1 to the C–H stretching band characteristic of biomass at 2,950 cm−1, were used to estimate the biomass density and cell density by comparison with W/BRs of protein solutions and bacterial suspensions, respectively, on calibration curves. The hydration within SCV biofilm colonies was extremely heterogeneous whereas W/BRs were generally constant in young WT biofilm colonies. The mean biomass in biofilm colonies of WT or colony cores of SCV was typically equivalent to 16% to 27% protein (w/v), but was 10% or less for NCIMB 2021. The corresponding cell densities were 7.5 to >10 × 1010 cfu mL−1 for SCV, while the maximum cell density for NCIMB biofilms was 2.8 × 1010 cfu mL−1.  相似文献   

19.
A Pseudomonas sp. strain NGK 1 (NCIM 5120) was immobilized in various matrices, namely, alginate, agar (1.8 × 1011 cfu g−1 beads) and polyacrylamide (1.6 × 1011 cfu g−1 beads). The degradation of naphthalene was studied, by freely suspended cells (4 × 1010 cfu ml−1) and immobilized cells in batches, with shaken culture and continuous degradation in a packed-bed reactor. Free cells brought about the complete degradation of 25 mmol naphthalene after 3 days of incubation, whereas, a maximum of 30 mmol naphthalene was degraded by the bacteria after 3–4 days of incubation with 50 mmol and 75 mmol naphthalene, and no further degradation was observed even after 15 days of incubation. Alginate-entrapped cells had degraded 25 mmol naphthalene after 3.5 days of incubation, whereas agar- and polyacrylamide-entrapped cells took 2.5 days; 50 mmol naphthalene was completely degraded by the immobilized cells after 6–7 days of incubation. Maximum amounts of 55 mmol, 70 mmol and 67 mmol naphthalene were degraded, from an initial 75 mmol naphthalene, by the alginate-, agar- and polyacrylamide-entrapped cells after 15 days of incubation. When the cell concentrations were doubled, 25 mmol and 50 mmol naphthalene were degraded after 2 and 5.5 days of incubation by the immobilized cells. Complete degradation of 75 mmol naphthalene occurred after 10 days incubation with agar- and polyacrylamide-entrapped␣cells, whereas only 60 mmol naphthalene was degraded by alginate-entrapped cells after 15 days of␣incubation. Further, with 25 mmol naphthalene, alginate-, agar- and polyacrylamide-entrapped cells (1.8 × 1011 cfu g−1 beads) could be reused 18, 12 and 23 times respectively. During continuous degradation in a packed-bed reactor, 80 mmol naphthalene 100 ml−1 h−1 was degraded by alginate- and polyacrylamide-entrapped cells whereas 80 mmol naphthalene 125 ml−1␣h−1 was degraded by agar-entrapped cells. Received: 21 October 1997 / Received revision: 15 January 1998 / Accepted: 18 January 1998  相似文献   

20.
In order to understand the control mechanisms of a large, stable bacterial standing stock, enclosure experiments were conducted in a eutrophic lake, where both bacterial productivity and grazing pressure were very high. Total bacterial number in the different enclosures ranged from 1.2 to 2.7×107 cells mL−1 throughout the experiment. The average bacterial cell production rate estimated from a grazer eliminating experiment was 6.3×105 cells mL−1 h−1. Difference in the bacterial cell production rate between shaded and unshaded enclosures was not apparent. Bacteria showed a reduction in standing stock of only about 25–30% even after the supply of light was cut to 1%. Bacteria in the shaded enclosures then recovered their production rate in the first 12 days of perturbation. Grazing pressure in the shaded enclosures was not less than that for the control. Thus, it was considered a control mechanism of bacterial stable standing stock that the bacteria shifted their organic substrate from extracellular dissolved organic carbon freshly released from phytoplankton to that already stocked in the water column, though it is not known whether the dominant bacteria were the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号