首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
PURPOSE OF REVIEW: There continues to be considerable interest in the modulating effect of dietary lipids on immune and inflammatory responses. Although controversy still exists in research in this area, new concepts and approaches have emerged providing useful suggestions. Analysis of the recent findings will help in understanding certain paradoxical findings as well as introducing new strategies to guide future studies. RECENT FINDINGS: The tissue polyunsaturated fatty acid composition was found to be correlated with changes in certain indices of immune function in individuals consuming habitual diets. It seems that individuals or animals with disordered immune systems are more reactive to polyunsaturated fatty acid supplementation, and genetic variation is also a determinant. N-3 polyunsaturated fatty acids were shown to reduce both resistance to bacterial infection and host survival. The studies on other non-classic fatty acids also demonstrated interesting findings. A proposed immuno-enhancing effect of conjugated linoleic acid has not been confirmed by studies and even an adverse effect has been implied. Trans fatty acids have been shown to increase the production of inflammatory cytokines, which may contribute to their pro-atherogenic property. SUMMARY: Current data suggest that the intake of polyunsaturated fatty acids, particularly n-3 polyunsaturated fatty acids, can modulate immune and inflammatory responses, although a discrepancy is still present. Some recent studies have provided useful information explaining possible underlying reasons. Factors such as genetic variation, health status, disease, immune response stage, stimulation type, and possibly age, all contribute to the responsiveness to polyunsaturated fatty acid supplementation in terms of immune function.  相似文献   

2.
For many years, clinical and animal studies on polyunsaturated n-3 fatty acids (PUFAs), especially those from marine oil, eicosapentaenoic acid (20:5,n-3) and docosahexaenoic acid (22:6,n-3), have reported the impact of their beneficial effects on both health and diseases. Among other things, they regulate lipid levels, cardiovascular and immune functions as well as insulin action. Polyunsaturated fatty acids are vital components of the phospholipids of membrane cells and serve as important mediators of the nuclear events governing the specific gene expression involved in lipid and glucose metabolism and adipogenesis. Besides, dietary n-3 PUFAs seem to play an important protecting role against the adverse symptoms of the Plurimetabolic syndrome. This review highlights some recent advances in the understanding of metabolic and molecular mechanisms concerning the effect of dietary PUFAs (fish oil) and focuses on the prevention and/or improvement of dyslipidemia, insulin resistance, impaired glucose homeostasis, diabetes and obesity in experimental animal models, with some extension to humans.  相似文献   

3.
Effects of fatty acids on the growth of Caco-2 cells   总被引:14,自引:0,他引:14  
Epidemiological studies suggest that polyunsaturated fatty acids may protect against colorectal neoplasia. In order to explore this observation, cell proliferation and viability, lipid composition, membrane fluidity, and lipid peroxidation were measured in Caco-2 cells after 48h incubation with various fatty acids. Saturated and monounsaturated fatty acids incorporated less well in the membranes than polyunsaturated fatty acids (PUFAs). All of the PUFAs tested had an inhibitory effect on cell proliferation/viability whereas the saturated and monounsaturated fatty acids did not. Addition of palmitic acid had no significant effect on membrane fluidity whereas unsaturated fatty acids increased membrane fluidity in a dose-dependent manner. PUFAs strongly increased tumor cell lipid peroxidation in a dose-dependent manner. Saturated and monounsaturated fatty acids increased lipid peroxidation in this cell line only at high concentration. Preincubation of Caco-2 cells with vitamin E prevented the inhibition of proliferation/viability, the elevation of the MDA concentration and the increased membrane fluidity induced by PUFAs. Our data indicate that PUFAs are potent inhibitors of the growth of colon cancer cells in vitro.  相似文献   

4.
5.
Polyunsaturated fatty acids (PUFAs) are essential structural components of all cell membranes and, more so, of the central nervous system. Several studies revealed that n-3 PUFAs possess anti-inflammatory actions and are useful in the treatment of dyslipidemia. These actions explain the beneficial actions of n-3 PUFAs in the management of cardiovascular diseases, inflammatory conditions, neuronal dysfunction, and cancer. But, the exact molecular targets of these beneficial actions of n-3 PUFAs are not known. Mice engineered to carry a fat-1 gene from Caenorhabditis elegans add a double bond into an unsaturated fatty acid hydrocarbon chain and convert n-6 to n-3 fatty acids. This results in an abundance of n-3 eicosapentaenoic acid and docosapentaenoic acid specifically in the brain and a reduction in n-6 fatty acids of these mice that can be used to evaluate the actions of n-3 PUFAs. Gene expression profile, RT-PCR and protein microarray studies in the hippocampus and whole brain of wild-type and fat-1 transgenic mice revealed that genes and proteins concerned with inflammation, apoptosis, neurotransmission, and neuronal growth and synapse formation are specifically modulated in fat-1 mice. These results may explain as to why n-3 PUFAs are of benefit in the prevention and treatment of diseases such as Alzheimer's disease, schizophrenia and other diseases associated with neuronal dysfunction, low-grade systemic inflammatory conditions, and bronchial asthma. Based on these data, it is evident that n-3 PUFAs act to modulate specific genes and formation of their protein products and thus, bring about their various beneficial actions.  相似文献   

6.
The intake of n-3 polyunsaturated fatty acids (PUFAs) in many industrialized countries is relatively low and its increased consumption has protective and modifying effects on such diverse conditions as atherosclerosis, ventricular arrhythmias, multiple sclerosis, major depression and inflammatory and autoimmune diseases. In addition, n-3 PUFAs have been shown to alleviate pain in patients with rheumatoid arthritis, inflammatory bowel disease and in a number of other painful conditions. This has been attributed to the inhibition of pro-inflammatory eicosanoid and cytokine production by peripheral tissues. n-3 PUFAs have also been shown to inhibit eicosanoid production in glial cells, block voltage-gated sodium channels (VGSCs), inhibit neuronal protein kinases and modulate gene expression. They also appear to have mood-stabilizing and sympatholytic effects. The present article explores the possibility that, based on what is known about their neural and non-neural effects, n-3 PUFAs directly attenuate the neuronal and glial processes that underlie neuropathic and inflammatory pain.  相似文献   

7.
Musculoskeletal complaints are the second most frequent reason for medical treatments. Within these diseases rheumatoid arthritis (RA) and, especially, osteoarthritis (OA) are common. Although the causes of arthritis are multifactorial and not fully understood, clinical trials have generally shown benefit from dietary n-3 polyunsaturated fatty acids. This has usually been attributed to their anti-inflammatory properties. Recently we have used in vitro model systems to study the molecular mechanism(s) by which n-3 PUFAs may act to alleviate the symptoms of arthritis. These experiments showed that n-3 PUFAs reduce expression of cartilage-degrading proteinases, cyclooxygenase-2 and inflammatory cytokines. Eicosapentaenoic acid (EPA) was more effective than docosahexaenoic acid (DHA) or alpha-linolenic acid. The data provide a scientific rationale for the consumption of n-3 fatty acids as part of a healthy diet and perhaps in treating arthritis.  相似文献   

8.
Polyunsaturated fatty acids (PUFAs) modulate immune responses leading to clinically significant beneficial effects in a variety of inflammatory disorders. PUFA effects on T cells have been extensively studied, but their influence on human dendritic cells (DCs), which are the most potent antigen-presenting cells and play a key role in initiating immune responses, has not been elucidated so far. Here we show that PUFAs of the n-3 and n-6 series (arachidonic and eicosapentaenoic acid) affect human monocyte-derived DC differentiation and inhibit their activation by LPS, resulting in altered DC surface molecule expression and diminished cytokine secretion. Furthermore, the potency to stimulate T cells was markedly inhibited in PUFA-treated DCs. The PUFA-mediated block in LPS-induced DC activation is reflected by diminished TNF-alpha, IL-12p40, CD40, and COX-2 mRNA levels. Strikingly, typical LPS-induced signaling events such as degradation of IkappaB and activation of NF-kappaB were not affected by PUFAs, even though DC membrane lipid composition was markedly altered. Arachidonic and eicosapentaenoic acid both altered DC prostaglandin production, but inhibitors of cyclooxygenases and lipoxygenases did not abolish PUFA effects, indicating that the observed PUFA actions on DCs were independent of autoregulation via eicosanoids. These data demonstrate a unique interference with DC activation and function that could significantly contribute to the well known anti-inflammatory effects of PUFAs.  相似文献   

9.
Atherosclerotic cardiovascular disease is one of the major leading global causes of death. Growing evidence has demonstrated that gut microbiota (GM) and its metabolites play a pivotal role in the onset and progression of atherosclerosis (AS), now known as GM-artery axis. There are interactions between dietary lipids and GM, which ultimately affect GM and its metabolites. Given these two aspects, the GM-artery axis may play a mediating role between dietary lipids and AS. Diets rich in saturated fatty acids (SFAs), omega-6 polyunsaturated fatty acids (n-6 PUFAs), industrial trans fatty acids (TFAs), and cholesterol can increase the levels of atherogenic microbes and metabolites, whereas monounsaturated fatty acids (MUFAs), ruminant TFAs, and phytosterols (PS) can increase the levels of antiatherogenic microbes and metabolites. Actually, dietary phosphatidylcholine (PC), sphingomyelin (SM), and omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been demonstrated to affect AS via the GM-artery axis. Therefore, that GM-artery axis acts as a communication bridge between dietary lipids and AS. Herein, we will describe the molecular mechanism of GM-artery axis in AS and discuss the complex interactions between dietary lipids and GM. In particular, we will highlight the evidence and potential mechanisms of dietary lipids affecting AS via GM-artery axis.  相似文献   

10.
Yoshida S  Yoshida H 《Biopolymers》2004,74(5):403-412
The aim of this study was to develop a noninvasive method to observe polyunsaturated fatty acids (PUFAs) behavior in the human body using Fourier transform infrared spectroscopy. For the noninvasive measurement of human oral mucosa, we have used infrared spectroscopy with a suitable attachment for an in vivo attenuated total reflectance system. The fatty acid contents in the tissues were determined by gas-chromatography mass-spectrometry after methylation. The alkene C-H stretching vibrations of unsaturated fatty acids in dietary oils showed infrared absorption bands with various peak positions and intensities at around 3010 cm(-1) depending on the extent of unsaturation and their species. The diurnal fluctuation of the alkene peak position of oral mucosa suggested that the contents of PUFAs were increased gradually in the early afternoon, and these data were supported by the direct determination of fatty acid species in oral mucosa where the relative increase of arachidonic and docosahexaenoic acids was observed in the early afternoon. This diurnal change of alkene peak position resembled the pattern of a "lipid factor" change calculated with the factor analysis applied to the overall infrared spectrum. We could monitor the diurnal fluctuations of PUFA contents of human oral mucosa noninvasively using a reagent-free infrared analysis system. The measurement of alkene and methylene infrared bands may provide a useful tool for detecting changes in PUFA balance in the human body.  相似文献   

11.
Watts JL  Phillips E  Griffing KR  Browse J 《Genetics》2003,163(2):581-589
Arachidonic acid and other long-chain polyunsaturated fatty acids (PUFAs) are important structural components of membranes and are implicated in diverse signaling pathways. The Delta6 desaturation of linoleic and linolenic acids is the rate-limiting step in the synthesis of these molecules. C. elegans fat-3 mutants lack Delta6 desaturase activity and fail to produce C20 PUFAs. We examined these mutants and found that development and behavior were affected as a consequence of C20 PUFA deficiency. While fat-3 mutants are viable, they grow slowly, display considerably less spontaneous movement, have an altered body shape, and produce fewer progeny than do wild type. In addition, the timing of an ultradian rhythm, the defecation cycle, is lengthened compared to wild type. Since all these defects can be ameliorated by supplementing the nematode diet with gamma-linolenic acid or C20 PUFAs of either the n6 or the n3 series, we can establish a causal link between fatty acid deficiency and phenotype. Similar epidermal tissue defects and slow growth are hallmarks of human fatty acid deficiency.  相似文献   

12.
Omega-3 polyunsaturated fatty acids (n‐3-PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may improve or prevent some psychiatric and neurodegenerative diseases in both experimental and clinical studies. As important membrane components, these PUFAs benefit brain health by modulating neuroimmune and apoptotic pathways, changing membrane function and/or competing with n‐6 PUFAs, the precursors of inflammatory mediators. However, the exact role of each fatty acid in neuroimmune modulation and neurogenesis, the interaction between EPA and DHA, and the best EPA:DHA ratios for improving brain disorders, remain unclear. It is also unknown whether EPA, as a DHA precursor, acts directly or via DHA. Here, we discuss recent evidence of EPA and DHA effects in the treatment of major depression and Alzheimer's disease, as well as their potential synergistic action on anti-inflammatory, antioxidant and neurotrophic processes in the brain. We further analyze the cellular and molecular mechanisms by which EPA, DHA or their combination may benefit these diseases. We also outline the limitations of current studies and suggest new genetic models and novel approaches to overcome these limitations. Finally, we summarize future strategies for translational research in this field.  相似文献   

13.
Recently, many genes involved in the formation of unsaturated and polyunsaturated fatty acids (PUFAs) were isolated. In most cases, their activities were confirmed by expressing them in the well-studied model organism Saccharomyces cerevisiae because its fatty acid compositions are very simple and it does not contain PUFAs. Taking advantage of its genetic tractability and increasing wealth of accessible data, many groups are attempting to produce various useful fatty acids in the model yeasts, mainly in S. cerevisiae. This review describes typical such examples including a very recent study on the expression of a fatty acid hydroxylase gene in fission yeast Schizosaccharomyces pombe. Furthermore, the impact of the genetically engineered alteration of fatty acid composition on the stress tolerance is presented because unsaturated fatty acids have crucial roles in membrane fluidity and signaling processes. Lastly, recent attempts at increasing lipid content in S. cerevisiae are discussed.  相似文献   

14.
The importance of a high fat intake in the increasing prevalence of childhood and adult obesity remains controversial. Moreover, qualitative changes (i.e. the fatty acid composition of fats) have been largely disregarded. Herein is reviewed the role of polyunsaturated fatty acids (PUFAs) of the n-6 series in promoting adipogenesis in vitro and favouring adipose tissue development in rodents during the gestation/suckling period. Epidemiological data from infant studies as well as the assessment of the fatty acid composition of mature breast milk and infant formulas over the last decades in the Western industrialized world are revisited and appear consistent with animal data. Changes over decades in the intake of n-6 and n-3 PUFAs, with a striking increase in the linoleic acid/alpha-linolenic ratio, are observed. In adults, using a consumption model based upon production data, similar changes in the PUFA content of ingested lipids have been found for France, and are associated with an increase of fat consumption over the last 40 years. These profound quantitative and qualitative alterations can be traced in the food chain and shown to be due to changes in human dietary habits as well as in the feeding pattern of breeding stock. If prevention of obesity is a key issue for future generations, agricultural and food industry policies should be thoroughly reevaluated.  相似文献   

15.
Polyunsaturated fatty acids (PUFAs) are involved in determining the biophysical properties of membranes as well as being precursors for signalling molecules. C(20+) PUFA biosynthesis is catalysed by sequential desaturation and fatty acyl elongation reactions. This aerobic biosynthetic pathway was thought to be taxonomically conserved, but an alternative anaerobic pathway for the biosynthesis of polyunsaturated fatty acids is now known to exist that is analogous to polyketide synthases (PKS). These novel PKS genes could be used to direct the synthesis of PUFAs in heterologous hosts, as well as exploiting the combinatorial chemistry of PKSs to make unusual fatty acids.  相似文献   

16.
Adipose tissues function as the primary storage compartment of fatty acids and as an endocrine organ that affects peripheral tissues. Many of adipose tissue-derived factors, often termed adipokines, have been discovered in recent years. The synthesis and secretion of these factors vary in different depots of adipose tissues. Excessive lipid accumulation in adipocytes induces inflammatory processes by up-regulating the expression and release of pro-inflammatory cytokines. In addition, activated macrophages in the obese adipose tissue release inflammatory cytokines. Adipose tissue inflammation has also been linked to an enhanced metabolism of polyunsaturated fatty acids (PUFAs). The non-enzymatic peroxidation of PUFAs and of their 12/15-lipoxygenase-derived hydroperoxy metabolites leads to the generation of the reactive aldehyde species 4-hydroxyalkenals. This review shows that 4-hydroxyalkenals, in particular 4-hydroxynonenal, play a key role in lipid storage homeostasis in normal adipocytes. Nonetheless, in the obese adipose tissue an increased production of 4-hydroxyalkenals contributes to the inflamed phenotype.  相似文献   

17.
多不饱和脂肪酸的研究进展   总被引:4,自引:0,他引:4  
多不饱和脂肪酸(PUFAs)为一独特的生物活性物质,在生物系统中具有广泛的功能。过去二十年的研究已经揭示了其作用、参与类二十烷的代谢机理及在哺乳动物中的体内平衡功能。越来越多的研究认为:在类二十烷代谢系统中,采用普通的医疗条件诊治因多不饱和脂肪酸吸收和代谢紊乱所致的疾病效果甚微随着PUFAs开发应用领域的扩大,纯PUFAs脂质的需求量越来越多,而来自于植物、哺乳动物和海洋鱼的PUFAs远远不能满足市场需求,微生物特别是藻类、真菌能合成几乎所有的PUFAs并能在工业规模上培育而被视为有开发价值的可替代的生物资源 。  相似文献   

18.
The versatility of algae and their lipid metabolism   总被引:1,自引:0,他引:1  
Eukaryotic algae are a very diverse group of organisms that are key components of ecosystems ranging from deserts to the Antarctic. They account for over half of the primary production at the base of food chains. The lipids of different classes are varied and contain unusual compounds not found in other phyla. In this short review, we introduce the major cellular lipids and their fatty acids and then describe how the latter (particularly the polyunsaturated fatty acids, PUFAs) are synthesised. The discovery of different elongases and desaturases important for PUFA production is detailed and their application for biotechnology described. Finally, the potential for algae in commercial applications is discussed, particularly in relation to the production of very long chain PUFAs and biofuel.  相似文献   

19.
We have recently identified a neuroprotective role for omega-3 polyunsaturated fatty acids (n-3 PUFAs) in a toxin-induced mouse model of Parkinson's disease (PD). Combined with epidemiological data, these observations suggest that low n-3 PUFA intake is a modifiable environmental risk factor for PD. In order to strengthen these preclinical findings as prerequisite to clinical trials, we further investigated the neuroprotective role of n-3 PUFAs in Fat-1 mice, a transgenic model expressing an n-3 fatty acid desaturase converting n-6 PUFAs into n-3 PUFAs. Here, we report that the expression of the fat-1 transgene increased cortical n-3:n-6 PUFA ratio (+28%), but to a lesser extent than dietary supplementation (92%). Such a limited endogenous production of n-3 PUFAs in the Fat-1 mouse was insufficient to confer neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity as assessed by dopamine levels, tyrosine hydroxylase (TH)-positive neurons and fibers, as well as nigral Nurr1 and dopamine transporter (DAT) mRNA expression. Nevertheless, higher cortical docosahexaenoic acid (DHA) concentrations were positively correlated with markers of nigral dopaminergic neurons such as the number of TH-positive cells, in addition to Nurr1 and DAT mRNA levels. These associations are consistent with the protective role of DHA in a mouse model of PD. Taken together, these data suggest that dietary intake of a preformed DHA supplement is more effective in reaching the brain and achieving neuroprotection in an animal model of PD.  相似文献   

20.
Specific fatty acid alterations have been described in the blood and tissues of cystic fibrosis (CF) patients. The two most consistent alterations include decreased levels of linoleic acid (LA) and decreased levels of docosahexaenoic acid (DHA). Increased arachidonic acid (AA) release from membrane phospholipids, as well as changes in levels of AA and other monounsaturated and polyunsaturated fatty acids (PUFAs) have also been described in CF. Although mechanisms of fatty acid alterations have not yet been determined, these alterations may have an important role in the progression of the CF disease. There have been several clinical trials in which CF patients were supplemented with n-3 fatty acids. Most trials resulted in an increase in the levels of the supplemental fatty acids in the blood of CF patients in the absence of significant clinical improvement. It is recommended that future trials include a larger population of CF patients and measure multiple clinical outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号