首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The anaphase-promoting complex (APC), or cyclosome, is a cell cycle-regulated ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle. The APC is composed of at least 11 subunits; no structure has been determined for any of these subunits. The subunit APC10/DOC1, a one-domain protein consisting of 185 amino acids, has a conserved core (residues 22-161) that is homologous to domains found in several other putative ubiquitin ligases and, therefore, may play a role in ubiquitination reactions. Here we report the crystal structure of human APC10 at 1.6 A resolution. The core of the protein is formed by a beta-sandwich that adopts a jellyroll fold. Unexpectedly, this structure is highly similar to ligand-binding domains of several bacterial and eukaryotic proteins, such as galactose oxidase and coagulation factor Va, raising the possibility that APC10 may function by binding a yet unidentified ligand. We further provide biochemical evidence that the C-terminus of APC10 binds to CDC27/APC3, an APC subunit that contains multiple tetratrico peptide repeats.  相似文献   

2.
Shakes DC  Allen AK  Albert KM  Golden A 《Genetics》2011,189(2):549-560
In the nematode Caenorhabditis elegans, temperature-sensitive mutants of emb-1 arrest as one-cell embryos in metaphase of meiosis I in a manner that is indistinguishable from embryos that have been depleted of known subunits of the anaphase-promoting complex or cyclosome (APC/C). Here we show that the emb-1 phenotype is enhanced in double mutant combinations with known APC/C subunits and suppressed in double mutant combinations with known APC/C suppressors. In addition to its meiotic function, emb-1 is required for mitotic proliferation of the germline. These studies reveal that emb-1 encodes K10D2.4, a homolog of the small, recently discovered APC/C subunit, APC16.  相似文献   

3.
The anaphase-promoting complex/cyclosome (APC) is a ubiquitin-protein ligase whose activity is essential for progression through mitosis. The vertebrate APC is thought to be composed of 8 subunits, whereas in budding yeast several additional APC-associated proteins have been identified, including a 33-kDa protein called Doc1 or Apc10. Here, we show that Doc1/Apc10 is a subunit of the yeast APC throughout the cell cycle. Mutation of Doc1/Apc10 inactivates the APC without destabilizing the complex. An ortholog of Doc1/Apc10, which we call APC10, is associated with the APC in different vertebrates, including humans and frogs. Biochemical fractionation experiments and mass spectrometric analysis of a component of the purified human APC show that APC10 is a genuine APC subunit whose cellular levels or association with the APC are not cell cycle-regulated. We have further identified an APC10 homology region, which we propose to call the DOC domain, in several protein sequences that also contain either cullin or HECT domains. Cullins are present in several ubiquitination complexes including the APC, whereas HECT domains represent the catalytic core of a different type of ubiquitin-protein ligase. DOC domains may therefore be important for reactions catalyzed by several types of ubiquitin-protein ligases.  相似文献   

4.
In yeast and animals, the anaphase-promoting complex or cyclosome (APC/C) is an essential ubiquitin protein ligase that regulates mitotic progression and exit by controlling the stability of cell cycle regulatory proteins, such as securin and the mitotic cyclins. In plants, the function, regulation, and substrates of the APC/C are poorly understood. To gain more insight into the roles of the plant APC/C, we characterized at the molecular level one of its subunits, APC2, which is encoded by a single-copy gene in Arabidopsis. We show that the Arabidopsis gene is able to partially complement a budding yeast apc2 ts mutant. By yeast two-hybrid assays, we demonstrate an interaction of APC2 with two other APC/C subunits: APC11 and APC8/CDC23. A reverse-genetic approach identified Arabidopsis plants carrying T-DNA insertions in the APC2 gene. apc2 null mutants are impaired in female megagametogenesis and accumulate a cyclin-beta-glucuronidase reporter protein but do not display metaphase arrest, as observed in other systems. The APC2 gene is expressed in various plant organs and does not seem to be cell cycle regulated. Finally, we report intriguing differences in APC2 protein subcellular localization compared with that in other systems. Our observations support a conserved function of the APC/C in plants but a different mode of regulation.  相似文献   

5.
Ubiquitin-mediated proteolysis of securin and mitotic cyclins is essential for exit from mitosis. The final step in ubiquitination of these and other proteins is catalysed by the anaphase-promoting complex (APC), a multi-subunit ubiquitin-protein ligase (E3). Little is known about the molecular reaction resulting in APC-dependent substrate ubiquitination or the role of individual APC subunits in the reaction. Using a well-defined in vitro system, we show that highly purified APC from Saccharomyces cerevisiae ubiquitinates a model cyclin substrate in a processive manner. Analysis of mutant APC lacking the Doc1/Apc10 subunit (APC(doc1 Delta)) indicates that Doc1 is required for processivity. The specific molecular defect in APC(doc1 Delta) is identified by a large increase in apparent K(M) for the cyclin substrate relative to the wild-type enzyme. This suggests that Doc1 stimulates processivity by limiting substrate dissociation. Addition of recombinant Doc1 to APC(doc1 Delta) fully restores enzyme function. Doc1-related domains are found in mechanistically distinct ubiquitin-ligase enzymes and may generally stimulate ubiquitination by contributing to substrate-enzyme affinity.  相似文献   

6.
The anaphase‐promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that is involved in regulating cell‐cycle progression. It has been widely studied in yeast and animal cells, but the function and regulation of the APC/C in plant cells are largely unknown. The Arabidopsis APC/C comprises at least 11 subunits, only a few of which have been studied in detail. APC4 is proposed to be a connector in the APC/C in yeast and animals. Here, we report the functional characterization of the Arabidopsis APC4 protein. We examined three heterozygous plant lines carrying apc4 alleles. These plants showed pleiotropic developmental defects in reproductive processes, including abnormal nuclear behavior in the developing embryo sac and aberrant cell division in embryos; these phenotypes differ from those reported for mutants of other subunits. Some ovules and embryos of apc4/+ plants also accumulated cyclin B protein, a known substrate of APC/C, suggesting a compromised function of APC/C. Arabidopsis APC4 was expressed in meristematic cells of seedlings, ovules in pistils and embryos in siliques, and was mainly localized in the nucleus. Additionally, the distribution of auxin was distorted in some embryos of apc4/+ plants. Our results indicate that Arabidopsis APC4 plays critical roles in female gametogenesis and embryogenesis, possibly as a connector in APC/C, and that regulation of auxin distribution may be involved in these processes.  相似文献   

7.
The Mre11-Rad50-Nbs1 protein complex has emerged as a central component in the human cellular DNA damage response, and recent observations suggest that these proteins are at least partially responsible for the linking of DNA damage detection to DNA repair and cell cycle checkpoint functions. We have identified Aspergillus nidulans sldI1444D mutant in a screen for dynein synthetic lethals. The sldI(RAD50) gene was cloned by complementation of the sporulation deficiency phenotype of this mutant. A transversion G-->C at the position 2509 (Ala-692-Pro amino acid change) in the sldI1444D mutant causes sensitivity to several DNA-damaging agents. The mutation sldI1 occurs at the CXXC hinge domain of Rad50. We have deleted part of the coiled-coil and few amino acids of the Rad50-Mre11 interaction region and assessed several phenotypic traits in this deletion strain. Besides sensitivity to a number of DNA-damaging agents, this deletion strain is also impaired in the DNA replication checkpoint response, and in ascospore viability. There is no delay of the S-phase when germlings of both sldI (RAD50) and mreA(MRE11) inactivation strains were exposed to the DNA damage caused by bleomycin. Transformation experiments and Southern blot analysis indicate homologous recombination is dependent on scaA(NBS1) function in the Mre11 complex. There are epistatic and synergistic interactions between sldI( RAD50) and bimE(APC1) at S-phase checkpoints and response to hydroxyurea and UV light. Our results suggest a possible novel feature of the Mre11 complex in A. nidulans, i.e. a relationship with bimE (APC1).  相似文献   

8.
9.
The anaphase-promoting complex or cyclosome (APC/C) is a multiprotein subunit E3 ubiquitin ligase complex that controls segregation of chromosomes and exit from mitosis in eukaryotes. It triggers elimination of key cell cycle regulators such as securin and mitotic cyclins during mitosis by polyubiquitinating them for proteasome degradation. Seven core subunit homologs of APC/C (APC1, APC2, APC11, CDC16, CDC23, CDC27, and DOC1) were identified in the Trypanosoma brucei genome data base. Expression of six of them was individually ablated by RNA interference in both the procyclic and bloodstream forms of T. brucei. Only the CDC27- and APC1-depleted cells were enriched in the G2/M phase with inhibited growth. Further studies indicated that T. brucei APC1 and CDC27 failed to complement the corresponding deletion mutants of budding yeast. However, their depletion from procyclic-form T. brucei enriched cells with two kinetoplasts and an enlarged nucleus possessing short metaphase-like mitotic spindles, suggesting that APC1 and CDC27 may play essential roles in promoting anaphase in the procyclic form. Their depletion from the bloodstream form, however, enriched cells with two kinetoplasts and two nuclei connected through a microtubule bundle, suggesting a late anaphase arrest. This is the first time functional APC/C subunit homologs were identified in T. brucei. The apparent differential activities of this putative APC/C in two distinct developmental stages suggest an unusual function. The apparent lack of functional involvement of some of the other individual structural subunit homologs of APC/C may indicate the structural uniqueness of T. brucei APC/C.  相似文献   

10.
Cell cycle dysregulation upon human cytomegalovirus (HCMV) infection of human fibroblasts is associated with the inactivation of the anaphase-promoting complex (APC), a multisubunit E3 ubiquitin ligase, and accumulation of its substrates. Here, we have further elucidated the mechanism(s) by which HCMV-induced inactivation of the APC occurs. Our results show that Cdh1 accumulates in a phosphorylated form that may prevent its association with and activation of the APC. The accumulation of Cdh1, but not its phosphorylation, appears to be cyclin-dependent kinase dependent. The lack of an association of exogenously added Cdh1 with the APC from infected cells indicates that the core APC also may be impaired. This is further supported by an examination of the localization and composition of the APC. Coimmunoprecipitation studies show that both Cdh1 and the subunit APC1 become dissociated from the complex. In addition, immunofluorescence analysis demonstrates that as the infection progresses, several subunits redistribute to the cytoplasm, while APC1 remains nuclear. Dissociation of the core complex itself would account for not only the observed inactivity but also its inability to bind to Cdh1. Taken together, these results illustrate that HCMV has adopted multiple mechanisms to inactivate the APC, which underscores its importance for a productive infection.  相似文献   

11.
The anaphase-promoting complex (APC) or cyclosome is a ubiquitin ligase that initiates anaphase and mitotic exit. APC activation is thought to depend on APC phosphorylation and Cdc20 binding. We have identified 43 phospho-sites on APC of which at least 34 are mitosis specific. Of these, 32 sites are clustered in parts of Apc1 and the tetratricopeptide repeat (TPR) subunits Cdc27, Cdc16, Cdc23 and Apc7. In vitro, at least 15 of the mitotic phospho-sites can be generated by cyclin-dependent kinase 1 (Cdk1), and 3 by Polo-like kinase 1 (Plk1). APC phosphorylation by Cdk1, but not by Plk1, is sufficient for increased Cdc20 binding and APC activation. Immunofluorescence microscopy using phospho-antibodies indicates that APC phosphorylation is initiated in prophase during nuclear uptake of cyclin B1. In prometaphase phospho-APC accumulates on centrosomes where cyclin B ubiquitination is initiated, appears throughout the cytosol and disappears during mitotic exit. Plk1 depletion neither prevents APC phosphorylation nor cyclin A destruction in vivo. These observations imply that APC activation is initiated by Cdk1 already in the nuclei of late prophase cells.  相似文献   

12.
To investigate the specialization of the two Arabidopsis CDC27 subunits in the anaphase-promoting complex (APC/C), we analyzed novel alleles of HBT/CDC27B and CDC27A, and characterized the expression of complementing HOBBIT (HBT) protein fusions in plant meristems and during the cell cycle. In contrast to other APC/C mutants, which are gametophytic lethal, phenotypes of weak and null hbt alleles indicate a primary role in the control of post-embryonic cell division and cell elongation, whereas cdc27a nulls are phenotypically indistinguishable from the wild type. However, cdc27a hbt double-mutant gametes are non-viable, indicating a redundant requirement for both CDC27 subunits during gametogenesis. Yeast-two-hybrid and pulldown studies with APC/C components suggest that the two Arabidopsis CDC27 subunits participate in several complexes that are differentially required during plant development. Loss-of-function analysis, as well as cyclin B reporter protein accumulation, indicates a conserved role for the plant APC/C in controlling mitotic progression and cell differentiation during the entire life cycle.  相似文献   

13.
The first differentiation event in mammalian development gives rise to the blastocyst, consisting of two cell lineages that have also segregated in how the cell cycle is structured. Pluripotent cells of the inner cell mass divide mitotically to retain a diploid DNA content, but the outer trophoblast cells can amplify their genomes more than 500-fold by undergoing multiple rounds of DNA replication, completely bypassing mitosis. Central to this striking divergence in cell cycle control is the E3 ubiquitin-ligase activity of the anaphase-promoting complex or cyclosome (APC/C). Extended suppression of APC/C activity during interphase of mouse pluripotent cells promotes rapid cell cycle progression by allowing stabilization of cyclins, whereas unopposed APC/C activity during S phase of mouse trophoblast cells triggers proteasomal-mediated degradation of geminin and giant cell formation. While differential APC/C activity might govern the atypical cell cycles observed in pre-implantation mouse embryos, geminin is a critical APC/C substrate that: (1) escapes degradation in pluripotent cells to maintain expression of Oct4, Sox2 and Nanog and (2) mediates specification and endoreduplication when targeted for ectopic destruction in trophoblast. Thus, in contrast to trophoblast giant cells that lack geminin, geminin is preserved in both mouse pluripotent cells and non-endoreduplicating human cytotrophoblast cells.Key words: APC/C, geminin, Emi1, cell cycle, pluripotency, trophoblast, endoreduplication, DNA damage  相似文献   

14.
The first differentiation event in mammalian development gives rise to the blastocyst, consisting of two cell lineages that have also segregated in how the cell cycle is structured. Pluripotent cells of the inner cell mass divide mitotically to retain a diploid DNA content, but the outer trophoblast cells can amplify their genomes more than 500-fold by undergoing multiple rounds of DNA replication, completely bypassing mitosis. Central to this striking divergence in cell cycle control is the E3 ubiquitin-ligase activity of the anaphase-promoting complex or cyclosome (APC/C). Extended suppression of APC/C activity during interphase of mouse pluripotent cells promotes rapid cell cycle progression by allowing stabilization of cyclins, whereas unopposed APC/C activity during S phase of mouse trophoblast cells triggers proteasomal-mediated degradation of geminin and giant cell formation. While differential APC/C activity might govern the atypical cell cycles observed in pre-implantation mouse embryos, geminin is a critical APC/C substrate that: (1) escapes degradation in pluripotent cells to maintain expression of Oct4, Sox2 and Nanog; and (2) mediates specification and endoreduplication when targeted for ectopic destruction in trophoblast. Thus, in contrast to trophoblast giant cells that lack geminin, geminin is preserved in both mouse pluripotent cells and non-endoreduplicating human cytotrophoblast cells.  相似文献   

15.
The Schizosaccharomyces pombe dim1(+) gene is required for entry into mitosis and for chromosome segregation during mitosis. To further understand dim1p function, we undertook a synthetic lethal screen with the temperature-sensitive dim1-35 mutant and isolated lid (for lethal in dim1-35) mutants. Here, we describe the temperature-sensitive lid1-6 mutant. At the restrictive temperature of 36 degrees C, lid1-6 mutant cells arrest with a "cut" phenotype similar to that of cut4 and cut9 mutants. An epitope-tagged version of lid1p is a component of a multiprotein approximately 20S complex; the presence of lid1p in this complex depends upon functional cut9(+). lid1p-myc coimmunoprecipitates with several other proteins, including cut9p and nuc2p, and the presence of cut9p in a 20S complex depends upon the activity of lid1(+). Further, lid1(+) function is required for the multiubiquitination of cut2p, an anaphase-promoting complex or cyclosome (APC/C) target. Thus, lid1p is a component of the S. pombe APC/C. In dim1 mutants, the abundances of lid1p and the APC/C complex decline significantly, and the ubiquitination of an APC/C target is abolished. These data suggest that at least one role of dim1p is to maintain or establish the steady-state level of the APC/C.  相似文献   

16.
The anaphase-promoting complex (APC) is a cell cycle-regulated ubiquitin-protein ligase, composed of at least 11 subunits, that controls progression through mitosis and G1. Using cryo-electron microscopy and angular reconstitution, we have obtained a three-dimensional model of the human APC at a resolution of 24 A. The APC has a complex asymmetric structure 140 A x 140 A x 135 A in size, in which an outer protein wall surrounds a large inner cavity. We discuss the possibility that this cavity represents a reaction chamber in which ubiquitination reactions take place, analogous to the inner cavities formed by other protein machines such as the 26S proteasome and chaperone complexes. This cage hypothesis could help to explain the great subunit complexity of the APC.  相似文献   

17.
The chromatin accessibility complex (CHRAC) was originally defined biochemically as an ATP-dependent 'nucleosome remodelling' activity. Central to its activity is the ATPase ISWI, which catalyses the transfer of histone octamers between DNA segments in cis. In addition to ISWI, four other potential subunits were observed consistently in active CHRAC fractions. We have now identified the p175 subunit of CHRAC as Acf1, a protein known to associate with ISWI in the ACF complex. Interaction of Acf1 with ISWI enhances the efficiency of nucleosome sliding by an order of magnitude. Remarkably, it also modulates the nucleosome remodelling activity of ISWI qualitatively by altering the directionality of nucleosome movements and the histone 'tail' requirements of the reaction. The Acf1-ISWI heteromer tightly interacts with the two recently identified small histone fold proteins CHRAC-14 and CHRAC-16. Whether topoisomerase II is an integral subunit has been controversial. Refined analyses now suggest that topoisomerase II should not be considered a stable subunit of CHRAC. Accordingly, CHRAC can be molecularly defined as a complex consisting of ISWI, Acf1, CHRAC-14 and CHRAC-16.  相似文献   

18.
The anaphase-promoting complex (APC) is a multi-subunit E3 protein ubiquitin ligase that is responsible for the metaphase to anaphase transition and the exit from mitosis. One of the subunits of the APC that is required for its ubiquitination activity is Doc1/Apc10, a protein composed of a Doc1 homology domain that has been identified in a number of diverse putative E3 ubiquitin ligases. Here, we present the crystal structure of Saccharomyces cerevisiae Doc1/Apc10 at 2.2A resolution. The Doc1 homology domain forms a beta-sandwich structure that is related in architecture to the galactose-binding domain of galactose oxidase, the coagulation factor C2 domain and a domain of XRCC1. Residues that are invariant amongst Doc1/Apc10 sequences, including a temperature-sensitive mitotic arrest mutant, map to a beta-sheet region of the molecule, whose counterpart in galactose oxidase, the coagulation factor C2 domains and XRCC1, mediate bio-molecular interactions. This finding suggests the identification of the functionally important and conserved region of Doc1/Apc10 and, since invariant residues of Doc1/Apc10 colocalise with conserved residues of other Doc1 homology domains, we propose that the Doc1 homology domains perform common ubiquitination functions in the APC and other E3 ubiquitin ligases.  相似文献   

19.
Ubiquitination and subsequent degradation of critical cell cycle regulators is a key mechanism exploited by the cell to ensure an irreversible progression of cell cycle events. The anaphase-promoting complex (APC) is a ubiquitin ligase that targets proteins for degradation by the 26S proteasome. Here we identify the Hsl1p protein kinase as an APC substrate that interacts with Cdc20p and Cdh1p, proteins that mediate APC ubiquitination of protein substrates. Hsl1p is absent in G(1), accumulates as cells begin to bud, and disappears in late mitosis. Hsl1p is stabilized by mutations in CDH1 and CDC23, both of which result in compromised APC activity. Unlike Hsl1p, Gin4p and Kcc4p, protein kinases that have sequence homology to Hsl1p, were stable in G(1)-arrested cells containing active APC. Mutation of a destruction box motif within Hsl1p (Hsl1p(db-mut)) stabilized Hsl1p. Interestingly, this mutation also disrupted the Hsl1p-Cdc20p interaction and reduced the association between Hsl1p and Cdh1p in coimmunoprecipitation studies. These findings suggest that the destruction box motif is required for Cdc20p and, to a lesser extent, for Cdh1p to target Hsl1p to the APC for ubiquitination. Hsl1p has been previously shown to inhibit Swe1p, a protein kinase that negatively regulates the cyclin-dependent kinase Cdc28p, by promoting Swe1p degradation via SCF(Met30) in a bud morphogenesis checkpoint. Results of the present work indicate that Hsl1p is degraded in an APC-dependent manner and suggest a link between the SCF (Skp1-cullin-F box) and APC-proteolytic systems that may help to coordinate the proper progression of cell cycle events.  相似文献   

20.
The expression of human thymidine kinase 1 (hTK1) is highly dependent on the growth states and cell cycle stages in mammalian cells. The amount of hTK1 is significantly increased in the cells during progression to the S and M phases, and becomes barely detectable in the early G(1) phase by a proteolytic control during mitotic exit. This tight regulation is important for providing the correct pool of dTTP for DNA synthesis at the right time in the cell cycle. Here, we investigated the mechanism responsible for mitotic degradation of hTK1. We show that hTK1 is degraded via a ubiquitin-proteasome pathway in mammalian cells and that anaphase-promoting complex/cyclosome (APC/C) activator Cdh1 is not only a necessary but also a rate-limiting factor for mitotic degradation of hTK1. Furthermore, a KEN box sequence located in the C-terminal region of hTK1 is required for its mitotic degradation and interaction capability with Cdh1. By in vitro ubiquitinylation assays, we demonstrated that hTK1 is targeted for degradation by the APC/C-Cdh1 ubiquitin ligase dependent on this KEN box motif. Taken together, we concluded that activation of the APC/C-Cdh1 complex during mitotic exit controls timing of hTK1 destruction, thus effectively minimizing dTTP formation from the salvage pathway in the early G(1) phase of the cell cycle in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号